Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Small ; 19(24): e2300327, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36919311

RESUMO

Sonodynamic therapy (SDT) is regarded as a new-rising strategy for cancer treatment with low invasiveness and high tissue penetration, but the scarcity of high-efficiency sonosensitizers has seriously hindered its application. Herein, the iron-doped and oxygen-deficient bismuth tungstate nanosheets (BWO-Fe NSs) with piezotronic effect are synthesized for enhanced SDT. Due to the existence of oxygen defects introduced through Fe doping, the bandgap of BWO-Fe is significantly narrowed so that BWO-Fe can be more easily activated by exogenous ultrasound (US). The oxygen defects acting as the electron traps inhibit the recombination of US-induced electrons and holes. More importantly, the dynamically renewed piezoelectric potential facilitates the migration of electrons and holes to opposite side and causes energy band bending, which further promotes the production of reactive oxygen species. Furthermore, Fe doping endows BWO-Fe with Fenton reactivity, which converts hydrogen peroxide (H2 O2 ) in tumor microenvironment into hydroxyl radicals (•OH), thereby amplifying the cellular oxidative damage and enhancing SDT. Both in vitro and in vivo experiments illustrate their high cytotoxicity and tumor suppression rate against refractory breast cancer in mice. This work may provide an alternative strategy to develop oxygen-deficient piezoelectric sonosensitizers for enhanced SDT via doping metal ions.


Assuntos
Neoplasias , Terapia por Ultrassom , Camundongos , Animais , Oxigênio , Bismuto , Ferro , Espécies Reativas de Oxigênio , Neoplasias/terapia , Neoplasias/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Small ; 16(18): e1907603, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32270918

RESUMO

Current photocatalytic semiconductors often have low catalytic performance due to limited light utilization and fast charge carrier recombination. Formation of Schottky junction between semiconductors and plasmonic metals can broaden the light absorption and facilitate the photon-generated carriers separation. To further amplify the catalytic performance, herein, an asymmetric gold-zinc oxide (Asy-Au-ZnO) nanorod array is rationally designed, which realizes the synergy of piezocatalysis and photocatalysis, as well as spatially oriented electron-hole pairs separation, generating a significantly enhanced catalytic performance. In addition to conventional properties from noble metal/semiconductor Schottky junction, the rationally designed heterostructure has several additional advantages: 1) The piezoelectric ZnO under light and mechanical stress can directly generate charge carriers; 2) the Schottky barrier can be reduced by ZnO piezopotential to enhance the injection efficiency of hot electrons from Au nanoparticles to ZnO; 3) the unique asymmetric nanorod array structure can achieve a spatially directed separation and migration of the photon-generated carriers. When ultrasound and all-spectrum light irradiation are exerted simultaneously, the Asy-Au-ZnO reaches the highest catalytic efficiency of 95% in 75 min for dye degradation. It paves a new pathway for designing unique asymmetric nanostructures with the synergy of photocatalysis and piezocatalysis.

3.
Small Methods ; 8(1): e2301134, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840374

RESUMO

The efficacy of sonodynamic therapy (SDT) mainly relies on the sonosensitizers, which generate reactive oxygen species (ROS) upon ultrasound (US) stimulation. However, the limited availability of high-efficiency sonosensitizers hampers the therapeutic effectiveness of SDT as a standalone modality. In this work, a robust sonodynamic and gas cancer therapeutic platform is constructed based on strontium (Sr) doped barium titanate (BST) piezoelectric nanoparticles functionalized with L-arginine (BST@LA). The doping of Sr into A site of the ABO3 piezoelectric nanocrystals not only introduces oxygen vacancies into the nanoparticles and enhance the intrinsic piezoelectricity, but also narrows the semiconductor band gap and enhances charge carrier migration, all of which facilitate the sonodynamic production of superoxide anion (•O2 - ) and hydroxyl radical (•OH). In addition, the generated ROS promotes the decomposition of the surface-tethered LA, enabling the controlled release of nitric oxide (NO) gas at the tumor site, thereby achieving a combination therapeutic effect. In vivo experiments exhibit remarkable tumor suppression rate (89.5%) in 4T1 tumor mice model, demonstrating the effectiveness of this strategy. The ion doping and oxygen vacancy engineering to improve sonosensitizers, along with the synergistic combination of sonodynamic and gas therapy, provides promising avenues for improving cancer therapy.


Assuntos
Neoplasias , Estrôncio , Animais , Camundongos , Óxido Nítrico , Espécies Reativas de Oxigênio , Ácido Linoleico , Oxigênio , Neoplasias/terapia
4.
ACS Biomater Sci Eng ; 10(1): 298-312, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38124374

RESUMO

Sonodynamic therapy is an emerging noninvasive tumor treatment method that utilizes ultrasound to stimulate sonosensitizers to produce a large amount of reactive oxygen species, inducing tumor cell death. Though sonodynamic therapy has very promising prospects in cancer treatment, the application of early organic sonosensitizers has been limited in efficacy due to the high blood clearance-rate, poor water solubility, and low stability. Inorganic sonosensitizers have thus been developed, among which piezoelectric semiconductor materials have received increasing attention in sonodynamic therapy due to their piezoelectric properties and strong stability. In this review, we summarized the designs, principles, modification strategies, and applications of several commonly used piezoelectric materials in sonodynamic therapy and prospected the future clinical applications for piezoelectric semiconductor materials in sonodynamic therapy.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Nanoestruturas/uso terapêutico
5.
Small Methods ; : e2400018, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558511

RESUMO

Sonodynamic therapy (SDT) as an emerging method for cancer therapy has encountered difficulty in insufficient production of reactive oxygen species (ROS), especially in tumor microenvironment (TME) with elevated antioxidants and hypoxic conditions. In this work, the authors have fabricated heterostructured manganese dioxide (MnO2)-coated BaTiO3 nanoparticles (BTO@M NPs) as a piezoelectric sonosensitizer, which exhibits the capacity of remodeling TME and multienzyme-like catalysis for boosting SDT. Benefitting from the piezotronic effect, the formation of a p-n junction between MnO2 and piezoelectric BTO with a built-in electric field and band bending efficiently promotes the separation of charge carriers, facilitating the generation of superoxide anion (•O2 -) and hydroxyl radical (•OH) under ultrasound (US) stimulation. Moreover, BTO@M NPs can catalyze the overexpressed hydrogen peroxide (H2O2) in TME to produce oxygen for replenishing the gas source in SDT, and also deplete antioxidant glutathione (GSH), realizing TME remodeling. During this process, the reduced Mn(II) can convert H2O2 into •OH, further amplifying cellular oxidative damage. With these combination effects, the versatile BTO@M NPs exhibit prominent cytotoxicity and tumor growth inhibition against 4T1 breast cancer. This work provides a feasible strategy for constructing high-efficiency sonosensitizers for cancer SDT.

6.
ACS Nano ; 18(21): 13607-13617, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38747681

RESUMO

Piezotronic effect utilizing strain-induced piezoelectric polarization to achieve interfacial engineering in semiconductor nanodevices exhibits great advantages in applications such as human-machine interfacing, micro/nanoelectromechanical systems, and next-generation sensors and transducers. However, it is a big challenge but highly desired to develop a highly sensitive piezotronic device based on piezoelectric semiconductor wafers and thus to push piezotronics toward wafer-scale applications. Here, we develop a bicrystal barrier-based piezotronic transistor for highly sensitive pressure sensing by p-GaN single-crystal wafers. Its pressure sensitivity can be as high as 19.83 meV/MPa, which is more than 15 times higher than previous bulk-material-based piezotronic transistors and reaches the level of nanomaterial-based piezotronic transistors. Moreover, it can respond to a very small strain of 3.3 × 10-6 to 1.1 × 10-5 with high gauge factors of 1.45 × 105 to 1.38 × 106, which is a very high value among various strain sensors. Additionally, it also exhibits high stability (current stability of 97.32 ± 2.05% and barrier height change stability of 95.85 ± 3.43%) and high linearity (R2 ∼ 0.997 ± 0.002) in pressure sensing. This work proves the possibility of designing a bicrystal barrier as the interface to obtain a strong piezotronic effect and highly sensitive piezotronic devices based on wafers, which contributes to their applications.

7.
ACS Appl Mater Interfaces ; 16(3): 3147-3161, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38212273

RESUMO

Sonodynamic therapy offers a highly accurate treatment for bacterial infections; however, its antibacterial efficacy is hindered by bacterial biofilms that limit the penetration of sonosensitizers. Herein, a nitric oxide (NO)-driven mushroom-like Janus nanomotor (BT@PDA-La) based on the unilateral coating of polydopamine (PDA) on piezoelectric tetragonal barium titanate (BT) and further modified with l-arginine (l-Arg) on the PDA side is fabricated. In the infected microenvironment with high levels of H2O2, NO is produced unilaterally from BT@PDA-La, thus leading to its self-propelled movement and facilitating its permeability in the biofilm. Under ultrasonic vibrations, the piezoelectric effect of BT@PDA-La is triggered by the exogenous mechanical wave, and toxic reactive oxygen species (ROS) are efficiently generated via an in situ catalytic reaction. The synergistic treatment with ROS/NO achieved the destruction of biofilms and embedded drug-resistant bacteria in vitro. Importantly, BT@PDA-La exhibits excellent biofilm penetration capacity, effectively eliminating biofilm infection while accelerating the healing of infected muscles by alleviating oxidative stress, regulating inflammatory factors, and accelerating angiogenesis. Collectively, this study provides a promising strategy for enhancing the penetration of pathological environment-driven nanomaterials through biofilms and advances the application of nanomotors for the therapy of bacterial infections in clinical medicine.


Assuntos
Infecções Bacterianas , Peróxido de Hidrogênio , Humanos , Óxido Nítrico , Espécies Reativas de Oxigênio , Bactérias , Antibacterianos/farmacologia , Biofilmes
8.
J Colloid Interface Sci ; 640: 839-850, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905893

RESUMO

Sonodynamic therapy (SDT) is considered as a new-rising strategy for cancer therapeutics, but the inefficient production of reactive oxygen species (ROS) by current sonosensitizers seriously hinders its further applications. Herein, a piezoelectric nanoplatform is fabricated for enhancing SDT against cancer, in which manganese oxide (MnOx) with multiple enzyme-like activities is loaded on the surface of piezoelectric bismuth oxychloride nanosheets (BiOCl NSs) to form a heterojunction. When exposed to ultrasound (US) irradiation, piezotronic effect can remarkably promote the separation and transport of US-induced free charges, and further enhance ROS generation in SDT. Meanwhile, the nanoplatform shows multiple enzyme-like activities from MnOx, which can not only downregulate the intracellular glutathione (GSH) level, but also disintegrate endogenous hydrogen peroxide (H2O2) to generate oxygen (O2) and hydroxyl radicals (•OH). As a result, the anticancer nanoplatform substantially boosts ROS generation and reverses tumor hypoxia. Ultimately, it reveals remarkable biocompatibility and tumor suppression in a murine model of 4 T1 breast cancer under US irradiation. This work provides a feasible pathway for improving SDT using piezoelectric platforms.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Camundongos , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/terapia , Oxigênio/metabolismo , Linhagem Celular Tumoral
9.
ACS Appl Mater Interfaces ; 14(50): 55548-55558, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36472911

RESUMO

Charge carrier transfer efficiency as a crucial factor determines the performance of heterogeneous photocatalysis. Here, we demonstrate a simple nanohybrid structure of BaTiO3-Au (BTO-Au) for the efficient selective oxidization of benzyl alcohol to benzaldehyde upon piezotronic effect boosted plasmonic photocharge carrier transfer. With the aid of ultrasonic mechanical vibration, the reaction rate of the photocatalytic organic conversion would be considerably accelerated, which is about 4.2 and 6.2 times higher than those driven by sole visible light irradiation and sole ultrasonication, respectively. Photoelectrochemical tests under ultrasonic stimuli reveal the BTO-Au catalytic system is independent of the light intensity, showing a consistent photocurrent density, over a wide range of incident light brightness. The largely enhanced photocatalytic activity can be ascribed to the synergetic effect of surface plasmonic resonance (SPR)-piezotronic coupling by which a built-in electric field induced by the piezotronic effect significantly favors the oriented mobilization of energetic charge carriers generated by the SPR effect at the heterojunction. Notably, a decrease of the Schottky barrier height of ∼0.3 eV at the BTO-Au interface is verified experimentally, due to the band bending of BTO induced by the piezotronic effect, which can greatly augment the hot electron transfer efficiency. This work highlights the coupling of the piezotronic effect with SPR within the BTO-Au nanostructure as a versatile and promising route for efficient charge transfer in photocatalytic organic conversion.

10.
Micromachines (Basel) ; 14(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36677109

RESUMO

The piezotronic effect is a coupling effect of semiconductor and piezoelectric properties. The piezoelectric potential is used to adjust the p-n junction barrier width and Schottky barrier height to control carrier transportation. At present, it has been applied in the fields of sensors, human-machine interaction, and active flexible electronic devices. The piezo-phototronic effect is a three-field coupling effect of semiconductor, photoexcitation, and piezoelectric properties. The piezoelectric potential generated by the applied strain in the piezoelectric semiconductor controls the generation, transport, separation, and recombination of carriers at the metal-semiconductor contact or p-n junction interface, thereby improving optoelectronic devices performance, such as photodetectors, solar cells, and light-emitting diodes (LED). Since then, the piezotronics and piezo-phototronic effects have attracted vast research interest due to their ability to remarkably enhance the performance of electronic and optoelectronic devices. Meanwhile, ZnO has become an ideal material for studying the piezotronic and piezo-phototronic effects due to its simple preparation process and better biocompatibility. In this review, first, the preparation methods and structural characteristics of ZnO nanowires (NWs) with different doping types were summarized. Then, the theoretical basis of the piezotronic effect and its application in the fields of sensors, biochemistry, energy harvesting, and logic operations (based on piezoelectric transistors) were reviewed. Next, the piezo-phototronic effect in the performance of photodetectors, solar cells, and LEDs was also summarized and analyzed. In addition, modulation of the piezotronic and piezo-phototronic effects was compared and summarized for different materials, structural designs, performance characteristics, and working mechanisms' analysis. This comprehensive review provides fundamental theoretical and applied guidance for future research directions in piezotronics and piezo-phototronics for optoelectronic devices and energy harvesting.

11.
ACS Nano ; 16(6): 9304-9316, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35699224

RESUMO

Ultrasound (US)-triggered sonodynamic therapy (SDT) based on semiconductor nanomaterials has attracted considerable attention for cancer therapy. However, most inorganic sonosensitizers suffer from low efficiency due to the rapid recombination of electron-hole pairs. Herein, the Cu2-xO-BaTiO3 piezoelectric heterostructure was fabricated as a sonosensitizer and chemodynamic agent, simultaneously, for improving reactive oxygen species (ROS) generation and cancer therapeutic outcome. Under US irradiation, the Cu2-xO-BaTiO3 heterojunction with a piezotronic effect exhibits high-performance singlet oxygen (1O2) and hydroxyl radical (•OH) generation to enhance SDT. Moreover, it possesses Fenton-like reaction activity to convert endogenous H2O2 into •OH for chemodynamic therapy (CDT). The integration of SDT and CDT substantially boosts ROS generation and cellular mitochondria damage, and the in vitro and in vivo results demonstrate high cytotoxicity and tumor inhibition on murine refractory breast cancer. This work realizes improvement in cancer therapy using piezoelectric heterostructures with piezotronic effects.


Assuntos
Neoplasias da Mama , Neoplasias , Terapia por Ultrassom , Humanos , Camundongos , Animais , Feminino , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Terapia por Ultrassom/métodos , Neoplasias/terapia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral
12.
Sci Bull (Beijing) ; 66(14): 1409-1418, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654367

RESUMO

Schottky-contacted sensors have been demonstrated to show high sensitivity and fast response time in various sensing systems. In order to improve their sensing performance, the Schottky barriers height (SBH) at the interface of semiconductor and metal electrode should be adjusted to appropriate range to avoid low output or low sensitivity, which was induced by excessively high or low SBH, respectively. In this work, a simple and effective SBH tuning method by triboelectric generator (TENG) is proposed, the SBH can be effectively lowered by voltage pulses generated by TENG and gradually recover over time after withdrawing the TENG. Through combining the TENG treatment with piezotronic effect, a synergistic effect on lowering SBH was achieved. The change of SBH is increased by 3.8 to 12.8 times, compared with dependent TENG treatment and piezotronic effect, respectively. Furthermore, the recovery time of the TENG-lowered SBH can be greatly shortened from 1.5 h to 40 s by piezotronic effect. This work demonstrated a flexible and feasible SBH tuning method, which can be used to effectively improve the sensitivity of Schottky-contact sensor and sensing system. Our study also shows great potential in broadening the application scenarios of Schottky-contacted electronic devices.

13.
Nanomicro Lett ; 13(1): 67, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34138301

RESUMO

High-electron-mobility transistors (HEMTs) are a promising device in the field of radio frequency and wireless communication. However, to unlock the full potential of HEMTs, the fabrication of large-size flexible HEMTs is required. Herein, a large-sized (> 2 cm2) of AlGaN/AlN/GaN heterostructure-based HEMTs were successfully stripped from sapphire substrate to a flexible polyethylene terephthalate substrate by an electrochemical lift-off technique. The piezotronic effect was then induced to optimize the electron transport performance by modulating/tuning the physical properties of two-dimensional electron gas (2DEG) and phonons. The saturation current of the flexible HEMT is enhanced by 3.15% under the 0.547% tensile condition, and the thermal degradation of the HEMT was also obviously suppressed under compressive straining. The corresponding electrical performance changes and energy diagrams systematically illustrate the intrinsic mechanism. This work not only provides in-depth understanding of the piezotronic effect in tuning 2DEG and phonon properties in GaN HEMTs, but also demonstrates a low-cost method to optimize its electronic and thermal properties.

14.
Adv Mater ; 32(7): e1905795, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31930641

RESUMO

Recently, piezoelectric characteristics have been a research focus for 2D materials because of their broad potential applications. Black phosphorus (BP) is a monoelemental 2D material predicted to be piezoelectric because of its highly directional properties and non-centrosymmetric lattice structure. However, piezoelectricity is hardly reported in monoelemental materials owing to their lack of ionic polarization, but piezoelectric generation is consistent with the non-centrosymmetric structure of BP. Theoretical calculations of phosphorene have explained the origin of piezoelectric polarization among P atoms. However, the disappearance of piezoelectricity in multilayer 2D material generally arises from the opposite orientations of adjacent atomic layers, whereas this effect is limited in BP lattices due to their spring-shaped space structure. Here, the existence of in-plane piezoelectricity is experimentally reported for multilayer BP along the armchair direction. Current-voltage measurements demonstrate a piezotronic effect in this orientation, and cyclic compression and release of BP flakes show an intrinsic current output as large as 4 pA under a compressive strain of -0.72%. The discovery of piezoelectricity in multilayer BP can lead to further understanding of this mechanism in monoelemental materials.

15.
Beilstein J Nanotechnol ; 11: 1847-1853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364143

RESUMO

1D semiconductor nanowires (NWs) have been extensively studied in recent years due to the predominant mechanical flexibility caused by a large surface-to-volume ratio and unique electrical and optical properties induced by the 1D quantum confinement effect. Herein, we use a top-down two-step preparation method to synthesize AlGaN/AlN/GaN heterojunction NWs with controllable size. A single NW is transferred to a flexible poly(ethylene terephthalate) substrate and fixed by indium tin oxide electrodes to form an ohmic contact for the strain sensor. An external mechanical stress is introduced to study the performance of the fabricated piezotronic strain sensor. The gauge factor is as high as 30 under compressive or tensile stress, which indicates a high sensitivity of the strain sensor. Periodic strain tests show the high stability and repeatability of the sensor. The working mechanism of the strain sensor is investigated and systematically analyzed under compressive and tensile strain. Here, we describe a strain sensor that shows a great application potential in wearable integrated circuits, in health-monitoring devices, and in artificial intelligence.

16.
ACS Appl Mater Interfaces ; 12(32): 36660-36669, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32686933

RESUMO

Using simple graphene transfer and the laser lift-off process for a non-centrosymmetric GaN layer on a flexible polydimethylsiloxane (PDMS) substrate, the piezotronic effect by strain-induced current-voltage measurements at the two end points is studied. By inducing compressive strain on the flexible graphene/GaN/PDMS sensor, the Schottky barrier between the graphene and GaN/PDMS heterojunction can be electro-mechanically modulated by the piezotronic effect. It is observed that the flexible graphene/GaN/PDMS sensor is sensitive to various applied compressive and tensile strains in the positive/negative bias scans. The sensor is extremely sensitive to a compressive strain of -0.1% with a gauge factor of 13.48, which is 3.7 times higher than that of a standard metal strain gauge. Furthermore, the sharp response of the flexible graphene/GaN/PDMS sensor under the -0.1% compressive strain is also investigated. The results of this study herald the development of commercially viable large-scale flexible/wearable strain sensors based on the strain-controlled piezotronic effect in future investigations.

17.
Sci Bull (Beijing) ; 65(2): 161-168, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659080

RESUMO

Third generation semiconductors for piezotronics and piezo-phototronics, such as ZnO and GaN, have both piezoelectric and semiconducting properties. Piezotronic devices normally exhibit high strain sensitivity because strain-induced piezoelectric charges control or tune the carrier transport at junctions, contacts and interfaces. The distribution width of piezoelectric charges in a junction is one of important parameters. Capacitance-voltage (C-V) characteristics can be used to estimate the distribution width of strain-induced piezoelectric charges. Piezotronic metal-insulator-semiconductor (MIS) has been modelled by analytical solutions and numerical simulations in this paper, which can serve as guidance for C-V measurements and experimental designs of piezotronic devices.

18.
Adv Mater ; 31(51): e1905436, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31643113

RESUMO

Tunneling junction is used in many devices such as high-frequency oscillators, nonvolatile memories, and magnetic field sensors. In these devices, modulation on the barrier width and/or height is usually realized by electric field or magnetic field. Here, a new piezotronic tunneling junction (PTJ) principle, in which the quantum tunneling is controlled/tuned by externally applied mechanical stimuli, is proposed. In these metal/insulator/piezoelectric semiconductor PTJs, such as Pt/Al2 O3 /p-GaN, the height and the width of the tunneling barriers can be mechanically modulated via the piezotronic effect. The tunneling current characteristics of PTJs exhibit critical behavior as a function of external mechanical stimuli, which results in high sensitivity (≈5.59 mV MPa-1 ), giant switching (>105 ), and fast response (≈4.38 ms). Moreover, the mechanical controlling of tunneling transport in PTJs with various thickness of Al2 O3 is systematically investigated. The high performance observed with these metal/insulator/piezoelectric semiconductor PTJs suggest their great potential in electromechanical technology. This study not only demonstrates dynamic mechanical controlling of quantum tunneling, but also paves a way for adaptive interaction between quantum tunneling and mechanical stimuli, with potential applications in the field of ultrasensitive press sensor, human-machine interface, and artificial intelligence.

19.
ACS Nano ; 13(11): 13161-13168, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31633906

RESUMO

Flexible electronic technology has attracted great attention due to its wide range of potential applications in the fields of healthcare, robotics, and artificial intelligence, etc. In this work, we have successfully fabricated flexible AlGaN/GaN high-electron-mobility transistors (HEMTs) arrays through a low-damage and wafer-scale substrate transfer technology from a rigid Si substrate. The flexible AlGaN/GaN HEMTs have excellent electrical performances with the Id,max achieving 290 mA/mm at Vgs = +2 V and the gm,max reaching to 40 mS/mm. The piezotronic effect provides a different freedom to optimize device performances, and flexible HEMTs can endure the larger mechanical distortions. Based on the piezotronic effect, we applied an external stress to significantly modulate the electrical performances of flexible HEMTs. The piezotronic effect modulated flexible AlGaN/GaN HEMTs exhibit great potential in human-machine interface, intelligent microinductor systems, and active sensors, etc, and introduce an opportunity to sensing or feedback external mechanical stimuli and so on.

20.
Adv Mater ; 30(10)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29349853

RESUMO

Coupling of magnetic, ferroelectric, or piezoelectric properties with charge transport at oxide interfaces provides the option to revolutionize classical electronics. Here, the modulation of electrostatic potential barriers at tailored ZnO bicrystal interfaces by stress-induced piezoelectric polarization is reported. Specimen design by epitaxial solid-state transformation allows for both optimal polarization vector alignment and tailoring of defect states at a semiconductor-semiconductor interface. Both quantities are probed by transmission electron microscopy. Consequently, uniaxial compressive stress affords a complete reduction of the potential barrier height at interfaces with head-to-head orientation of the piezoelectric polarization vectors and an increase in potential barrier height at interfaces with tail-to-tail orientation. The magnitude of this coupling between mechanical input and electrical transport opens pathways to the design of multifunctional electronic devices like strain triggered transistors, diodes, and stress sensors with feasible applications for human-computer interfacing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA