Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Thromb Haemost ; 22(3): 785-793, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37944898

RESUMO

BACKGROUND: Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare complication of adenovirus vector-based COVID-19 vaccines. VITT is associated with markedly raised levels of D-dimer; yet, how VITT modulates the fibrinolytic system is unknown. OBJECTIVES: We aimed to compare changes in fibrinolytic activity in plasma from patients with VITT, patients diagnosed with venous thromboembolism (VTE) after vaccination but without VITT (VTE-no VITT), and healthy vaccinated controls. METHODS: Plasma levels of plasmin-antiplasmin (PAP) complexes, plasminogen, and alpha-2-antiplasmin (α2AP) from 10 patients with VITT, 10 patients with VTE-no VITT, and 14 healthy vaccinated controls were evaluated by enzyme-linked immunosorbent assay and/or Western blotting. Fibrinolytic capacity was evaluated by quantitating PAP levels at baseline and after ex vivo plasma stimulation with 50-nM tissue-type plasminogen activator (tPA) or urokinase for 5 minutes. RESULTS: Baseline PAP complex levels in control and VTE-no VITT individuals were similar but were ∼7-fold higher in plasma from patients with VITT (P < .0001). VITT samples also revealed consumption of α2AP and fibrinogenolysis consistent with a hyperfibrinolytic state. Of interest, VITT plasma produced significantly higher PAP levels after ex vivo treatment with tPA, but not urokinase, compared to the other groups, indicative of increased fibrinolytic potential. This was not due to D-dimer as addition of D-dimer to VTE-no VITT plasma failed to potentiate tPA-induced PAP levels. CONCLUSION: A marked hyperfibrinolytic state occurs in patients with VITT, evidenced by marked elevations in PAP, α2AP consumption, and fibrinogenolysis. An unidentified plasma cofactor that selectively potentiates tPA-mediated plasminogen activation also appears to exist in the plasma of patients with VITT.


Assuntos
Antifibrinolíticos , Transtornos da Coagulação Sanguínea , Trombocitopenia , Trombose , Tromboembolia Venosa , Humanos , Antifibrinolíticos/farmacologia , Vacinas contra COVID-19/efeitos adversos , Fibrinolisina/metabolismo , Fibrinólise , Plasminogênio , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/farmacologia
2.
J Clin Med ; 11(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36498682

RESUMO

There is limited information about diurnal changes in fibrinolysis parameters after acute myocardial infarction (AMI) and their relationship with on-treatment platelet reactivity. The aim of this study was to assess tissue plasminogen activator (t-PA), plasminogen activator inhibitor type-1 (PAI-1), α2-antiplasmin (α2-AP) activity, and plasmin-antiplasmin (PAP) complexes in 30 AMI patients taking dual antiplatelet therapy (DAPT), i.e., acetylsalicylic acid and clopidogrel. Fibrinolytic parameters were assessed at four time points (6 a.m., 10 a.m., 2 p.m., and 7 p.m.) on the third day after AMI using immunoenzymatic methods. Moreover, platelet reactivity was measured using multiple-electrode aggregometry, to assess potential differences in fibrinolytic parameters in low/high on-aspirin platelet reactivity and low/high on-clopidogrel platelet reactivity subgroups of patients. We detected significant diurnal oscillations in t-PA and PAI-1 levels in the whole study group. However, PAP complexes and α2-AP activity were similar at the analyzed time points. Our study reveals a potential impact of DAPT on the time course of fibrinolytic parameters, especially regarding clopidogrel. We suggest the presence of diurnal variations in t-PA and PAI-1 concentrations in AMI patients, with the highest levels midmorning, regardless of platelet reactivity. Significantly elevated levels of PAI-1 during the evening hours in clopidogrel-resistant patients may increase the risk of thrombosis.

3.
Biology (Basel) ; 10(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34439949

RESUMO

Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. Accumulating evidence demonstrates that alpha-synuclein (α-Syn), an apparently predominant neuronal protein, is a major contributor to PD pathology. As α-Syn is also highly abundant in blood, particularly in red blood cells (RBCs) and platelets, this in turn raises the question on the function of presumably dysfunctional α-Syn in "peripheral" cells and its putative effect on the other enclosed constituents. Herein, we detected the internal variance in erythrocytes of PD patients by Raman spectroscopy, but no measurable amount of erythrocytic behavioural change (eryptosis) or any haemoglobin variation was noticed. An elevated level of plasmin-antiplasmin complexes (PAP) was observed in the plasma of PD patients, indicating activation of the fibrinolytic system, but platelet activation after thrombin stimulation was not altered. Sex-specific patterns were noticed for blood coagulation factor XIII and factor XII activity in PD patients. Additionally, the alterations in homocysteine levels which have often been observed in PD patients were found to be independent from L-DOPA usage and PAP levels. Furthermore, a selective gene expression analysis identified subsets of genes related to different blood-associated compartments (RBCs, platelets, coagulation-fibrinolysis) also involved in PD-related pathways.

4.
Thromb Res ; 204: 22-28, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111811

RESUMO

Activation of the fibrinolytic system plays a central role in the host response to trauma. There is significant heterogeneity in the degree of fibrinolysis activation at baseline that is usually assessed by whole blood thromboelastography (TEG). Few studies have focused on plasma markers of fibrinolysis that could add novel insights into the frequency and mechanisms of fibrinolytic activation in trauma. Global fibrinolysis in plasma was assessed using a modified euglobulin clot lysis time (ECLT) assay in 171 major trauma patients and compared to commonly assessed analytes of fibrinolysis. The median ECLT in trauma patients was significantly shorter at 8.5 h (IQR, 1.3-19.5) compared to 19.9 h (9.8-22.6) in healthy controls (p < 0.0001). ECLT values ≤2.5th percentile of the reference range were present in 83 (48.5%) of trauma patients, suggesting increased fibrinolytic activation. Shortened ECLT values were associated with elevated plasmin-antiplasmin (PAP) complexes and free tissue plasminogen activator (tPA) levels in plasma. Sixteen (9.2%) individuals met the primary outcome for massive transfusion, here defined as the critical administration threshold (CAT) of 3 units of packed red cells in any 60-minute period within the first 24 h. In a univariate screen, plasma biomarkers associated with CAT included D-dimer (p < 0.001), PAP (p < 0.05), free tPA (p < 0.05) and ECLT (p < 0.05). We conclude that fibrinolytic activation, measured by ECLT, is present in a high proportion of trauma patients at presentation. The shortened ECLT is partially driven by high tPA levels and is associated with high levels of circulating PAP complexes. Further studies are needed to determine whether ECLT is an independent predictor of trauma outcomes.


Assuntos
Fibrinólise , Ativador de Plasminogênio Tecidual , Tempo de Lise do Coágulo de Fibrina , Humanos , Tromboelastografia , Terapia Trombolítica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA