Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207568

RESUMO

Ovarian cancer remains the leading cause of death due to gynecologic malignancy. Estrogen-related pathways genes, such as estrogen receptors (ESR1 and ESR2) and their coregulators, proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), and proto-oncogene tyrosine-protein kinase c-Src (SRC) are involved in ovarian cancer induction and development, still they require in-depth study. In our study, tissue samples were obtained from 52 females of Caucasian descent (control group without cancerous evidence (n = 27), including noncancerous benign changes (n = 15), and the ovarian carcinoma (n = 25)). Using quantitative analyses, we investigated ESRs, PELP1, and SRC mRNA expression association with ovarian tumorigenesis. Proteins' presence and their location were determined by Western blot and immunohistochemistry. Results showed that PELP1 and SRC expression levels were found to differ in tissues of different sample types. The expression patterns were complex and differed in the case of ovarian cancer patients compared to controls. The most robust protein immunoreactivity was observed for PELP1 and the weakest for ESR1. The expression patterns of analyzed genes represent a potentially interesting target in ovarian cancer biology, especially PELP1. This study suggests that specific estrogen-mediated functions in the ovary and ovary-derived cancer might result from different local interactions of estrogen with their receptors and coregulators.


Assuntos
Proteína Tirosina Quinase CSK/biossíntese , Proteínas Correpressoras/biossíntese , Receptor alfa de Estrogênio/biossíntese , Receptor beta de Estrogênio/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição/biossíntese , Adulto , Idoso , Proteína Tirosina Quinase CSK/genética , Proteínas Correpressoras/genética , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Feminino , Humanos , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proto-Oncogene Mas , Fatores de Transcrição/genética
2.
Hum Cell ; 36(2): 554-567, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36577884

RESUMO

Sperm cells are target cells for both estrogens and xenoestrogens. Due to the specific structure of spermatozoa, these hormonal compounds may act on sperm in a non-genomic mechanism only. However, the ESR-mediated signaling pathways are still poorly understood. In this study, we obtained 119 samples from male participants of Caucasian descent who donated semen for standard analysis. We analyzed gene expression of estrogen receptors (ESR1 and ESR2) and their coregulators-proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), and cellular kinase c-Src (SRC). RNA level was established using reverse-transcribed RNA as a template, followed by a polymerase chain reaction. Proteins' presence was confirmed by western blot and immunocytochemistry techniques. "Normal" values of semen parameters were defined as follows: > 32% sperm with progressive motility, > 4% sperm cells with normal morphology, > 15 × 106 sperm per mL, > 58% live spermatozoa and leukocyte amount < 106 cells per mL, according to WHO 2010 reference. Semen parameters that deviated from these "normal" values were labeled as "abnormal". Gene expression ratios revealed significant, moderate, and negative correlations for ESR1/ESR2 and weak, negative ESR2/PELP1 correlations in the subgroup of patients with abnormal values of semen parameters. In addition, SRC/PELP1 was moderately and positively correlated in the subgroup with parameters within the reference values established by WHO 2010. Our study showed that both PELP1 scaffolding protein and SRC kinase might influence semen quality via ESRs. It seems that not the expression of a single gene may affect the sperm quality, but more gene-to-gene mutual ratio. Characterization of estrogen-signaling pathway-related genes' modulated expression in sperm cells could aid in better understanding sperm biology and quality.


Assuntos
Proteínas Correpressoras , Proteínas Proto-Oncogênicas pp60(c-src) , Receptores de Estrogênio , Sêmen , Humanos , Masculino , Receptores de Estrogênio/metabolismo , RNA , Sêmen/metabolismo , Análise do Sêmen , Espermatozoides/metabolismo , Fatores de Transcrição , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo
3.
Arch Oral Biol ; 124: 105078, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33607589

RESUMO

OBJECTIVE: The aim of this study was to determine the physiological function and mechanism of proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) at the molecular level in vitro. DESIGN: During the osteogenic differentiation of hPDLSCs, the change of PELP1 and the osteogenic commitment markers runt-related transcription factor 2(RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN) were monitored by quantitative real-time PCR (qRT-PCR) and western blots. To elucidate how PELP1 regulates RUNX2, the expression of RUNX2, the phosphorylation of extracellular regulated protein kinases (ERK) and subcellular location of PELP1 were detected under conditions that PELP1 was either knockdown by specific siRNA or overexpressed. A pharmacological inhibitor of ERK, U0126 was used while PELP1 was overexpressed, and the expression of RUNX2 was monitored by qRT-PCR. RESULTS: PELP1 was upregulated during the osteogenic differentiation of hPDLSCs. Knockdown of PELP1 suppressed the expression of RUNX2, whereas overexpression of PELP1 increased RUNX2 expression. Moreover, PELP1 knockdown resulted in reduced ERK phosphorylation and RUNX2 expression, and PELP1 overexpression induced RUNX2 expression was inhibited by U0126 in the hPDLSCs. CONCLUSIONS: PELP1 regulates the expression of RUNX2 during the osteogenic differentiation of hPDLSCs and that the ERK pathway is involved in this process.


Assuntos
Osteogênese , Ligamento Periodontal , Diferenciação Celular , Células Cultivadas , Proteínas Correpressoras , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Ligamento Periodontal/metabolismo , Proteínas Quinases , Células-Tronco/metabolismo , Fatores de Transcrição
4.
Cells ; 6(4)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29112114

RESUMO

PELP1 acts as an estrogen receptor (ER) coactivator that exerts an essential role in the ER's functions. ER coregulators have a critical role in the progression and response to hormonal treatment of estrogen-dependent tumors. We previously demonstrated that, in adrenocortical carcinoma (ACC), ERα is upregulated and that estradiol activates the IGF-II/IGF1R signaling pathways defining the role of this functional cross-talk in H295R ACC cell proliferation. The aim of this study was to determine if PELP1 is expressed in ACC and may play a role in promoting the interaction between ERα and IGF1R allowing the activation of pathways important for ACC cell growth. The expression of PELP1 was detected by Western blot analysis in ACC tissues and in H295R cells. H295R cell proliferation decrease was assessed by A3-(4,5-Dimethylthiaoly)-2,5-diphenyltetrazolium bromide (MTT) assay and [3H] thymidine incorporation. PELP1 is expressed in ACC tissues and in H295R cells. Moreover, treatment of H295R with E2 or IGF-II induced a multiprotein complex formation consisting of PELP1, IGF1R, ERα, and Src that is involved in ERK1/2 rapid activation. PELP1/ER/IGF1R/c-Src complex identification as part of E2- and IGF-II-dependent signaling in ACC suggests PELP1 is a novel and more efficient potential target to reduce ACC growth.

5.
Mol Cell Endocrinol ; 382(1): 642-651, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23933151

RESUMO

Proline, glutamic acid, and leucine rich protein 1 (PELP1) is a large multi-domain protein that has been shown to modulate an increasing number of pathways and biological processes. The first reports describing the cloning and characterization of PELP1 showed that it was an estrogen receptor coactivator. PELP1 has now been shown to be a coregulator for a growing number of transcription factors. Furthermore, recent reports have shown that PELP1 is a member of chromatin remodeling complexes. In addition to PELP1 nuclear functions, it has been shown to have cytoplasmic signaling functions as well. In the cytoplasm PELP1 acts as a scaffold molecule and mediates rapid signaling from growth factor and hormone receptors. PELP1 signaling ultimately plays a role in cancer biology by increasing proliferation and metastasis, among other cellular processes. Here we will review (1) the cloning and characterization of PELP1 expression, (2) interacting proteins, (3) PELP1 signaling, and (4) PELP1-mediated biology.


Assuntos
Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Núcleo Celular/metabolismo , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Ligação Proteica , Fatores de Transcrição/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA