Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 41(1): 99-105, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093325

RESUMO

The mechanism of 3,5,2',4'-tetrahydroxychalcone on lowing urate level is still unknown. Here we investigated the effects of 3,5,2',4'-tetrahydroxychalcone on urate levels, xanthine oxidase/xanthine dehydrogenase (XOD/XDH) activities in hypoxanthine-induced hyperuricemic mice, as well as the effects of 3,5,2',4'-tetrahydroxychalcone on the mRNA expression levels and content of phosphoribosyl pyrophosphate synthetase (PRPS), phosphoribosyl pyrophosphate amidotransferase (PRPPAT) and hypoxanthine-guanine phosphoribosyl transferase (HGPRT). Our results demonstrated that 3,5,2',4'-tetrahydroxychalcone (1.0, 2.0, and 4.0 mg/kg) reduced the uric acid levels in serum of the hyperuricemic mice in dose- and time-dependent manners. The activities of XOD/XDH in serum and liver were also significantly inhibited by 3,5,2',4'-tetrahydroxychalcone; In addition, 3,5,2',4'-tetrahydroxychalcone decreased the mRNA expression of HGPRT in brain and content of PRPS and PRPPAT in liver. These findings demonstrated that 3,5,2',4'-tetrahydroxychalcone suppresses uric acid production by affecting the critical enzymes, XOD/XDH, PRPS, PRPPAT and HGPRT in purine nucleotide metabolism.


Assuntos
Chalconas/uso terapêutico , Hiperuricemia/tratamento farmacológico , Ácido Úrico/sangue , Xantina Desidrogenase/metabolismo , Xantina Oxidase/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hiperuricemia/induzido quimicamente , Hiperuricemia/metabolismo , Hipoxantina/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos , Purinas/metabolismo , Xantina Desidrogenase/genética , Xantina Oxidase/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-24940703

RESUMO

We have extended peak-shift method for measuring purine bases to make it suitable for other purine-related compounds. We optimized the reactions of the purine metabolism enzymes 5'-nucleotidase (EC 3.1.3.5), purine nucleoside phosphorylase (PNP) (EC 2.4.2.1), xanthine oxidase (XO) (EC 1.17.3.2), urate hydroxylase (EC 1.7.3.3), adenosine deaminase (ADA) (EC 3.5.4.4), and guanine deaminase (EC 3.5.4.3) by determining their substrate specificity and reaction kinetics. These enzymes eliminate the five purine base peaks (adenine, guanine, hypoxanthine, xanthine, and uric acid) and four nucleosides (adenosine, guanosine, inosine, and xanthosine). The bases and nucleosides can be identified and accurately quantified by comparing the chromatograms before and after treatment with the enzymes. Elimination of the individual purine compound peaks was complete in a few minutes. However, when there were multiple substrates, such as for XO, and when the metabolites were purine compounds, such as for PNP and ADA, it took longer to eliminate the peaks. The optimum reaction conditions for the peak-shift assay methods were an assay mixture containing the substrate (10 µL, 0.1 mg/mL), the combined enzyme solution (10 µL each, optimum concentration), and 50 mM sodium phosphate (up to 120 µL, pH 7.4). The mixture was incubated for 60 minutes at 37°C. This method should be suitable for determining the purine content of a variety of samples, without interference from impurities.


Assuntos
Ensaios Enzimáticos/métodos , Purinas/metabolismo , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Cinética , Coelhos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA