Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616814

RESUMO

Jet pipe servo-valves are widely used in high-precision servo control systems. However, the accuracy of pressure-flow characteristic equations relevant to its pilot stage needs to be improved. In contrast to the traditional analytical approach using the orifice equation, the article investigates the pressure and flow characteristics of the pilot stage based on the impact jet principle. Taking the pre-stage of a certain type of jet pipe servo-valve as an example, the flow field is simulated using ANASYS software. By comparing the simulation data with the calculation results, the pressure characteristic model is basically consistent with the simulation data, and the relative error is less than 2.3%. The error between the revised flow characteristic model and the simulation result is small, and the maximum deviation is less than 0.0022 L/min. Finally, to verify the applicability of the model to other specifications, the experimental data in the literature are compared with the theoretical calculation results, the maximum relative error of pressure characteristics is 2.19%, and the relative error of flow characteristics is less than 5.34%.

2.
Sensors (Basel) ; 22(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36236660

RESUMO

Direct-drive electro-hydraulic servo valves are used extensively in aerospace, military and control applications, but little research has been conducted on their service life and physical failure wear. Based on computational fluid dynamics, the main failure forms of direct-drive electro-hydraulic servo valves are explored using their continuous phase flow and discrete phase motion characteristics, and then combined with the theory of erosion for calculation. A mathematical model of the direct-drive electro-hydraulic servo valve is established by using Solidworks software, and then imported into Fluent simulation software to establish its physical failure model and carry out simulation. Finally, the physical failure form of the direct drive electro-hydraulic servo valve is verified by the simulation results, and the performance degradation law is summarized. The results show that temperature, differential pressure, solid particle diameter and concentration, and opening degree all have an impact on the erosion and wear of direct-drive electro-hydraulic servo valves, in which differential pressure and solid particle diameter have a relatively large impact, and the servo valve must avoid working in the range of high differential pressure and solid particle diameter of 20-40 um as far as possible. This also provides further theoretical support and experimental guidance for the industrial application and life prediction of electro-hydraulic servo valves.

3.
Micromachines (Basel) ; 11(3)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188151

RESUMO

Giant magnetostrictive actuators (GMA) are widely used in the field of servo valves, but the displacement of GMA is limited, which renders meeting the requirements of large flow direct-drive electro-hydraulic servo valves (DDV) difficult. In order to solve these problems, this study proposes a double-row bow-type micro-displacement amplifier (DBMA), used to increase output displacement of GMA to meet the requirements. This study, by static analysis, analyzes the force of a flexure hinge based on theoretical mechanics and material mechanics, derives the stiffness matrix of the flexure hinge by the influence coefficient method, establishes the pseudo-rigid model, and derives the amplification ratio of a DBMA. Also, by kinetic analysis, using Castigliano's second theorem, a formula of equivalent stiffness and natural frequency of DBMA were derived and the influences of different parameters on them were analyzed, respectively. After that, we analyzed the amplifier using finite element method (FEM) simulation software and verified the model by manufacturing a prototype and building a test system. Theoretical calculations and experimental results showed that the amplification ratio of the DBMA fluctuated between 15.43 and 16.25. The natural frequency was about 305 Hz to 314 Hz and the response bandwidth was up to 300 Hz. The error among the theoretical, simulated, and experimental values was within 8%, supporting the accuracy of the model.

4.
Front Robot AI ; 5: 51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33659276

RESUMO

Hydraulic actuation is the most widely used alternative to electric motors for legged robots and manipulators. It is often selected for its high power density, robustness and high-bandwidth control performance that allows the implementation of force/impedance control. Force control is crucial for robots that are in contact with the environment, since it enables the implementation of active impedance and whole body control that can lead to a better performance in known and unknown environments. This paper presents the hydraulic Integrated Smart Actuator (ISA) developed by Moog in collaboration with IIT, as well as smart manifolds for rotary hydraulic actuators. The ISA consists of an additive-manufactured body containing a hydraulic cylinder, servo valve, pressure/position/load/temperature sensing, overload protection and electronics for control and communication. The ISA v2 and ISA v5 have been specifically designed to fit into the legs of IIT's hydraulic quadruped robots HyQ and HyQ-REAL, respectively. The key features of these components tackle 3 of today's main challenges of hydraulic actuation for legged robots through: (1) built-in controllers running inside integrated electronics for high-performance control, (2) low-leakage servo valves for reduced energy losses, and (3) compactness thanks to metal additive manufacturing. The main contributions of this paper are the derivation of the representative dynamic models of these highly integrated hydraulic servo actuators, a control architecture that allows for high-bandwidth force control and their experimental validation with application-specific trajectories and tests. We believe that this is the first work that presents additive-manufactured, highly integrated hydraulic smart actuators for robotics.

5.
ISA Trans ; 54: 207-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25234140

RESUMO

This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA