Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(27): e2402587121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923994

RESUMO

Morphogenesis is one of the most marvelous natural phenomena. The morphological characteristics of biological organs develop through growth, which is often triggered by mechanical force. In this study, we propose a bioinspired strategy for hydrogel morphogenesis through force-controlled chemical reaction and growth under isothermal conditions. We adopted a double network (DN) hydrogel with sacrificial bonds. Applying mechanical force to the gel caused deformation and sacrificial bond rupture. By supplying monomers to the gel, the radicals generated by the bond rupture triggered the formation of a new network inside the deformed gel. This new network conferred plasticity to the elastic gel, allowing it to maintain its deformed shape, along with increased volume and strength. We demonstrated that sheet-shaped DN hydrogels rapidly adopted various three-dimensional shapes at ambient temperature when subjected to forces such as drawing and blowing. This mechanism enables morphogenesis of elastic hydrogels and will promote the application of these materials in biomedical fields and soft machines.

2.
Proc Natl Acad Sci U S A ; 119(45): e2211861119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322770

RESUMO

Insect wings are deformable airfoils, in which deformations are mostly achieved by complicated interactions between their structural components. Due to the complexity of the wing design and technical challenges associated with testing the delicate wings, we know little about the properties of their components and how they determine wing response to flight forces. Here, we report an unusual structure from the hind-wing membrane of the beetle Pachnoda marginata. The structure, a transverse section of the claval flexion line, consists of two distinguishable layers: a bell-shaped upper layer and a straight lower layer. Our computational simulations showed that this is an effective one-way hinge, which is stiff in tension and upward bending but flexible in compression and downward bending. By systematically varying its design parameters in a computational model, we showed that the properties of the double-layer membrane hinge can be tuned over a wide range. This enabled us to develop a broad design space, which we later used for model selection. We used selected models in three distinct applications, which proved that the double-layer hinge represents a simple yet effective design strategy for controlling the mechanical response of structures using a single material and with no extra mass. The insect-inspired, one-way hinge is particularly useful for developing structures with asymmetric behavior, exhibiting different responses to the same load in two opposite directions. This multidisciplinary study not only advances our understanding of the biomechanics of complicated insect wings but also informs the design of easily tunable engineering hinges.


Assuntos
Besouros , Asas de Animais , Animais , Asas de Animais/fisiologia , Insetos , Fenômenos Biomecânicos , Membranas , Voo Animal/fisiologia , Modelos Biológicos
3.
Proc Natl Acad Sci U S A ; 119(49): e2215028119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442122

RESUMO

The climbing microrobots have attracted growing attention due to their promising applications in exploration and monitoring of complex, unstructured environments. Soft climbing microrobots based on muscle-like actuators could offer excellent flexibility, adaptability, and mechanical robustness. Despite the remarkable progress in this area, the development of soft microrobots capable of climbing on flat/curved surfaces and transitioning between two different surfaces remains elusive, especially in open spaces. In this study, we address these challenges by developing voltage-driven soft small-scale actuators with customized 3D configurations and active stiffness adjusting. Combination of programmed strain distributions in liquid crystal elastomers (LCEs) and buckling-driven 3D assembly, guided by mechanics modeling, allows for voltage-driven, complex 3D-to-3D shape morphing (bending angle > 200°) at millimeter scales (from 1 to 10 mm), which is unachievable previously. These soft actuators enable development of morphable electroadhesive footpads that can conform to different curved surfaces and stiffness-variable smart joints that allow different locomotion gaits in a single microrobot. By integrating such morphable footpads and smart joints with a deformable body, we report a multigait, soft microrobot (length from 6 to 90 mm, and mass from 0.2 to 3 g) capable of climbing on surfaces with diverse shapes (e.g., flat plane, cylinder, wavy surface, wedge-shaped groove, and sphere) and transitioning between two distinct surfaces. We demonstrate that the microrobot could navigate from one surface to another, recording two corresponding ceilings when carrying an integrated microcamera. The developed soft microrobot can also flip over a barrier, survive extreme compression, and climb bamboo and leaf.


Assuntos
Elastômeros , Cristais Líquidos , Membrana Celular , Extremidades , Marcha
4.
Nano Lett ; 24(22): 6665-6672, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767991

RESUMO

Shape morphing of biopolymer materials, such as chitosan (CS) films, has great potential for applications in many fields. Traditionally, their responsive behavior has been induced by the differential water swelling through the preparation of multicomponent composites or cross-linking as deformation is not controllable in the absence of these processes. Here, we report an interfacial dehydration strategy to trigger the shape morphing of the monocomponent CS film without cross-linking. The release of water molecules is achieved by spraying the surface with a NaOH solution or organic solvents, which results in the interfacial shrinkage and deformation of the entire film. On the basis of this strategy, a range of CS actuators were developed, such as soft grippers, joint actuators, and a light switch. Combined with the geometry effect, edited deformation was also achieved from the planar CS film. This shape-morphing strategy is expected to enable the application of more biopolymers in a wide range of fields.

5.
Small ; 20(28): e2310009, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38295155

RESUMO

Magnetic soft actuators and robots have attracted considerable attention in biomedical applications due to their speedy response, programmability, and biocompatibility. Despite recent advancements, the fabrication process of magnetic actuators and the reprogramming approach of their magnetization profiles continue to pose challenges. Here, a facile fabrication strategy is reported based on arrangements and distributions of reusable magnetic pixels on silicone substrates, allowing for various magnetic actuators with customizable architectures, arbitrary magnetization profiles, and integration of microfluidic technology. This approach enables intricate configurations with decent deformability and programmability, as well as biomimetic movements involving grasping, swimming, and wriggling in response to magnetic actuation. Moreover, microfluidic functional modules are integrated for various purposes, such as on/off valve control, curvature adjustment, fluid mixing, dynamic microfluidic architecture, and liquid delivery robot. The proposed method fulfills the requirements of low-cost, rapid, and simplified preparation of magnetic actuators, since it eliminates the need to sustain pre-defined deformations during the magnetization process or to employ laser heating or other stimulation for reprogramming the magnetization profile. Consequently, it is envisioned that magnetic actuators fabricated via pixel-assembly will have broad prospects in microfluidics and biomedical applications.

6.
Small ; : e2310682, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109576

RESUMO

Polymer nanocomposites exhibiting remarkable mechanical properties are a focus of research for decades in structural applications. However, their practical application faces challenges due to poor interfacial load transfer, nanofiller dispersion, and processing limitations. These issues are critical in achieving stiff, strong, lightweight, and structurally integrated materials. Additionally, they often suffer from predetermined properties, which may not be effective under specific loading conditions. Addressing these challenges, the development of design strategies for mechano-responsive materials has advanced, enabling self-adaptive properties that respond to various mechanical stimuli. Drawing inspiration from natural systems, these approaches have been implemented in synthetic material systems, leveraging the design flexibility of nanocomposites as needed. Key focus areas include exploring mechanoradical reactions for dynamic mechano-responsiveness, as well as utilizing biomimetic mineralization and mechanical training for self-strengthening. This work also examines multistability, enabling on-demand deformation of materials and structures. Recent advancements in viscoelastic damping and nonreciprocal materials are discussed, highlighting their potential for directional energy absorption, transmission, and vibration control. Despite the need for significant improvements for real-world applications, mechano-responsive polymers and nanocomposites are expected to offer enormous opportunities not only in structural applications but also in other fields such as biomedical engineering, energy harvesting, and soft robotics.

7.
Macromol Rapid Commun ; 45(11): e2400010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458610

RESUMO

This work presents a new method for 4D fabrication of two-way shape memory materials that are capable of reversible shapeshifting right after manufacturing, upon application of proper heating and cooling cycles. The innovative solution presented here consists in the combination of highly stretched electrospun shape memory polymer (SMP) nanofibers with a melt electrowritten elastomer. More specifically, the stretched nanofibers are made of a biocompatible thermoplastic polyurethane (TPU) with crystallizable soft segments, undergoing melt-induced contraction and crystallization-induced elongation upon heating and cooling, respectively. Reversible actuation during crystallization becomes possible due to the elastic recovery of the elastomer component, obtained by melt electrowriting of a commercial TPU filament. Thanks to the design freedom offered by additive manufacturing, the elastomer structure also has the role of guiding the shape transformation. Electrospinning and melt electrowriting process parameters are set up so to obtain smart 4D objects capable of two-way shape memory effect (SME), and the possibility of reversible and repeatable actuation is demonstrated. The two components are then combined in different proportions with the aim of tailoring the two-way SME, taking into account the effect of design parameters such as the SMP content, the elastomer pattern, and the composite thickness.


Assuntos
Nanofibras , Polímeros , Polímeros/química , Nanofibras/química , Poliuretanos/química , Elastômeros/química , Materiais Inteligentes/química , Materiais Biocompatíveis/química
8.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34649993

RESUMO

Inspired by the quest for shape-shifting structures in a range of applications, we show how to create morphable structural materials using a neutrally stable unit cell as a building block. This unit cell is a self-stressed hinged structure with a one-parameter family of morphing motions that are all energetically equivalent. However, unlike kinematic mechanisms, the unit cell is not infinitely floppy and instead exhibits a tunable mechanical response akin to that of an ideal rigid-plastic material. Theory and simulations allow us to explore the properties of planar and spatial assemblies of neutrally stable elements, and solve the inverse problem of designing assemblies that can morph from one given shape into another. Simple experimental prototypes of these assemblies corroborate our theoretical results and show that the addition of switchable hinges allows us to create load-bearing structures. Altogether, totimorphs pave the way for structural materials whose geometry and deformation response can be controlled independently and at multiple scales.


Assuntos
Orientação Espacial , Fenômenos Mecânicos , Robótica
9.
Small ; 19(42): e2302656, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37345000

RESUMO

An active heterostructure with smart-response material used as "muscle" and inactive material as "skeleton" can deform over time to respond to external stimuli. 4D printing integrated with two-photon polymerization technology and smart material allows the material or characteristic distribution of active heterostructures to be defined directly at the microscale, providing a huge programmable space. However, the high degree of design freedom and the microscale pose a challenge to the construction of micromachines with customized shape morphing. Here, a reverse design strategy based on multi-material stepwise 4D printing is proposed to guide the structural design of biomimetic micromachines. Inspired by the piecewise constant curvature model of soft robot, a reverse design algorithm based on the Timoshenko model is developed. The algorithm can approximate 2D features to a constant-curvature model and determine an acceptable material distribution within the explored printing range. Three Chinese "Long" (Chinese dragon heralds of good fortune) designed by the strategy can deform to the customized shape. In addition, a microcrawler printed using this method can imitate a real inchworm gait. These results demonstrate that this method can be an efficient tool for the action or shape design of bionic soft microrobots or micromachines with predetermined functions.

10.
Chemistry ; 29(40): e202301030, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37165790

RESUMO

Liquid-crystal polymers are a type of representative material combining the order-disorder transition of liquid crystals and the superior properties of polymers. The phase transition from the liquid-crystal phase to the isotropic state of mesogens causes large, controllable, and reversible deformation of polymers; thus, liquid-crystal polymers have emerged as one of the most valuable candidates for shape-morphing materials. Therefore, this review will focus on the recent development of shape-morphing liquid-crystal polymers, including the modes of energy conversions, material design strategies and further applications. In the main, novel material design methods and a wide range of application of shape-morphing liquid-crystal polymers are discussed.

11.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375413

RESUMO

Liquid crystal elastomers (LCEs) are shape-morphing materials whose large and reversible shape transformations are caused by the coupling between the mobile anisotropic properties of liquid crystal (LC) units and the rubber elastic of polymer networks. Their shape-changing behaviors under certain stimuli are largely directed by the LC orientation; therefore, various strategies have been developed to spatially modulate the LC alignments. However, most of these methods are limited as they require complex fabrication technologies or have intrinsic limitations in applicability. To address this issue, programmable complex shape changes in some LCE types, such as polysiloxane side-chain LCEs, thiol-acrylate main-chain LCEs, etc., were achieved by using a mechanical alignment programming process coupled with two-step crosslinking. Here, we report a polysiloxane main-chain LCE with programmable 2- and 3D shape-changing abilities that were created by mechanically programming the polydomain LCE with two crosslinking steps. The resulting LCEs exhibited a reversible thermal-induced shape transformation between the initial and programmed shapes due to the two-way memory between the first and second network structures. Our findings expand on the applications of LCE materials in actuators, soft robotics, and smart structures where arbitrary and easily programmed shape morphing is needed.

12.
Small ; 18(37): e2202272, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35983631

RESUMO

Micromachines with high environmental adaptability have the potential to deliver targeted drugs in complex biological networks, such as digestive, neural, and vascular networks. However, the low processing efficiency and single processing material of current 4D printing methods often limit the development and application of shape-morphing micromachines (SMMs). Here, two 4D printing strategies are proposed to fabricate SMMs with pH-responsive hydrogels for complex micro-networks traversing. On the one hand, the 3D vortex light single exposure technique can rapidly fabricate a tubular SMM with controllable size and geometry within 0.1 s. On the other hand, the asymmetric multimaterial direct laser writing (DLW) method is used to fabricate SMMs with designable 3D structures composed of hydrogel and platinum nanoparticles (Pt NPs). Based on the presence of ferroferric oxide (Fe3 O4 ) and Pt NPs in the SMMs, efficient magnetic, bubble, and hybrid propulsion modes are achieved. Finally, it is demonstrated that the spatial shape conversion capabilities of these SMMs can be used for narrow micronetworks traversing, which will find potential applications in targeted cargo delivery in microcapillaries.


Assuntos
Nanopartículas Metálicas , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Platina , Impressão Tridimensional
13.
Sci Technol Adv Mater ; 23(1): 66-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35125966

RESUMO

Stimuli-responsive polymers with complicated but controllable shape-morphing behaviors are critically desirable in several engineering fields. Among the various shape-morphing materials, cross-linked polymers with exchangeable bonds in dynamic network topology can undergo on-demand geometric change via solid-state plasticity while maintaining the advantageous properties of cross-linked polymers. However, these dynamic polymers are susceptible to creep deformation that results in their dimensional instability, a highly undesirable drawback that limits their service longevity and applications. Inspired by the natural ice strategy, which realizes creep reduction using crystal structure transformation, we evaluate a dynamic cross-linked polymer with tunable creep behavior through topological alternation. This alternation mechanism uses the thermally triggered disulfide-ene reaction to convert the network topology - from dynamic to static - in a polymerized bulk material. Thus, such a dynamic polymer can exhibit topological rearrangement for thermal plasticity at 130°C to resemble typical dynamic cross-linked polymers. Following the topological alternation at 180°C, the formation of a static topology reduces creep deformation by more than 85% in the same polymer. Owing to temperature-dependent selectivity, our cross-linked polymer exhibits a shape-morphing ability while enhancing its creep resistance for dimensional stability and service longevity after sequentially topological alternation. Our design enriches the design of dynamic covalent polymers, which potentially expands their utility in fabricating geometrically sophisticated multifunctional devices.

14.
Molecules ; 26(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498348

RESUMO

For soft robotics and programmable metamaterials, novel approaches are required enabling the design of highly integrated thermoresponsive actuating systems. In the concept presented here, the necessary functional component was obtained by polymer syntheses. First, poly(1,10-decylene adipate) diol (PDA) with a number average molecular weight M n of 3290 g·mol-1 was synthesized from 1,10-decanediol and adipic acid. Afterward, the PDA was brought to reaction with 4,4'-diphenylmethane diisocyanate and 1,4-butanediol. The resulting polyester urethane (PEU) was processed to the filament, and samples were additively manufactured by fused-filament fabrication. After thermomechanical treatment, the PEU reliably actuated under stress-free conditions by expanding on cooling and shrinking on heating with a maximum thermoreversible strain of 16.1%. Actuation stabilized at 12.2%, as verified in a measurement comprising 100 heating-cooling cycles. By adding an actuator element to a gripper system, a hen's egg could be picked up, safely transported and deposited. Finally, one actuator element each was built into two types of unit cells for programmable materials, thus enabling the design of temperature-dependent behavior. The approaches are expected to open up new opportunities, e.g., in the fields of soft robotics and shape morphing.


Assuntos
Polímeros/química , Impressão Tridimensional , Robótica , Materiais Inteligentes/química , Animais , Butileno Glicóis/química , Galinhas , Feminino , Poliésteres/química , Temperatura
15.
Small ; 15(9): e1804838, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30650244

RESUMO

Shape morphing nanosystems have recently attracted much attention and a number of applications are developed, spanning from autonomous robotics to drug delivery. However, the fabrication of such nanosystems remains at an early stage owing to limited choices of strategies and materials. This work reports a facile method to fabricate liquid metal (LM) nanodroplets by sonication of bulk LM in an aqueous dopamine hydrochloride solution and their application in light-induced shape morphing at the nanoscale. In this method, dopamine acts as a surfactant, which stabilizes the LM nanodroplets dispersion during the sonication, and results in downsizing of the nanodroplets. Furthermore, by adding 2-amino-2-(hydroxymethyl)-1,3-propanediol to the suspension, self-polymerization of dopamine molecules occurs, resulting in the formation of polydopamine (PDA)-coated LM nanodroplets. Owing to the high photothermal conversion of the PDA, PDA-coated LM nanodroplets are transformed from spherical shapes to ellipsoids by NIR laser irradiation. This study paves a simple and reliable pathway for the preparation of functional LM nanodroplets and their application as shape-morphing nanosystems.

16.
Macromol Rapid Commun ; 40(4): e1800691, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30565769

RESUMO

Polyion complex (PIC) hydrogels formed by charge attraction of opposite charged polymers have received unique research interest. Their conventional preparation method, with a large amount of residual salt after polymerization, requires a long-term dialysis treatment to remove the salt and toughen the gel. Here, a promising strategy for the one-step preparation of tough PIC hydrogels without dialysis after polymerization is provided. Bicarbonate and proton ions are selected as the counter ions of the cationic monomer and anionic polymers, respectively. By a CO2 -generating reaction between the counter ions, the residual salt is removed before polymerization, and thus, a PIC hydrogel with tough mechanical performance can be obtained instantly without dialysis. Due to the absence of dialysis, the tough hydrogel can be formed with a wide range of ratios for the oppositely charged polymer with distinct swelling behaviors from non-swelling to super-swelling. This tunable swelling behavior shows the possibility for shape-morphing systems from this one-step method.


Assuntos
Hidrogéis/síntese química , Polímeros/síntese química , Dióxido de Carbono/química , Hidrogéis/química , Íons/síntese química , Íons/química , Estrutura Molecular , Polímeros/química
17.
Macromol Rapid Commun ; 39(12): e1800143, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29749078

RESUMO

The mechanical properties (e.g., stiffness, stretchability) of prefabricated hydrogels are of pivotal importance for diverse applications in tissue engineering, soft robotics, and medicine. This study reports a feasible method to fabricate ultrasoft and highly stretchable structures from stiff and tough hydrogels of low stretchability and the application of these switchable hydrogels in programmable shape-morphing systems. Stiff and tough hydrogel structures are first fabricated by the mechanical strengthening of Ca2+ -alginate/polyacrylamide tough hydrogels by addition of Fe3+ ions, which introduces Fe3+ ionically cross-linked centers into the Ca2+ divalent cross-linked hydrogel, forming an additional and much less flexible trivalent ionically cross-linked network. The resulting stiff and tough hydrogels are exposed to an L-ascorbic acid (vitamin C, VC) solution to rapidly reduce Fe3+ to Fe2+ . As a result, flexible divalent ionically cross-linked networks are formed, leading to swift softening of the stiff and tough hydrogels. Moreover, localized stiffness variation of the tough hydrogels can be realized by precise patterning of the VC solution. To validate this concept, sequential steps of VC patterning are carried out for local tuning of the stiffness of the hydrogels. With this strategy, localized softening, unfolding, and sequential folding of the tough hydrogels into complex 3D structures is demonstrated.


Assuntos
Resinas Acrílicas/química , Alginatos/química , Cálcio/química , Hidrogéis/química , Ácido Ascórbico/química , Materiais Biocompatíveis/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Ferro/química , Fenômenos Mecânicos
18.
Adv Mater ; 36(9): e2308560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37983878

RESUMO

The surge in advanced manufacturing techniques has led to a paradigm shift in the realm of material design from developing completely new chemistry to tailoring geometry within existing materials. Kirigami, evolved from a traditional cultural and artistic craft of cutting and folding, has emerged as a powerful framework that endows simple 2D sheets with unique mechanical, thermal, optical, and acoustic properties, as well as shape-shifting capabilities. Given its flexibility, versatility, and ease of fabrication, there are significant efforts in developing kirigami algorithms to create various architectured materials for a wide range of applications. This review summarizes the fundamental mechanisms that govern the transformation of kirigami structures and elucidates how these mechanisms contribute to their distinctive properties, including high stretchability and adaptability, tunable surface topography, programmable shape morphing, and characteristics of bistability and multistability. It then highlights several promising applications enabled by the unique kirigami designs and concludes with an outlook on the future challenges and perspectives of kirigami-inspired metamaterials toward real-world applications.

19.
Soft Robot ; 11(1): 32-42, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37616544

RESUMO

The art of origami has gained traction in various fields such as architecture, the aerospace industry, and soft robotics, owing to the exceptional versatility of flat sheets to exhibit complex shape transformations. Despite the promise that origami robots hold, their use in high-capacity environments has been limited due to the lack of rigidity. This article introduces novel, origami-inspired, self-locking pneumatic modular actuators (SPMAs), enabling them to operate in such environments. Our innovative approach is based on origami patterns that allow for various types of shape morphing, including linear and rotational motion. We have significantly enhanced the stiffness of the actuators by embedding magnets in composite sheets, thus facilitating their application in real-world scenarios. In addition, the embedded self-adjustable valves facilitate the control of sequential origami actuations, making it possible to simplify the pneumatic system for actuating multimodules. With just one actuation source and one solenoid valve, the valves enable efficient control of our SPMAs. The SPMAs can control robotic arms operating in confined spaces, and the entire system can be modularized to accomplish various tasks. Our results demonstrate the potential of origami-inspired designs to achieve more efficient and reliable robotic systems, thus opening up new avenues for the development of robotic systems for various applications.

20.
Bioinspir Biomim ; 19(4)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38722377

RESUMO

State-of-the-art morphing materials are either very compliant to achieve large shape changes (flexible metamaterials, compliant mechanisms, hydrogels), or very stiff but with infinitesimal changes in shape that require large actuation forces (metallic or composite panels with piezoelectric actuation). Morphing efficiency and structural stiffness are therefore mutually exclusive properties in current engineering morphing materials, which limits the range of their applicability. Interestingly, natural fish fins do not contain muscles, yet they can morph to large amplitudes with minimal muscular actuation forces from the base while producing large hydrodynamic forces without collapsing. This sophisticated mechanical response has already inspired several synthetic fin rays with various applications. However, most 'synthetic' fin rays have only considered uniform properties and structures along the rays while in natural fin rays, gradients of properties are prominent. In this study, we designed, modeled, fabricated and tested synthetic fin rays with bioinspired gradients of properties. The rays were composed of two hemitrichs made of a stiff polymer, joined by a much softer core region made of elastomeric ligaments. Using combinations of experiments and nonlinear mechanical models, we found that gradients in both the core region and hemitrichs can increase the morphing and stiffening response of individual rays. Introducing a positive gradient of ligament density in the core region (the density of ligament increases towards the tip of the ray) decreased the actuation force required for morphing and increased overall flexural stiffness. Introducing a gradient of property in the hemitrichs, by tapering them, produced morphing deformations that were distributed over long distances along the length of the ray. These new insights on the interplay between material architecture and properties in nonlinear regimes of deformation can improve the designs of morphing structures that combine high morphing efficiency and high stiffness from external forces, with potential applications in aerospace or robotics.


Assuntos
Nadadeiras de Animais , Materiais Biomiméticos , Animais , Nadadeiras de Animais/fisiologia , Nadadeiras de Animais/anatomia & histologia , Fenômenos Biomecânicos , Biomimética/métodos , Peixes/fisiologia , Peixes/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA