Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676195

RESUMO

Single-photon detection and timing has attracted increasing interest in recent years due to their necessity in the field of quantum sensing and the advantages of single-quanta detection in the field of low-level light imaging. While simple bucket detectors are mature enough for commercial applications, more complex imaging detectors are still a field of research comprising mostly prototype-level detectors. A major problem in these detectors is the implementation of in-pixel timing circuitry, especially for two-dimensional imagers. One of the most promising approaches is the use of voltage-controlled ring resonators in every pixel. Each of these runs independently based on a voltage supplied by a global reference. However, this yields the problem that the supply voltage can change across the chip which, in turn, changes the period of the ring resonator. Due to additional parasitic effects, this problem can worsen with increasing measurement time, leading to drift in the timing information. We present here a method to identify and correct such temporal drifts in single-photon detectors based on asynchronous quantum ghost imaging. We also show the effect of this correction on recent quantum ghost imaging (QGI) measurement from our group.

2.
Nano Lett ; 23(8): 3245-3250, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057961

RESUMO

The generation of photon pairs from nanoscale structures with high rates is still a challenge for the integration of quantum devices, as it suffers from parasitic signals from the substrate. In this work, we report type-0 spontaneous parametric down-conversion at 1550 nm from individual bottom-up grown zinc-blende GaAs nanowires with lengths of up to 5 µm and diameters of up to 450 nm. The nanowires were deposited on a transparent ITO substrate, and we measured a background-free coincidence rate of 0.05 Hz in a Hanbury-Brown-Twiss setup. Taking into account transmission losses, the pump fluence, and the nanowire volume, we achieved a biphoton generation of 60 GHz/Wm, which is at least 3 times higher than that of previously reported single nonlinear micro- and nanostructures. We also studied the correlations between the second-harmonic generation and the spontaneous parametric down-conversion intensities with respect to the pump polarization and in different individual nanowires.

3.
Nano Lett ; 21(10): 4423-4429, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33971095

RESUMO

All-dielectric optical metasurfaces are a workhorse in nano-optics, because of both their ability to manipulate light in different degrees of freedom and their excellent performance at light frequency conversion. Here, we demonstrate first-time generation of photon pairs via spontaneous parametric-down conversion in lithium niobate quantum optical metasurfaces with electric and magnetic Mie-like resonances at various wavelengths. By engineering the quantum optical metasurface, we tailor the photon-pair spectrum in a controlled way. Within a narrow bandwidth around the resonance, the rate of pair production is enhanced up to 2 orders of magnitude, compared to an unpatterned film of the same thickness and material. These results enable flat-optics sources of entangled photons-a new promising platform for quantum optics experiments.

4.
Sensors (Basel) ; 21(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34372199

RESUMO

Statistical distributions of the analog readings of an antenna-coupled THz superconducting bolometer were measured and analyzed under a special type of irradiation by low-energy fluxes of THz photons with Poisson photon statistics and controllable mean photon numbers. The photons were generated via low-gain parametric down-conversion in pulse-pumped Mg:LiNbO3 crystal placed to a cooled cryostat together with the bolometer NbN film. Results of theoretical approximation of experimental histograms reveal the discrete nature of THz detection by superconducting bolometers and open a way for studying their quantum characteristics. It is shown that bolometer readings per pulse consist of discrete counts ("single charges"), with the mean number linearly dependent on the number of input photons. Contributions of single counts to a total analog reading are statistically distributed according to the normal law, with average values slightly depending on the number of counts in each reading. A general formula is proposed to describe the relationship between continuous statistical distribution of the bolometer readings and discrete quantum statistics of the incident photons.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34877185

RESUMO

Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal has been a workhorse for the generation of entangled and correlated single-photon pairs used for quantum communications applications for nearly three decades. However, as a naturally broadband process, the ability of SPDC to interface with the very narrow energy transitions in atomic ensembles for implementing quantum memories, which are needed for quantum repeaters to extend the reach of quantum communications, was initially limited. To overcome this limitation, the process was enhanced by placing the nonlinear crystal inside a resonating cavity. This modified process has some important advantages, including narrowing the spectral linewidth of generated photons into brighter resonant modes of the cavity, and the ability to lock the desired mode of the cavity to the targeted transition frequency of the atomic ensemble. This paper presents an overview of the principle of cavity-enhanced SPDC, a review of works to date using this technique, and an example of one of these implementations.

6.
Heliyon ; 7(6): e07384, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34258455

RESUMO

We have experimentally created a robust, ultrabright and phase-stable polarization-entangled state close to maximally entangled Bell-state with %98-fidelity using the type-II spontaneous parametric down-conversion (SPDC) process in periodically-poled KTiOPO4 (PPKTP) collinear crystal inside a Sagnac interferometer (SI). Bell inequality measurement, Freedman's test, as the different versions of CHSH inequality, and also visibility test which all can be seen as the nonlocal realism tests, imply that our created entangled state shows a strong violation from the classical physics or any hidden-variable theory. We have obtained very reliable and very strong Bell violation as S = 2.78 ± 0.01 with high brightness V HV = % ( 99.969 ± 0.003 ) and V DA = % ( 96.751 ± 0.002 ) and very strong violation due to Freedman test as δ F = 0.01715 ± 0.00001 . Furthermore, using the tomographic reconstruction of quantum states together a maximum-likelihood-technique (MLT) as the numerical optimization, we obtain the physical non-negative definite density operator which shows the nonseparability and entanglement of our prepared state. By having the maximum likelihood density operator, we calculate some important entanglement-measures and entanglement entropies. The Sagnac configuration provides bidirectional crystal pumping yields to high-rate entanglement source which is very applicable in quantum communication, sensing and metrology as well as quantum information protocols, and has potential to be used in quantum illumination-based LIDAR and free-space quantum key distribution (QKD).

7.
Micromachines (Basel) ; 10(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766172

RESUMO

In this work, the cascaded second-order spontaneous parametric down-conversion (SPDC) is considered to produce pure state photon triplets in periodically poled lithium niobite (PPLN) doped with 5% MgO. A set of parameters are optimized through calculating the Schmidt number of two-photon states generated by each down-conversion process with different pump durations and crystal lengths. We use a Gaussian filter in part and obtain three photons with 100% purity in spectrum. We provide a feasible and unprecedented scheme to manipulate the spectrum purity of photon triplets in the communication band (C-band).

8.
Light Sci Appl ; 5(1): e16019, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30167117

RESUMO

Light-carrying orbital angular momentum (OAM) has great potential in enhancing the information channel capacity in both classical and quantum optical communications. Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows, but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths, so a quantum interface to bridge the wavelength gap is necessary. So far, such an interface for OAM-carried light has not been realized yet. Here, we report the first experimental realization of a quantum interface for a heralded single photon carrying OAM using a nonlinear crystal in an optical cavity. The spatial structures of input and output photons exhibit strong similarity. More importantly, single-photon coherence is preserved during up-conversion as demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA