Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.904
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 172(1-2): 55-67.e15, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29307491

RESUMO

The κ-opioid receptor (KOP) mediates the actions of opioids with hallucinogenic, dysphoric, and analgesic activities. The design of KOP analgesics devoid of hallucinatory and dysphoric effects has been hindered by an incomplete structural and mechanistic understanding of KOP agonist actions. Here, we provide a crystal structure of human KOP in complex with the potent epoxymorphinan opioid agonist MP1104 and an active-state-stabilizing nanobody. Comparisons between inactive- and active-state opioid receptor structures reveal substantial conformational changes in the binding pocket and intracellular and extracellular regions. Extensive structural analysis and experimental validation illuminate key residues that propagate larger-scale structural rearrangements and transducer binding that, collectively, elucidate the structural determinants of KOP pharmacology, function, and biased signaling. These molecular insights promise to accelerate the structure-guided design of safer and more effective κ-opioid receptor therapeutics.


Assuntos
Simulação de Acoplamento Molecular , Receptores Opioides kappa/química , Analgésicos/química , Analgésicos/farmacologia , Animais , Sítios de Ligação , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Morfinanos/química , Morfinanos/farmacologia , Ligação Proteica , Estabilidade Proteica , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Células Sf9 , Spodoptera
2.
Cell ; 168(3): 377-389.e12, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28129538

RESUMO

The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated ß-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors. PAPERCLIP.


Assuntos
Dietilamida do Ácido Lisérgico/química , Receptor 5-HT2B de Serotonina/química , Arrestina/química , Cristalografia por Raios X , Humanos , Cinética , Modelos Químicos , Simulação de Dinâmica Molecular
3.
Mol Cell ; 84(10): 1932-1947.e10, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38703769

RESUMO

Mutations in transporters can impact an individual's response to drugs and cause many diseases. Few variants in transporters have been evaluated for their functional impact. Here, we combine saturation mutagenesis and multi-phenotypic screening to dissect the impact of 11,213 missense single-amino-acid deletions, and synonymous variants across the 554 residues of OCT1, a key liver xenobiotic transporter. By quantifying in parallel expression and substrate uptake, we find that most variants exert their primary effect on protein abundance, a phenotype not commonly measured alongside function. Using our mutagenesis results combined with structure prediction and molecular dynamic simulations, we develop accurate structure-function models of the entire transport cycle, providing biophysical characterization of all known and possible human OCT1 polymorphisms. This work provides a complete functional map of OCT1 variants along with a framework for integrating functional genomics, biophysical modeling, and human genetics to predict variant effects on disease and drug efficacy.


Assuntos
Simulação de Dinâmica Molecular , Humanos , Células HEK293 , Relação Estrutura-Atividade , Mutação de Sentido Incorreto , Farmacogenética , Fenótipo , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Mutação , Conformação Proteica , Transporte Biológico , Fator 1 de Transcrição de Octâmero
4.
Physiol Rev ; 102(1): 269-318, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34727002

RESUMO

Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.


Assuntos
Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Glutamatos/metabolismo , Humanos , Neurônios/fisiologia
5.
Proc Natl Acad Sci U S A ; 121(9): e2322899121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381792

RESUMO

Voltage-gated sodium channels (Nav) undergo conformational shifts in response to membrane potential changes, a mechanism known as the electromechanical coupling. To delineate the structure-function relationship of human Nav channels, we have performed systematic structural analysis using human Nav1.7 as a prototype. Guided by the structural differences between wild-type (WT) Nav1.7 and an eleven mutation-containing variant, designated Nav1.7-M11, we generated three additional intermediate mutants and solved their structures at overall resolutions of 2.9-3.4 Å. The mutant with nine-point mutations in the pore domain (PD), named Nav1.7-M9, has a reduced cavity volume and a sealed gate, with all voltage-sensing domains (VSDs) remaining up. Structural comparison of WT and Nav1.7-M9 pinpoints two residues that may be critical to the tightening of the PD. However, the variant containing these two mutations, Nav1.7-M2, or even in combination with two additional mutations in the VSDs, named Nav1.7-M4, failed to tighten the PD. Our structural analysis reveals a tendency of PD contraction correlated with the right shift of the static inactivation I-V curves. We predict that the channel in the resting state should have a "tight" PD with down VSDs.


Assuntos
Canais de Sódio Disparados por Voltagem , Humanos , Canais de Sódio Disparados por Voltagem/genética , Potenciais da Membrana , Mutação , Relação Estrutura-Atividade
6.
Proc Natl Acad Sci U S A ; 121(6): e2300838121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300863

RESUMO

Proteins play a central role in biology from immune recognition to brain activity. While major advances in machine learning have improved our ability to predict protein structure from sequence, determining protein function from its sequence or structure remains a major challenge. Here, we introduce holographic convolutional neural network (H-CNN) for proteins, which is a physically motivated machine learning approach to model amino acid preferences in protein structures. H-CNN reflects physical interactions in a protein structure and recapitulates the functional information stored in evolutionary data. H-CNN accurately predicts the impact of mutations on protein stability and binding of protein complexes. Our interpretable computational model for protein structure-function maps could guide design of novel proteins with desired function.


Assuntos
Algoritmos , Redes Neurais de Computação , Proteínas/genética , Aprendizado de Máquina , Aminoácidos
7.
Physiol Rev ; 99(4): 2015-2113, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31507243

RESUMO

Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.


Assuntos
Equilíbrio Ácido-Base , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Conformação Proteica , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética , Relação Estrutura-Atividade , Distribuição Tecidual
8.
Proc Natl Acad Sci U S A ; 120(26): e2221549120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339230

RESUMO

Cytochromes P450 (CYPs) are heme-thiolate monooxygenases that prototypically catalyze the insertion of oxygen into unactivated C-H bonds but are capable of mediating more complex reactions. One of the most remarked-upon alternative reactions occurs during biosynthesis of the gibberellin A (GA) phytohormones, involving hydrocarbon ring contraction with coupled aldehyde extrusion of ent-kaurenoic acid to form the first gibberellin intermediate. While the unusual nature of this reaction has long been noted, its mechanistic basis has remained opaque. Building on identification of the relevant CYP114 from bacterial GA biosynthesis, detailed structure-function studies are reported here, including development of in vitro assays as well as crystallographic analyses both in the absence and presence of substrate. These structures provided insight into enzymatic catalysis of this unusual reaction, as exemplified by identification of a key role for the "missing" acid from an otherwise highly conserved acid-alcohol pair of residues. Notably, the results demonstrate that ring contraction requires dual factors, both the use of a dedicated ferredoxin and absence of the otherwise conserved acidic residue, with exclusion of either limiting turnover to just the initiating and more straightforward hydroxylation. The results provide detailed insight into the enzymatic structure-function relationships underlying this fascinating reaction and support the use of a semipinacol mechanism for the unusual ring contraction reaction.


Assuntos
Giberelinas , Reguladores de Crescimento de Plantas , Sistema Enzimático do Citocromo P-450/química , Bactérias , Catálise
9.
Proc Natl Acad Sci U S A ; 120(5): e2202435120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693103

RESUMO

The neural circuit of the brain is organized as a hierarchy of functional units with wide-ranging connections that support information flow and functional connectivity. Studies using MRI indicate a moderate coupling between structural and functional connectivity at the system level. However, how do connections of different directions (feedforward and feedback) and regions with different excitatory and inhibitory (E/I) neurons shape the hemodynamic activity and functional connectivity over the hierarchy are unknown. Here, we used functional MRI to detect optogenetic-evoked and resting-state activities over a somatosensory pathway in the mouse brain in relation to axonal projection and E/I distribution. Using a highly sensitive ultrafast imaging, we identified extensive activation in regions up to the third order of axonal projections following optogenetic excitation of the ventral posteriomedial nucleus of the thalamus. The evoked response and functional connectivity correlated with feedforward projections more than feedback projections and weakened with the hierarchy. The hemodynamic response exhibited regional and hierarchical differences, with slower and more variable responses in high-order areas and bipolar response predominantly in the contralateral cortex. Electrophysiological recordings suggest that these reflect differences in neural activity rather than neurovascular coupling. Importantly, the positive and negative parts of the hemodynamic response correlated with E/I neuronal densities, respectively. Furthermore, resting-state functional connectivity was more associated with E/I distribution, whereas stimulus-evoked effective connectivity followed structural wiring. These findings indicate that the structure-function relationship is projection-, cell-type- and hierarchy-dependent. Hemodynamic transients could reflect E/I activity and the increased complexity of hierarchical processing.


Assuntos
Conectoma , Acoplamento Neurovascular , Camundongos , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Hemodinâmica , Acoplamento Neurovascular/fisiologia , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Rede Nervosa/fisiologia , Conectoma/métodos
10.
J Biol Chem ; 300(3): 105672, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272229

RESUMO

"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.


Assuntos
Regulação Alostérica , Sítio Alostérico , Ligantes , Termodinâmica , Humanos , Animais , Biocatálise , Dobramento de Proteína , Proteínas/metabolismo
11.
J Biol Chem ; 300(5): 107215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522518

RESUMO

Sugar absorption is crucial for life and relies on glucose transporters, including sodium-glucose cotransporters (SGLTs). Although the structure of SGLTs has been resolved, the substrate selectivity of SGLTs across diverse isoforms has not been determined owing to the complex substrate-recognition processes and limited analysis methods. Therefore, this study used voltage-clamp fluorometry (VCF) to explore the substrate-binding affinities of human SGLT1 in Xenopus oocytes. VCF analysis revealed high-affinity binding of D-glucose and D-galactose, which are known transported substrates. D-fructose, which is not a transported substrate, also bound to SGLT1, suggesting potential recognition despite the lack of transport activity. VCF analysis using the T287N mutant of the substrate-binding pocket, which has reduced D-glucose transport capacity, showed that its D-galactose-binding affinity exceeded its D-glucose-binding affinity. This suggests that the change in the VCF signal was due to substrate binding to the binding pocket. Both D-fructose and L-sorbose showed similar binding affinities, indicating that SGLT1 preferentially binds to pyranose-form sugars, including D-fructopyranose. Electrophysiological analysis confirmed that D-fructose binding did not affect the SGLT1 transport function. The significance of the VCF assay lies in its ability to measure sugar-protein interactions in living cells, thereby bridging the gap between structural analyses and functional characterizations of sugar transporters. Our findings also provide insights into SGLT substrate selectivity and the potential for developing medicines with reduced side effects by targeting non-glucose sugars with low bioreactivity.


Assuntos
Fluorometria , Glucose , Oócitos , Transportador 1 de Glucose-Sódio , Xenopus laevis , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/química , Animais , Humanos , Fluorometria/métodos , Glucose/metabolismo , Oócitos/metabolismo , Ligação Proteica , Técnicas de Patch-Clamp , Galactose/metabolismo , Frutose/metabolismo , Frutose/química , Sítios de Ligação
12.
J Biol Chem ; 300(3): 105713, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309508

RESUMO

Kinesin-1 is a microtubule motor that transports cellular cargo along microtubules. KIF5A is one of three kinesin-1 isoforms in humans, all of which are autoinhibited by an interaction between the motor and an IAK motif in the proximal region of the C-terminal tail. The C-terminal tail of KIF5A is ∼80 residues longer than the other two kinesin-1 isoforms (KIF5B and KIF5C) and it is unclear if it contributes to autoinhibition. Mutations in KIF5A cause neuronal diseases and could affect autoinhibition, as reported for a mutation that skips exon 27, altering its C-terminal sequence. Here, we combined negative-stain electron microscopy, crosslinking mass spectrometry (XL-MS) and AlphaFold2 structure prediction to determine the molecular architecture of the full-length autoinhibited KIF5A homodimer, in the absence of light chains. We show that KIF5A forms a compact, bent conformation, through a bend between coiled-coils 2 and 3, around P687. XL-MS of WT KIF5A revealed extensive interactions between residues in the motor, between coiled-coil 1 and the motor, between coiled-coils 1 and 2, with coiled-coils 3 and 4, and the proximal region of the C-terminal tail and the motor in the autoinhibited state, but not between the distal C-terminal region and the rest of the molecule. While negative-stain electron microscopy of exon-27 KIF5A splice mutant showed the presence of autoinhibited molecules, XL-MS analysis suggested that its autoinhibited state is more labile. Our model offers a conceptual framework for understanding how mutations within the motor and stalk domain may affect motor activity.


Assuntos
Cinesinas , Humanos , Éxons , Cinesinas/química , Cinesinas/genética , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética
13.
J Biol Chem ; 300(2): 105627, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211817

RESUMO

The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.


Assuntos
Ácido Oleico , Peptídeos , Staphylococcus aureus , Microscopia Crioeletrônica , Ácidos Graxos Insaturados , Bicamadas Lipídicas/metabolismo , Fosfatos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
14.
J Biol Chem ; 300(5): 107261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582450

RESUMO

Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study, we sought to identify the common versus distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.


Assuntos
Antiporters , Transportadores de Sulfato , Animais , Humanos , Antiporters/metabolismo , Antiporters/genética , Antiporters/química , Sítios de Ligação , Células HEK293 , Ligação de Hidrogênio , Modelos Moleculares , Mutação de Sentido Incorreto , Domínios Proteicos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/química , Multimerização Proteica , Estrutura Secundária de Proteína
15.
Development ; 149(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34989394

RESUMO

Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.


Assuntos
Glândulas Exócrinas/anatomia & histologia , Morfogênese , Animais , Glândulas Exócrinas/embriologia , Glândulas Exócrinas/fisiologia , Humanos
16.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489785

RESUMO

Dance and music are well known to improve sensorimotor skills and cognitive functions. To reveal the underlying mechanism, previous studies focus on the brain plastic structural and functional effects of dance and music training. However, the discrepancy training effects on brain structure-function relationship are still blurred. Thus, proficient dancers, musicians, and controls were recruited in this study. The graph signal processing framework was employed to quantify the region-level and network-level relationship between brain function and structure. The results showed the increased coupling strength of the right ventromedial putamen in the dance and music groups. Distinctly, enhanced coupling strength of the ventral attention network, increased coupling strength of the right inferior frontal gyrus opercular area, and increased function connectivity of coupling function signal between the right and left middle frontal gyrus were only found in the dance group. Besides, the dance group indicated enhanced coupling function connectivity between the left inferior parietal lobule caudal area and the left superior parietal lobule intraparietal area compared with the music groups. The results might illustrate dance and music training's discrepant effect on the structure-function relationship of the subcortical and cortical attention networks. Furthermore, dance training seemed to have a greater impact on these networks.


Assuntos
Música , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Lobo Parietal , Lobo Frontal , Imageamento por Ressonância Magnética/métodos
17.
Mol Cell ; 68(4): 673-685.e6, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149595

RESUMO

Vms1 translocates to damaged mitochondria in response to stress, whereupon its binding partner, Cdc48, contributes to mitochondrial protein homeostasis. Mitochondrial targeting of Vms1 is mediated by its conserved mitochondrial targeting domain (MTD), which, in unstressed conditions, is inhibited by intramolecular binding to the Vms1 leucine-rich sequence (LRS). Here, we report a 2.7 Å crystal structure of Vms1 that reveals that the LRS lies in a hydrophobic groove in the autoinhibited MTD. We also demonstrate that the oxidized sterol, ergosterol peroxide, is necessary and sufficient for Vms1 localization to mitochondria, through binding the MTD in an interaction that is competitive with binding to the LRS. These data support a model in which stressed mitochondria generate an oxidized sterol receptor that recruits Vms1 to support mitochondrial protein homeostasis.


Assuntos
Ergosterol/análogos & derivados , Mitocôndrias , Transporte Proteico , Saccharomyces cerevisiae , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Ergosterol/metabolismo , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Bioessays ; 45(5): e2200192, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37021553

RESUMO

The eukaryotic nucleosome, the basic unit of chromatin, is thermodynamically stable and plays critical roles in the cell, including the maintenance of DNA topology and regulation of gene expression. At its C2 axis of symmetry, the nucleosome exhibits a domain that can coordinate divalent metal ions. This article discusses the roles of the metal-binding domain in the nucleosome structure, function, and evolution.


Assuntos
Cromatina , Nucleossomos , Nucleossomos/genética , Cromatina/genética , DNA/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Células Eucarióticas/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(22): e2117675119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35613056

RESUMO

Fibrin is the fibrous protein network that comprises blood clots; it is uniquely capable of bearing very large tensile strains (up to 200%) due to multiscale force accommodation mechanisms. Fibrin is also a biochemical scaffold for numerous enzymes and blood factors. The biomechanics and biochemistry of fibrin have been independently studied. However, comparatively little is known about how fibrin biomechanics and biochemistry are coupled: how does fibrin deformation influence its biochemistry? In this study, we show that mechanically induced protein structural changes in fibrin affect fibrin biochemistry. We find that tensile deformation of fibrin leads to molecular structural transitions of α-helices to ß-sheets, which reduced binding of tissue plasminogen activator (tPA), an enzyme that initiates fibrin lysis. Moreover, binding of tPA and Thioflavin T, a commonly used ß-sheet marker, were mutually exclusive, further demonstrating the mechano-chemical control of fibrin biochemistry. Finally, we demonstrate that structural changes in fibrin suppressed the biological activity of platelets on mechanically strained fibrin due to reduced αIIbß3 integrin binding. Our work shows that mechanical strain regulates fibrin molecular structure and biological activity in an elegant mechano-chemical feedback loop, which possibly extends to other fibrous biopolymers.


Assuntos
Fibrina , Estresse Mecânico , Resistência à Tração , Benzotiazóis/química , Fibrina/química , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Ativador de Plasminogênio Tecidual/química
20.
Proc Natl Acad Sci U S A ; 119(27): e2116673119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776541

RESUMO

Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.


Assuntos
Desenvolvimento do Adolescente , Encéfalo , Conectoma , Adolescente , Encéfalo/fisiologia , Encéfalo/ultraestrutura , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA