RESUMO
Cancer, a major challenge to global health and healthcare systems, requires the study of alternative and supportive treatments due to the limitations of conventional therapies. This review examines the chemopreventive potential of three natural compounds: rosmarinic acid, apigenin, and thymoquinone. Derived from various plants, these compounds have demonstrated promising chemopreventive properties in in vitro, in vivo, and in silico studies. Specifically, they have been shown to inhibit cancer cell growth, induce apoptosis, and modulate key signaling pathways involved in cancer progression. The aim of this review is to provide a comprehensive overview of the current research on these phytochemicals, elucidating their mechanisms of action, therapeutic efficacy, and potential as adjuncts to traditional cancer therapies. This information serves as a valuable resource for researchers and healthcare providers interested in expanding their knowledge within the field of alternative cancer therapies.
RESUMO
Breast cancer is most common cancer among women in the World. Thymoquinone (TQ) exhibits a wide range of biological activities such as anticancer, antidiabetic, antimicrobial, analgesic, antioxidant, and anti-inflammatory effects. However, its effectiveness in cancer treatment is hindered by its poor bioavailability, attributed to its limited solubility in water. Hence, novel strategies are required to enhance the bioavailability of TQ, which possesses remarkable anticancer characteristics. The aim of this study is to prepare pHEMA-based magnetic nanoparticles carrying TQ (TQ-MNPs) to improve bioavailability, and therapeutic efficacy against breast cancer. For this purpose, TQ-MNPs were synthesized and characterized with Fourier transform infrared spectrophotometer (FTIR), scanning electron microscopy (SEM), dynamic light scattering (DLS), magnetic field using a vibrating sample magnetometer (VSM). The loading capabilities of synthesized magentic nanostructures were evaluated, and release investigations were conducted under experimental conditions that mimic the cellular environment. The findings of the studies indicated that the TQ carrying capacity of MNPs was deemed satisfactory, and the release efficiency was adequate. MNPs and TQ-MNPs showed biocompatibility against HDFa cells. TQ-MNPs showed stronger anti-proliferative activity against MCF-7 breast cancer cells compared to free TQ (p < 0.05). TQ-MNPs induced apoptosis in MCF-7 breast cancer cells.
Assuntos
Benzoquinonas , Neoplasias da Mama , Nanopartículas de Magnetita , Humanos , Células MCF-7 , Benzoquinonas/química , Benzoquinonas/farmacologia , Benzoquinonas/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Nanopartículas de Magnetita/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacosRESUMO
BACKGROUND: Exposure to chemical toxins, including insecticides, harms bodily organs like the brain. This study examined the neuroprotective of thymoquinone on the cypermethrin's harmful effects on the histoarchitecture of the dentate gyrus and motor deficit in the dentate gyrus. METHODS: Forty adult male rats (180-200 g) were randomly divided into 5 groups (n = 8 per group). Groups I, II, III, IV, and V received oral administration of 0.5 ml of phosphate-buffered saline, cypermethrin (20 mg/kg), thymoquinone (10 mg/kg), cypermethrin (20 mg/kg) + thymoquinone (5 mg/kg), and cypermethrin (20 mg/kg) + thymoquinone (10 mg/kg) for 14 days respectively. The novel object recognition test that assesses intermediate-term memory was done on days 14 and 21 of the experiment. At the end of these treatments, the animals were euthanized and taken for cytoarchitectural (hematoxylin and eosin; Cresyl violet) and immunohistochemical studies (Nuclear factor erythroid 2-related factor 2 (Nrf2), Parvalbumin, and B-cell lymphoma 2 (Bcl2). RESULT: The study shows that thymoquinone at 5 and 10 mg/kg improved Novelty preference and discrimination index. Thymoquinone enhanced Nissl body integrity, increased GABBAergic interneuron expression, nuclear factor erythroid 2-derived factor 2, and enhanced Bcl-2 expression in the dentate gyrus. It also improved the concentration of nuclear factor erythroid 2-derived factor 2, increased the activities of superoxide dismutase and glutathione, and decreased the concentration of malondialdehyde level against cypermethrin-induced neurotoxicity. CONCLUSION: thymoquinone could be a therapeutic agent against cypermethrin poisoning.
Assuntos
Benzoquinonas , Giro Denteado , Neurônios GABAérgicos , Transtornos da Memória , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Piretrinas , Transdução de Sinais , Animais , Piretrinas/toxicidade , Masculino , Estresse Oxidativo/efeitos dos fármacos , Benzoquinonas/farmacologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Giro Denteado/patologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Inseticidas/toxicidade , Fármacos Neuroprotetores/farmacologia , Ratos WistarRESUMO
BACKGROUND: In the present experiment, we evaluated the impact of thymoquinone (TQ) and paclitaxel (PTX) treatment on MDA-MB-231 cell line growth inhibition via controlling apoptosis/autophagy. MATERIALS AND RESULTS: MDA-MB-231cells were exposed to PTX (0, 25, 50, 75, and 100 nM), TQ (0, 25, 50, 75, and 100 µM), and combinations for 48 h. After the MTT assessment, dose-response curves and IC50 values were calculated, and the combination synergism was evaluated using the Compusyn software. Following the treatment with PTX, TQ, and combinations at IC50 doses, the expression of apoptosis and autophagy genes was assessed in cells. The GraphPad Prism program was used to analyze the data, and Tukey's test at p < 0.05 was then run. PTX, TQ, and their combinations inhibited MDA-MB-231cell proliferation and viability dose-dependently. TQ reduced the effective concentration (IC50) of PTX in co-treatment groups. PTX and TQ showed antagonistic effects when cell proliferation declined above 70%. Antagonistic effects shifted into additive and synergistic effects upon increasing PTX concentration, indicated by diminished cell proliferation below 70%. PTX-TQ co-treatment significantly enhanced P53 and BAX expression while reducing Bcl-2 expression. Also, their combination increased Beclin-1, ATG-5, and ATG-7 expression in treated cells. CONCLUSION: Effective concentrations of TQ and PTX had synergic effects and inhibited breast cancer cells via prompting apoptosis and autophagy in vitro.
Assuntos
Neoplasias , Paclitaxel , Paclitaxel/farmacologia , Benzoquinonas/farmacologia , Apoptose , AutofagiaRESUMO
BACKGROUND: Sleep and stress interact bidirectionally by acting on brain circuits that affect metabolism. Sleep and its alterations have impact on blood leptin levels, metabolic hormone that regulates appetite. Brain expresses the receptors for the peptide hormone leptin produced from adipocytes. The hypothalamic orexin neurons are low during sleep and active when awake, influenced by a complex interaction with leptin. Thymoquinone was found to be the major bioactive component of Nigella sativa. The aim of this study was to study the role of thymoquinone on sleep restriction and its mitigating effect on leptin-mediated signaling pathway in rat brain. METHODS AND RESULTS: 30 adult male Wistar rats were divided into 5 groups with 6 animals in each group: Control; Thymoquinone (TQ); Corn oil; Chronic Sleep restriction (CSR); and CSR + TQ. After 30 days, behavioral analysis, antioxidant, lipid profile, glucose level, liver and kidney function test, neurotransmitters, neuropeptides, and mRNA expression in in vivo studies were also assessed and pharmacokinetic and docking were done for thymoquinone. Thymoquinone has also shown good binding affinity to the target proteins. CSR has induced oxidative stress in the discrete brain regions and plasma. Current study has shown many evidences that sleep restriction has altered the neurobehavioral, antioxidant status, lipid profile, neurotransmitters, neuropeptide levels, and feeding behavior which damage the Orexin-leptin system which regulates the sleep and feeding that leads to metabolic dysfunction. CONCLUSION: The potentiality of Thymoquinone was revealed in in silico studies, and its action in in vivo studies has proved its effectiveness. The study concludes that Thymoquinone has exhibited its effect by diminishing the metabolic dysfunction by its neuroprotective, antioxidant, and hypolipidemic properties.
Assuntos
Benzoquinonas , Encéfalo , Leptina , Ratos Wistar , Transdução de Sinais , Privação do Sono , Animais , Benzoquinonas/farmacologia , Masculino , Leptina/metabolismo , Leptina/sangue , Ratos , Transdução de Sinais/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Privação do Sono/metabolismo , Privação do Sono/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Simulação de Acoplamento Molecular , Sono/efeitos dos fármacos , Sono/fisiologia , Nigella sativa/química , Antioxidantes/farmacologia , Antioxidantes/metabolismoRESUMO
Introduction Multiple sclerosis (MS) is an autoimmune condition marked by inflammation and the loss of myelin in the central nervous system (CNS). The aim of this research was to understand how Thymoquinone regulate the molecular and cellular processes involved in controlling experimental autoimmune encephalomyelitis (EAE), which is an animal model often used to study MS. Methods Female C57BL/6 mice were split into different groups receiving different doses (low, medium, and high) of Thymoquinone simultaneously with EAE induction. Clinical scores and other measurements were observed daily throughout the 25-day post immunization. We assessed lymphocyte infiltration and demyelination in the spinal cord through histological staining, analyzed T-cell profiles using ELISA, and quantified the expression levels of transcription factors in the CNS using Real-time PCR. Results Thymoquinone prevented the development of EAE. Histological experiments revealed only a small degree of leukocyte infiltration into the CNS. Thymoquinone resulted in a notable reduction in the generation of IFN-γ, IL-17, and IL-6, while simultaneously increasing the production of IL-4, IL-10, and TGF-ß in Th2 and Treg cells. Results from Real-time PCR suggested Treatment with Thymoquinone decreased the expression of T-bet and ROR-γt while increasing the expression of Foxp3 and GATA3. Conclusion These findings showed that Thymoquinone could decrease both disease incidence and severity.
Assuntos
Benzoquinonas , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Feminino , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Anti-Inflamatórios/uso terapêuticoRESUMO
The spices and aromatic herbs were used not only in cooking to add flavour and smell to dishes but also for medicinal use. Nigella sativa, also called black cumin, is one of the species that contains an important bioactive component, thymoquinone (TQ), which has antioxidant, anti-inflammatory, antimicrobial, and antidiabetic effects. Curcuma longa, which also includes curcumin, has numerous anti-cancer properties. However, the bioavailability of curcumin is lower than that of its analogs. An analog of curcumin (EF-24), which has better bioavailability than curcumin, is capable of exerting a high anti-cancer effect. In our study, we determined the effects of PON1 enzyme activity on the proliferation and aggressiveness of glioblastoma cancer treated with TQ and EF-24 from lysates of the glioblastoma cell line U87MG. The results were determined as increased PON1 activity after treatment with TQ and EF-24 in the U87MG cell line (p < 0.0001).
Assuntos
Arildialquilfosfatase , Benzoquinonas , Proliferação de Células , Curcumina , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma , Humanos , Arildialquilfosfatase/metabolismo , Arildialquilfosfatase/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Benzoquinonas/farmacologia , Benzoquinonas/química , Curcumina/farmacologia , Curcumina/química , Curcumina/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Células Tumorais CultivadasRESUMO
The current study was performed to determine the effect of dietary vitamin E, sesamin and thymoquinone bioactive lignans derived from sesame and black seed on immunological response, intestinal traits and Mucin2 gene expression in broiler quails. Three hundred and fifty (one days-old) quails were allotted to seven dietary treatments with five replicates as an experimental randomized design study. Treatments were basal diet as a control, control +100 and +200 mg of vitamin E, sesamin and thymoquinone per each kg of diet respectively. At 35 d of age, two quails from each pen were chosen, weighted, slaughtered, eviscerated and lymphoid organ relative weights were measured. Anti-body titers against Newcastle disease (ND), Sheep red blood cell (SRBC), and infectious bronchitis virus (IBV) and Avian influenza (AI) vaccination were determined. The serum activities of alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and serum antioxidant activates such as superoxide dismutase (SOD),glutathione peroxidase(GPX), catalase (CAT) and total antioxidant capacity (TAC) were examined. The cell mediated immunity by dinitrochlorobenzene (DNCB) and phytohemagglutinin (PHA) challenges were assessed. The microflora populations of ileum, morphological traits of jejunum and mucin2 gene expression were analyzed. Data showed that the lymphoid organ (thymus, spleen and Bursa) relative weights and antibody titer against HI, AI, SRBC and IB vaccination were increased compared to the control (p ≤ 0.05). Serum activities of ALP, ALT and AST were decreased under influences of dietary treatments (p ≤ 0.05). The serum antioxidant activates of GPX,SOD,CAT and TAC were increased and Increasing in mean skin thickness after DNCB challenge and decrease wing web swelling response to PHA mitojen injection were observed (p ≤ 0.05). Salmonella enterica, E-coli and Coliforms colonies were decrease and Lactobacillus colonies increased instead (p ≤ 0.05). The villus height and surface, crypt depth and goblet cells density were increased compared to the control (p ≤ 0.05). The expression of MUC2 gene increased under influnces of vitamin E, sesamin and thymoquinone supplemented diets (p ≤ 0.05).
Assuntos
Benzoquinonas , Coturnix , Dioxóis , Lignanas , Animais , Ovinos , Coturnix/metabolismo , Vitamina E , Antioxidantes/metabolismo , Dinitroclorobenzeno , Galinhas/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Superóxido Dismutase , Expressão Gênica , Mucinas , Ração Animal/análiseRESUMO
PURPOSE: In this study, the effect of thymoquinone (TQ) on CP-induced spermatogenesis defects in mice has been investigated. METHODS: Sperm parameters, serum testosterone concentration, histology, Bax/Bcl-2 ratio, and expression of autophagy-related biomarkers have been assessed. Total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) in testicular tissue were examined for the evaluation of oxidative stress levels. RESULTS: CP has induced histological changes and significantly increased the Bax/Bcl-2 ratio, decreased testosterone concentration, testicular weight, and sperm quality. CP induced oxidative stress by elevating OSI in the testicular tissue (p < 0.05). Expression of the autophagy-inducer genes (ATG7, ATG5, and Beclin-1) and ratio of LC3B/LC3A proteins were significantly decreased, while mTOR expression was increased in the CP group. TQ pretreatment dose-dependently decreased the Bax/Bcl-2 ratio and mTOR gene expression while increasing the expression of ATG5 and ATG7 genes, LC3B/LC3A ratio, and Beclin-1 proteins. TQ could also dose-dependently reverse the histology, testosterone level, and sperm quality of the CP-intoxicated mice. CONCLUSIONS: These findings show that TQ pretreatment can enhance sperm production by inducing autophagy and reducing apoptosis and oxidative stress in the CP-intoxicated mouse testicles.
Assuntos
Apoptose , Autofagia , Benzoquinonas , Cisplatino , Estresse Oxidativo , Espermatozoides , Testículo , Masculino , Animais , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Autofagia/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/patologia , Testosterona/sangue , Espermatogênese/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismoRESUMO
Diffuse large B cell lymphoma (DLBCL) is classified into Germinal Center B-cell (GCB) and activated B-cell (ABC) subgroups originating from different stages of lymphoid differentiation. Cell of origin dictates the behavior and therapeutic response of DLBCL. This study aimed to evaluate single and combinatorial effects of metformin and thymoquinone (TQ) in two DLBCL cell lines belonging to GCB and ABC subtypes. Metformin and TQ caused dose-dependent responses in both ABC and GCB DLBCL subtypes. Metformin had a greater impact on the ABC subtype while TQ demonstrated more pronounced effects on the GCB subtype. Synergistic effects were observed in the DHL4 (GCB subtype) but not in the HBL1 (ABC subtype) cell line. This is the first study to compare the effects of metformin and TQ in ABC versus GCB subtype of DLBCL. It brings valuable results that could be utilized in further research aimed at reshaping treatments for subtype-specific lymphomas.
RESUMO
Thymoquinone has antioxidant and anticancer effects. This study investigates the cytotoxic, genotoxic, and apoptotic effects of black seed and its active ingredient, thymoquinone on colorectal cancer cells. The antioxidant content of Black seed methanolic extracts (BSME) with different concentrations (50, 500 and 1000â µg/mL) were determined by the photometric methods. The reactive oxygen production (iROS) of BSME and thymoquinone on colorectal cancer cells (LoVo) and normal epithelial cells (CCD18Co) were analyzed by the fluorometric methods. A luminometric glutathione kit was employed to observe the changes in intracellular glutathione (GSH) levels. Cytotoxicity was determined by the ATP method, genotoxicity was determined by Comet Assay, and the apoptosis was identified by the Acridine Orange/Ethidium Bromide (AO/EB) double dye method. The cytotoxicity was increased by BSME and thymoquinone in LoVo cells in a dose-dependent manner (p<0.001). BSME and thymoquinone also increased iROS, and induced apoptosis and DNA damage (p<0.001). High doses of BSME and thymoquinone on cancer and healthy cells have cytotoxic, genotoxic and apoptotic effects with pro-oxidant effects. Colorectal cancer cells are more sensitive than healthy cells.
Assuntos
Antineoplásicos , Benzoquinonas , Neoplasias Colorretais , Humanos , Antioxidantes/farmacologia , Apoptose , Antineoplásicos/farmacologia , Glutationa , Neoplasias Colorretais/tratamento farmacológicoRESUMO
5-Fluorouracil (5-FU), which is one of the most widely used chemotherapy drugs, has various side effects on the heart. Thymoquinone (TMQ), the main bioactive component of Nigella sativa, has antioxidant and protective effects against toxicity. In this study, we investigated the protective effect of thymoquinone against cardiotoxicity caused by 5-FU in vitro and in vivo models. H9C2 cells were exposed to 5-FU and TMQ, and cell viability was evaluated in their presence. Also, 25 male Wistar rats were divided into five control groups, 5-FU, 2.5, and 5 mg TMQ in nanoemulsion form (NTMQ) + 5-FU and 5 mg NTMQ. Cardiotoxicity was assessed through electrocardiography, cardiac enzymes, oxidative stress markers, and histopathology. 5-FU induced cytotoxicity in H9c2 cells, which improved dose-dependently with NTMQ cotreatment. 5-FU caused body weight loss, ECG changes (increased ST segment, prolonged QRS, and QTc), increased cardiac enzymes (aspartate aminotransferase [AST], creatine kinase-myocardial band [CK-MB], and lactate dehydrogenase [LDH]), oxidative stress (increased malondialdehyde, myeloperoxidase, nitric acid; decreased glutathione peroxidase enzyme activity), and histological damage such as necrosis, hyperemia, and tissue hyalinization in rats. NTMQ ameliorated these 5-FU-induced effects. Higher NTMQ dose showed greater protective effects. Thus, the results of our study indicate that NTMQ protects against 5-FU cardiotoxicity likely through antioxidant mechanisms. TMQ warrants further research as an adjuvant to alleviate 5-FU chemotherapy side effects.
Assuntos
Antioxidantes , Benzoquinonas , Cardiotoxicidade , Ratos , Masculino , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Fluoruracila/toxicidade , Estresse OxidativoRESUMO
Methamphetamine (Meth) is a highly addictive stimulant. Its potential neurotoxic effects are mediated through various mechanisms, including oxidative stress and the initiation of the apoptotic process. Thymoquinone (TQ), obtained from Nigella sativa seed oil, has extensive antioxidant and anti-apoptotic properties. This study aimed to investigate the potential protective effects of TQ against Meth-induced toxicity by using an in vitro model based on nerve growth factor-differentiated PC12 cells. Cell differentiation was assessed by detecting the presence of a neuronal marker with flow cytometry. The effects of Meth exposure were evaluated in the in vitro neuronal cell-based model via the determination of cell viability (in an MTT assay) and apoptosis (by annexin/propidium iodide staining). The generation of reactive oxygen species (ROS), as well as the levels of glutathione (GSH) and dopamine, were also determined. The model was used to determine the protective effects of 0.5, 1 and 2 µM TQ against Meth-induced toxicity (at 1 mM). The results showed that TQ reduced Meth-induced neurotoxicity, possibly through the inhibition of ROS generation and apoptosis, and by helping to maintain GSH and dopamine levels. Thus, the impact of TQ treatment on Meth-induced neurotoxicity could warrant further investigation.
Assuntos
Benzoquinonas , Metanfetamina , Ratos , Animais , Células PC12 , Espécies Reativas de Oxigênio/farmacologia , Metanfetamina/toxicidade , Dopamina/farmacologia , Apoptose , Glutationa/farmacologia , Diferenciação CelularRESUMO
Breast cancer (BC) is one of the most common cancers in women and is a major cause of female cancer-related deaths. BC is a multifactorial disease caused by the dysregulation of many genes, raising the need to find novel drugs that function by targeting several signaling pathways. The antitumoral drug thymoquinone (TQ), found in black seed oil, has multitargeting properties against several signaling pathways. This study evaluated the inhibitory effects of TQ on the MCF7 and T47D human breast cancer cell lines and its antitumor activity against BC induced by a single oral dose (65 mg/kg) of 7,12-dimethylbenzanthracene (DMBA) in female rats. The therapeutic activity was evaluated in DMBA-treated rats who received oral TQ (50 mg/kg) three times weekly. TQ-treated MCF7 and T47D cells showed concentration-dependent inhibition of cell proliferation and induction of apoptosis. TQ also decreased the expression of DNA methyltransferase 1 (DNMT1) in both cancer cell types. In DMBA-treated animals, TQ inhibited the number of liver and kidney metastases. These effects were associated with a reduction in DNMT1 mRNA expression. These results indicate that TQ has protective effects against breast carcinogens through epigenetic mechanisms involving DNMT1 inhibition.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Animais , Ratos , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/tratamento farmacológico , Benzoquinonas/farmacologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , ApoptoseRESUMO
Diabetes-induced hyperglycemia leads to excessive production of oxygen free radicals, inflammatory cytokines, and oxidative stress, which initiates diabetic peripheral neuropathy (DPN). Currently, this condition affects 20% of adults with diabetes. Despite significant advances in the treatment of diabetes, the incidence of its complications, including DPN, is still high. Thus, there is a growing research interest in developing more effective and treatment approaches with less side effects for diabetes and its complications. Nigella sativa L. (NS) has received much research attention as an antioxidant, anti-yperglycemic factor, and anti-inflammatory agent. This natural compound demonstrates its antidiabetic neuropathy effect through various pathways, including the reduction of lipid peroxidation, the enhancement of catalase and superoxide dismutase enzyme activity, and the decrease in inflammatory cytokine levels. The present review focuses on the bioactive and nutraceutical components of black cumin (Nigella sativa L.) and their effects on DPN. In addition, we have also summarized the findings obtained from several experimental and clinical studies regarding the antidiabetic neuropathy effect of NS in animal models and human subjects.
Assuntos
Antioxidantes , Neuropatias Diabéticas , Suplementos Nutricionais , Hipoglicemiantes , Nigella sativa , Extratos Vegetais , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Humanos , Nigella sativa/química , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologiaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 500 million reported cases of COVID-19 worldwide with relatively high morbidity and mortality. Although global vaccination drive has helped control the pandemic, the newer variant of the virus still holds the world in ransom. Several medicinal herbs with antiviral properties have been reported, and one such promising herb is Nigella sativa (NS). Recent molecular docking, pre-clinical, and clinical studies have shown that NS extracts may have the potential to prevent the entry of coronaviruses into the host cell as well as to treat and manage COVID-19 symptoms. Several active compounds from NS, such as nigelledine, α-hederin, dithymoquinone (DTQ), and thymoquinone (TQ), have been proposed as excellent ligands to target angiotensin-converting enzyme 2 (ACE2 receptors) and other targets on host cells as well as the spike protein (S protein) on SARS-CoV-2. By binding to these target proteins, these ligands could potentially prevent the binding between ACE2 and S protein. Though several articles have been published on the promising therapeutic role of NS and its constituents against SARS-CoV-2 infection, in this review, we consolidate the published information on NS and SARS-CoV-2, focusing on pre-clinical in silico studies as well as clinical trials reported between 2012 and 2023.
Assuntos
COVID-19 , Nigella sativa , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Simulação de Acoplamento MolecularRESUMO
Nigella sativa L. (black cumin) is one of the most investigated medicinal plants in recent years. Volatile compounds like thymoquinone and unsaponifiable lipid compounds are crucial functional components of this oil. Unfortunately, the composition of oils and their quality indicators are ambiguous both in terms of identified compounds and value ranges. Thirteen oils were extracted with hexane from black cumin seeds grown in India, Syria, Egypt, and Poland and analyzed for their fatty acid composition, unsaponifiable compound content and volatile compounds. Oils were also subjected to quality tests according to standard methods. The fatty acid composition and sterol content/composition were relatively stable among the tested oils. Tocol content varied in the range of 140-631 mg/kg, and among them, ß-tocotrienol and γ-tocopherol prevailed. Oils' volatile compounds were dominated by seven terpenes (p-cymene, α-thujene, α-pinene, ß-pinene, thymoquinone, γ-terpinene, and sabinene). The highest contents of these volatiles were determined in samples from Poland and in two of six samples from India. High acid and peroxide values were typical features of N. sativa L. oils. To sum up, future research on the medicinal properties of black cumin oil should always be combined with the analysis of its chemical composition.
Assuntos
Benzoquinonas , Nigella sativa , Óleos Voláteis , Nigella sativa/química , Óleos de Plantas/química , Sementes/química , Ácidos Graxos/análise , Óleos Voláteis/químicaRESUMO
Nigella sativa (N. sativa; Ranunculaceae), commonly referred to as black cumin, is one of the most widely used medicinal plants worldwide, with its seeds having numerous applications in the pharmaceutical and food industries. With the emergence of antibiotic resistance in pathogens as an important health challenge, the need for alternative microbe-inhibitory agents is on the rise, whereby black cumin has gained considerable attention from researchers for its strong antimicrobial characteristics owing to its high content in a wide range of bioactive compounds, including thymoquinone, nigellimine, nigellidine, quercetin, and O-cymene. Particularly, thymoquinone increases the levels of antioxidant enzymes that counter oxidative stress in the liver. Additionally, the essential oil in N. sativa seeds effectively inhibits intestinal parasites and shows moderate activity against some bacteria, including Bacillus subtilis and Staphylococcus aureus. Thymoquinone exhibits minimum inhibitory concentrations (MICs) of 8-16 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and exhibits MIC 0.25 µg/mL against drug-resistant mycobacteria. Similarly, quercetin shows a MIC of 2 mg/mL against oral pathogens, such as Streptococcus mutans and Lactobacillus acidophilus. Furthermore, endophytic fungi isolated from N. sativa have demonstrated antibacterial activity. Therefore, N. sativa is a valuable medicinal plant with potential for medicinal and food-related applications. In-depth exploration of the corresponding therapeutic potential and scope of industrial application warrants further research.
Assuntos
Anti-Infecciosos , Nigella sativa , Nigella sativa/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Bactérias/efeitos dos fármacos , Plantas Medicinais/química , Benzoquinonas/farmacologia , Benzoquinonas/química , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antibacterianos/farmacologia , Antibacterianos/química , Sementes/químicaRESUMO
Thymoquinone (TQ) is a phytochemical compound present in Nigella sativa and has potential benefits for treating dermatological conditions such as psoriasis. However, its clinical use is limited due to its restricted bioavailability, caused mainly by its low solubility and permeability. To overcome this, a new transdermal drug delivery system is required. Nanoparticles are known to enhance material solubility and permeability, and hence, this study aimed to synthesize TQ-loaded L-arginine-based polyamide (TQ/Arg PA) nanocapsules incorporated into transdermal patches for prolonged delivery of TQ. To achieve this, Eudragit E polymer, plasticizers, and aloe vera as penetration enhancer were used to develop the transdermal patch. Furthermore, novel TQ/Arg-PA was synthesized via interfacial polymerization, and the resultant nanocapsules (NCs) were incorporated into the matrix transdermal patch. The Arg-PA NCs' structure was confirmed via NMR and FTIR, and optimal TQ/Arg-PA NCs containing formulation showed high entrapment efficiency of TQ (99.60%). Molecular and thermal profiling of TQ/Arg-PA and the transdermal patch revealed the effective development of spherical NCs with an average particle size of 129.23 ± 18.22 nm. Using Franz diffusion cells and synthetic membrane (STRAT M®), the in vitro permeation profile of the prepared patches demonstrated an extended release of TQ over 24 h, with enhanced permeation by 42.64% when aloe vera was employed. In conclusion, the produced formulation has a potential substitute for corticosteroids and other drugs commonly used to treat psoriasis due to its effectiveness, safety, and lack of the side effects typically associated with other drugs.
Assuntos
Benzoquinonas , Nanocápsulas , Psoríase , Humanos , Nanocápsulas/química , Nylons , Adesivo Transdérmico , Psoríase/tratamento farmacológicoRESUMO
Chemotherapeutic drugs have demonstrated effectiveness in treating various neoplastic conditions; however, they can also have detrimental effects on male gonadal function and fertility. Consequently, interest has grown in identifying novel approaches that can mitigate chemotherapy-induced testicular damage. Thymoquinone (TQ), the chief active component of the volatile oil of Nigella sativa (NS), has a wide range of therapeutic properties, including antioxidant, anti-inflammatory and anti-apoptotic effects. The aim of this systematic review was to identify experimental animal studies that have evaluated the protective effects of TQ against testicular complications associated with chemotherapy. In accordance with the preferred reporting items for systematic review and meta-analyses (PRISMA) guidelines, a thorough search was performed across several databases (PubMed, EBSCOhost, Sage and Scopus) to identify experimental studies published from 2010 to May 2022 that focused on rodent models and compared the effects of TQ versus other chemotherapeutic drugs. Eight studies met the inclusion criteria, comparing TQ with methotrexate (MTX), 6-mercaptopurine (6-MP), cyclophosphamide (CPA), bleomycin (BL), doxorubicin (DOX) or busulfan (BUS). The results of these studies consistently demonstrated that TQ significantly improved sperm parameters, the levels of oxidative stress (OS) markers, apoptosis markers, and hormones and testicular histopathology, indicating that TQ has protective effects against chemotherapy-induced damage. TQ mitigated chemotherapy-induced testicular toxicity by decreasing lipid peroxidation and enhancing the activity of antioxidant enzymes within chemotherapy-treated testes. These findings highlight the potential of TQ as a therapeutic agent that can ameliorate testicular complications associated with chemotherapy, thereby providing a basis for further research and potential therapeutic applications.