Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.160
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Genes Dev ; 35(23-24): 1625-1641, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764137

RESUMO

The mammalian telomeric shelterin complex-comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.


Assuntos
Proteína 2 de Ligação a Repetições Teloméricas , Tripeptidil-Peptidase 1 , Animais , Mamíferos/genética , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
2.
Nano Lett ; 24(1): 479-485, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147351

RESUMO

Black phosphorus (Black P), a layered semiconductor with a layer-dependent bandgap and high carrier mobility, is a promising candidate for next-generation electronics and optoelectronics. However, the synthesis of large-area, layer-precise, single crystalline Black P films remains a challenge due to their high nucleation energy. Here, we report the molecular beam heteroepitaxy of single crystalline Black P films on a tin monosulfide (SnS) buffer layer grown on Au(100). The layer-by-layer growth mode enables the preparation of monolayer to trilayer films, with band gaps that reflect layer-dependent quantum confinement.

3.
Nano Lett ; 24(18): 5513-5520, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38634689

RESUMO

P-type self-doping is known to hamper tin-based perovskites for developing high-performance solar cells by increasing the background current density and carrier recombination processes. In this work, we propose a gradient homojunction structure with germanium doping that generates an internal electric field across the perovskite film to deplete the charge carriers. This structure reduces the dark current density of perovskite by over 2 orders of magnitude and trap density by an order of magnitude. The resultant tin-based perovskite solar cells exhibit a higher power conversion efficiency of 13.3% and excellent stability, maintaining 95% and 85% of their initial efficiencies after 250 min of continuous illumination and 3800 h of storage, respectively. We reveal the homojunction formation mechanism using density functional theory calculations and molecular level characterizations. Our work provides a reliable strategy for controlling the spatial energy levels in tin perovskite films and offers insights into designing intriguing lead-free perovskite optoelectronics.

4.
Nano Lett ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608187

RESUMO

Germanium-tin (Ge1-xSnx) semiconductors are a front-runner platform for compact mid-infrared devices due to their tunable narrow bandgap and compatibility with silicon processing. However, their large lattice parameter has been a major hurdle, limiting the quality of epitaxial layers grown on silicon or germanium substrates. Herein, we demonstrate that 20 nm Ge nanowires (NWs) act as effective compliant substrates to grow extended defect-free Ge1-xSnx alloys with a composition uniformity over several micrometers along the NW growth axis without significant buildup of the compressive strain. Ge/Ge1-xSnx core/shell NWs with Sn content spanning the 6-18 at. % range are achieved and processed into photoconductors exhibiting a high signal-to-noise ratio at room temperature with a cutoff wavelength in the 2.0-3.9 µm range. The processed NW devices are integrated in an uncooled imaging setup enabling the acquisition of high-quality images under both broadband and laser illuminations at 1550 and 2330 nm without the lock-in amplifier technique.

5.
Nano Lett ; 24(27): 8327-8334, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38942742

RESUMO

Titanium-based composites hold great promise in versatile functional application fields, including supercapacitors. However, conventional subtractive methods for preparing complex-shaped titanium-based composites generally suffer from several significant shortcomings, including low efficiency, strictly simple geometry, low specific surface area, and poor electrochemical performance of the products. Herein, three-dimensional composites of Ti/TiN nanotube arrays with hierarchically porous structures were prepared using the additive manufacturing method of selective laser melting combined with anodic oxidation and nitridation. The resultant Ti/TiN nanotube array composites exhibit good electrical conductivity, ultrahigh specific surface areas, and outstanding supercapacitor performances featuring the unique combination of a large specific capacitance of 134.4 mF/cm2 and a high power density of 4.1 mW/cm2, which was remarkably superior to that of their counterparts. This work is anticipated to provide new insights into the facile and efficient preparation of high-performance structural and functional devices with arbitrarily complex geometries and good overall performances.

6.
Nano Lett ; 24(18): 5460-5466, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669564

RESUMO

The performance of tin halide perovskite solar cells (PSCs) has been severely limited by the rapid crystallization of tin perovskites, which usually leads to an undesirable film quality. In this work, we tackle this issue by regulating the nucleation and crystal growth of tin perovskite films using a small Lewis base additive, urea. The urea-SnI2 interaction facilitates the formation of larger and more uniform clusters, thus accelerating the nucleation process. Additionally, the crystal growth process is extended, resulting in a high-quality tin perovskite film with compact morphology, increased crystallinity, and reduced defects. Consequently, the efficiency of tin PSCs is significantly increased from 10.42% to 14.22%. This work highlights the importance of manipulating the nucleation and crystal growth of tin perovskites to realize efficient tin PSCs.

7.
Small ; : e2401058, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671564

RESUMO

A computational screening of Single Atom Catalysts (SACs) bound to titanium nitride (TiN) is presented, for the Hydrogen Evolution Reaction (HER), based on density functional theory. The role of fundamental ingredients is explored to account for a reliable screening of SACs. Namely, the formation of H2-complexes besides the classical H* one impacts the predicted HER activity, in line with previous studies on other SACs. Also, the results indicate that one needs to adopt self-interaction-corrected functionals. Finally, predicting an active catalyst is of little help without an assessment of its stability. Thus, it is included in the theoretical framework the analysis of the stability of the SACs in working conditions of pH and voltage. Once unconventional intermediates and stability are considered in a self-interaction corrected scheme, the number of potential good catalysts for HER is strongly reduced since i) some potentially good catalysts are not stable against dissolution and ii) the formation of unconventional intermediates leads to thermodynamic barriers. This study highlights the importance of including ingredients for the prediction of new systems, such as the formation of unconventional intermediates, estimating the stability of SACs, and the adoption of self-interaction corrected functionals. Also, this study highlights some interesting candidates deserving of dedicated work.

8.
Small ; 20(1): e2304502, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649185

RESUMO

Reduced graphene oxide (rGO) has garnered extensive attention as electrodes, sensors, and membranes, necessitating the efficient reduction of graphene oxide (GO) for optimal performance. In this work, a swift reduction of GO that involves bringing GO foam in contact with semi-molten metals like tin (Sn) and lithium (Li) is presented. These findings reveal that the electrical resistance of GO foam is significantly diminished by its interaction with these metals, even in dry air. Taking inspiration from this technique, Sn foil is employed to encase the GO foam, followed by a calcination in 15 vol% H2 /Ar environment at 235 °C to fabricate the rGO, which demonstrates a remarkably lower electrical resistivity of 0.42 Ω cm when compared to the chemically reduced GO via hydrazine hydrate (650 Ω cm). The reduction mechanism entails the migration of Sn on GO and its subsequent reaction with oxygen functional groups. SnO/Sn(OH)2 formed from the reaction can be subsequently reversed through reduction by H2 to Sn. Utilizing this rGO as the host material for a sulfur cathode, a lithium-sulfur battery is constructed that displays a specific capacity of 1146 mAh g-1 and maintains a capacity retention of 68.4% after 300 cycles at a rate of 0.2 C.

9.
Small ; : e2404508, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007250

RESUMO

Here, a phenomenon of efficient oxygen exchange between a silicon surface and a thin layer of tin dioxide during chemical vapor deposition is presented, which leads to a unique Sn:SiO2 layer. Under thermodynamic conditions in the temperature range of 725-735 °C, the formation of nanostructures with volcano-like shapes in "active" and "dormant" states are observed. Extensive characterization techniques, such as electron microscopy, X-ray diffraction, synchrotron radiation-based X-ray photoelectron, and X-ray absorption near-edge structure spectroscopy, are applied to study the formation. The mechanism is related to the oxygen retraction between tin(IV) oxide and silicon surface, leading to the thermodynamically unstable tin(II)oxide, which is immediately disproportionate to metallic Sn and SnO2 localized in the SiO2 matrix. The diffusion of metallic tin in the amorphous silicon oxide matrix leads to larger agglomerates of nanoparticles, which is similar to the formation of a magma chamber during the natural volcanic processes followed by magma eruption, which here is associated with the formation of depressions on the surface filled with metallic tin particles. This new effect contributes a new approach to the formation of functional composites but also inspires the development of unique Sn:SiO2 nanostructures for diverse application scenarios, such as thermal energy storage.

10.
Small ; 20(13): e2307206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072800

RESUMO

Tin-lead (Sn-Pb) mixed perovskites is beneficial to a single-junction or all-perovskite tandem device. However, the poor quality of the perovskite surface resulting from Sn2+ oxidation and uncontrollable crystallization degrades device performance and stability. Herein, based on interface engineering, a novel biguanide derivative of PZBGACl is employed that integrates different types of N-related groups to reconstruct the surface/grain boundaries of Sn-Pb perovskite. Combined with the microcorrosion effect of isopropanol solvent, PZBGACl can induce surface recrystallization of perovskite, and passivate various types of defects via hydrogen bond or Lewis acid-base interaction, leading to an excellent perovskite film with reduced stress, larger grain size, and more n-type surface. As a result, the obtained Sn-Pb solar cell achieves a power conversion efficiency of 22.0%, and exhibits excellent N2 storage/operation stability.

11.
Small ; 20(11): e2306485, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37941515

RESUMO

The transformation of the two-electron oxygen reduction reaction (2e-ORR) to produce hydrogen peroxide (H2 O2 ) is a promising green synthesis approach that can replace the high-energy consumption anthraquinone process. However, designing and fabricating low-cost, non-precious metal electrocatalysts for 2e-ORR remains a challenge. In this study, a method of combining complexation precipitation and thermal treatment to synthesize 2D copper-tin composite nanosheets to serve as the 2e-ORR electrocatalysts is utilized, achieving a high H2 O2 selectivity of 92.8% in 0.1 m KOH, and a bulk H2 O2 electrosynthesis yield of 1436 mmol·gcat -1 ·h-1 using a flow cell device. Remarkably, the H2 O2 selectivity of this catalyst decreases by only 0.5% after 10,000 cyclic voltammetry (CV) cycles. In addition, it demonstrates that the same catalyst can achieve 97% removal of the organic pollutant methyl blue in an aqueous system solution within 1 h using the on-site degradation technology. A reasonable control of defect concentration on the 2D copper-tin composite nanosheets that can effectively improve the electrocatalytic performance is found. Density functional theory calculations confirm that the surface of the 2D copper-tin composite nanosheets is conducive to the adsorption of the key intermediate OOH* , highlighting its excellent electrocatalytic performance for ORR with high H2 O2 selectivity.

12.
Small ; 20(8): e2305088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817353

RESUMO

Futuristic wearable electronics desperately need power sources with similar flexibility and durability. In this regard, the authors, therefore, propose a scalable PAN-PMMA blend-derived electrospinning protocol to fabricate free-standing electrodes comprised of cobalt hexacyanoferrate nanocube cathode and tin metal organic framework-derived nanosphere anode, respectively, for flexible sodium-ion batteries. The resulting unique inter-networked nanofiber mesh offers several advantages such as robust structural stability towards repeated bending and twisting stresses along with appreciable electronic/ionic conductivity retention without any additional post-synthesis processing. The fabricated flexible sodium ion full cells deliver a high working voltage of 3.0 V, an energy density of 273 Wh·kg-1 , and a power density of 2.36 kW·kg-1 . The full cells retain up to 86.73% of the initial capacity after 1000 cycles at a 1.0 C rate. After intensive flexibility tests, the full cells also retain 78.26% and 90.78% of the initial capacity after 1000 bending and twisting cycles (5 mm radius bending and 40o axial twisting), respectively. This work proves that the proposed approach can also be employed to construct similar robust, free-standing nanofiber mesh-based electrodes for mass-producible, ultra-flexible, and durable sodium ion full cells with commercial viability.

13.
Small ; 20(15): e2308024, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992243

RESUMO

Atomic layer deposition (ALD) growth of conformal thin SnOx films on perovskite absorbers offers a promising method to improve carrier-selective contacts, enable sputter processing, and prevent humidity ingress toward high-performance tandem perovskite solar cells. However, the interaction between perovskite materials and reactive ALD precursor limits the process parameters of ALD-SnOx film and requires an additional fullerene layer. Here, it demonstrates that reducing the water dose to deposit SnOx can reduce the degradation effect upon the perovskite underlayer while increasing the water dose to promote the oxidization can improve the electrical properties. Accordingly, a SnOx buffer layer with a gradient composition structure is designed, in which the compositionally varying are achieved by gradually increasing the oxygen source during the vapor deposition from the bottom to the top layer. In addition, the gradient SnOx structure with favorable energy funnels significantly enhances carrier extraction, further minimizing its dependence on the fullerene layer. Its broad applicability for different perovskite compositions and various textured morphology is demonstrated. Notably, the design boosts the efficiencies of perovskite/silicon tandem cells (1.0 cm2) on industrially textured Czochralski (CZ) silicon to a certified efficiency of 28.0%.

14.
Small ; : e2404066, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837665

RESUMO

Inverted organic solar cells (OSCs) have garnered significant interest due to their remarkable stability. In this study, the efficiency and stability of inverted OSCs are enhanced via the in situ self-organization (SO) of an interfacial modification material Phen-NaDPO onto tin oxide (SnO2). During the device fabrication, Phen-NaDPO is spin-coated with the active materials all together on SnO2. Driven by the interactions with SnO2 and the thermodynamic forces due to its high surface energy and the convection flow, Phen-NaDPO spontaneously migrates to the SnO2 interface, resulting in the formation of an in situ modification layer on SnO2. This self-organization of Phen-NaDPO not only effectively reduces the work function of SnO2, but also enhances the ordered molecular stacking and manipulates the vertical morphology of the active layer, which suppress the surface trap-assisted recombination and minimize the charge extraction. As a result, the SO devices based on PM6:Y6 exhibit significantly improved photovoltaic performance with an enhanced power conversion efficiency of 17.62%. Moreover, the stability of the SO device is also improved. Furthermore, the SO ternary devices based on PM6:D18:L8-BO achieved an impressive PCE of 18.87%, standing as one of the highest values for single-junction inverted organic solar cells to date.

15.
Small ; : e2403413, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934357

RESUMO

Tin-halide perovskites (THP) are emerging materials for photovoltaics with optoelectronic properties potentially rivaling lead-based analoges. Their efficiencies in solar cells are, however, severely limited by the high sensitivity of tin to oxygen and the heavy p-doping natively present in the material. While the effects of oxygen can be mitigated by using reducing agents upon the synthesis and by encapsulating the device, the native p-doping caused by the high density of acceptor defects remains a challenge to be further addressed for prolonging carrier lifetimes and, consequently, device efficiency. In this work, potential compositional engineering strategies aimed at reducing the p-doping of this class of materials and increasing their efficiency in solar cells are investigated. Based on density functional theory simulations it is demonstrated that THP doping with d1s2 trivalent ions effectively decreases the hole background density and the density of the deep defects responsible for the non-radiative recombination in these materials. This effect is enhanced by alloying iodide with small fractions of bromide, up to 33%. Higher bromide fractions, instead, are detrimental due to the increased non-radiative recombination. These results may provide useful guidelines to experimentalists for improving the optoelectronic quality of THPs and consequently of the ensuing devices.

16.
Small ; : e2401891, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004881

RESUMO

Various polytypes of van der Waals (vdW) materials can be formed by sulfur and tin, which exhibit distinctive and complementary electronic properties. Hence, these materials are attractive candidates for the design of multifunctional devices. This work demonstrates direct selective growth of tin sulfides by laser irradiation. A 532 nm continuous wave laser is used to synthesize centimeter-scale tin sulfide tracks from single source precursor tin(II) o-ethylxanthate under ambient conditions. Modulation of laser irradiation conditions enables tuning of the dominant phase of tin sulfide as well as SnS2/SnS heterostructures formation. An in-depth investigation of the morphological, structural, and compositional characteristics of the laser-synthesized tin sulfide microstructures is reported. Furthermore, laser-synthesized tin sulfides photodetectors show broad spectral response with relatively high photoresponsivity up to 4 AW-1 and fast switching time (τ rise = 1.8 ms and τ fall = 16 ms). This approach is versatile and can be exploited in various fields such as energy conversion and storage, catalysis, chemical sensors, and optoelectronics.

17.
Small ; 20(28): e2311055, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38295001

RESUMO

Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+-reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1, and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.

18.
Small ; : e2402845, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895955

RESUMO

Metal chalcogenides as an ideal family of anode materials demonstrate a high theoretical specific capacity for potassium ion batteries (PIBs), but the huge volume variance and poor cyclic stability hinder their practical applications. In this study, a design of a stress self-adaptive structure with ultrafine SnSe nanoparticles embedded in carbon nanofiber (SnSe@CNF) via the electrospinning technology is presented. Such an architecture delivers a record high specific capacity (272 mAh g-1 at 50 mA g-1) and high-rate performance (125 mAh g-1 at 1 A g-1) as a PIB anode. It is decoded that the fundamental understanding for this great performance is that the ultrafine SnSe particles enhance the full utilization of the active material and achieve stress relief as the stored strain energy from cycling is insufficient to drive crack propagation and thus alleviates the intrinsic chemo-mechanical degradation of metal chalcogenides.

19.
Small ; : e2402028, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970557

RESUMO

2D-3D tin-based perovskites are considered as promising candidates for achieving efficient lead-free perovskite solar cells (PSCs). However, the existence of multiple low-dimensional phases formed during the film preparation hinders the efficient transport of charge carriers. In addition, the non-homogeneous distribution of low-dimensional phases leads to lattice distortion and increases the defect density, which are undesirable for the stability of tin-based PSCs. Here, mixed spacer cations [diethylamine (DEA+) and phenethylamine (PEA+)] are introduced into tin perovskite films to modulate the distribution of the 2D phases. It is found that compared to the film with only PEA+, the combination of DEA+ and PEA+ favors the formation of homogeneous low-dimensional perovskite phases with three octahedral monolayers (n = 3), especially near the bottom interface between perovskite and hole transport layer. The homogenization of 2D phases help improve the film quality with reduced lattice distortion and released strain. With these merits, the tin PSC shows significantly improved stability with 94% of its initial efficiency retained after storing in a nitrogen atmosphere for over 4600 h, and over 80% efficiency maintained after continuous illumination for 400 h.

20.
Small ; : e2402531, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727180

RESUMO

The efficacy of electron transport layers (ETLs) is pivotal for optimizing the device performance of perovskite photovoltaic applications. However, colloidal dispersions of SnO2 are prone to aggregation and possess structural defects, such as terminal-hydroxyls (OHT) and oxygen vacancies (VOs), which can degrade the quality of ETLs, impede charge extraction and transport, and affect the nucleation and growth processes of the perovskite layer. In this study, the Sb(OH)4 - ions hydrolyzed from SbCl3 in colloidal dispersion can bind to defect sites and effectively stabilize the SnO2 nanocrystals are demonstrated. Upon oxidative annealing, a Sb2O5@SnO2 composite film is formed, in which the Sb2O5 not only mitigates the aforementioned defects but also broadens the energy range of unoccupied states through its dispersed conduction band. The increased electron affinity (EA) facilitates more efficient capture of photoexcited electrons from the perovskite layer, thus augmenting electron extraction and minimizing electron-hole recombination. As a result, a significant improvement in power conversion efficiency (PCE) from 22.60% to 24.54% is achieved, with an open circuit voltage (VOC) of up to 1.195 V, along with excellent stability of unsealed devices under various conditions. This study provides valuable insights for the understanding and design of ETLs in perovskite photovoltaic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA