Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.284
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(16): 3400-3413.e20, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541197

RESUMO

Approximately 15% of US adults have circulating levels of uric acid above its solubility limit, which is causally linked to the disease gout. In most mammals, uric acid elimination is facilitated by the enzyme uricase. However, human uricase is a pseudogene, having been inactivated early in hominid evolution. Though it has long been known that uric acid is eliminated in the gut, the role of the gut microbiota in hyperuricemia has not been studied. Here, we identify a widely distributed bacterial gene cluster that encodes a pathway for uric acid degradation. Stable isotope tracing demonstrates that gut bacteria metabolize uric acid to xanthine or short chain fatty acids. Ablation of the microbiota in uricase-deficient mice causes severe hyperuricemia, and anaerobe-targeted antibiotics increase the risk of gout in humans. These data reveal a role for the gut microbiota in uric acid excretion and highlight the potential for microbiome-targeted therapeutics in hyperuricemia.


Assuntos
Gota , Hominidae , Hiperuricemia , Adulto , Animais , Humanos , Camundongos , Gota/genética , Gota/metabolismo , Hominidae/genética , Hiperuricemia/genética , Mamíferos/metabolismo , Urato Oxidase/genética , Ácido Úrico/metabolismo , Evolução Molecular
2.
Cell ; 169(2): 258-272.e17, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388410

RESUMO

A complex interplay of environmental factors impacts the metabolism of human cells, but neither traditional culture media nor mouse plasma mimic the metabolite composition of human plasma. Here, we developed a culture medium with polar metabolite concentrations comparable to those of human plasma (human plasma-like medium [HPLM]). Culture in HPLM, relative to that in traditional media, had widespread effects on cellular metabolism, including on the metabolome, redox state, and glucose utilization. Among the most prominent was an inhibition of de novo pyrimidine synthesis-an effect traced to uric acid, which is 10-fold higher in the blood of humans than of mice and other non-primates. We find that uric acid directly inhibits uridine monophosphate synthase (UMPS) and consequently reduces the sensitivity of cancer cells to the chemotherapeutic agent 5-fluorouracil. Thus, media that better recapitulates the composition of human plasma reveals unforeseen metabolic wiring and regulation, suggesting that HPLM should be of broad utility.


Assuntos
Meios de Cultura/química , Complexos Multienzimáticos/antagonistas & inibidores , Orotato Fosforribosiltransferase/antagonistas & inibidores , Orotidina-5'-Fosfato Descarboxilase/antagonistas & inibidores , Ácido Úrico/metabolismo , Idoso , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Fluoruracila/farmacologia , Glucose/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Complexos Multienzimáticos/química , Orotato Fosforribosiltransferase/química , Orotidina-5'-Fosfato Descarboxilase/química , Domínios Proteicos , Pirimidinas/biossíntese
3.
Nat Immunol ; 20(9): 1138-1149, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427775

RESUMO

Interleukin (IL)-1R3 is the co-receptor in three signaling pathways that involve six cytokines of the IL-1 family (IL-1α, IL-1ß, IL-33, IL-36α, IL-36ß and IL-36γ). In many diseases, multiple cytokines contribute to disease pathogenesis. For example, in asthma, both IL-33 and IL-1 are of major importance, as are IL-36 and IL-1 in psoriasis. We developed a blocking monoclonal antibody (mAb) to human IL-1R3 (MAB-hR3) and demonstrate here that this antibody specifically inhibits signaling via IL-1, IL-33 and IL-36 in vitro. Also, in three distinct in vivo models of disease (crystal-induced peritonitis, allergic airway inflammation and psoriasis), we found that targeting IL-1R3 with a single mAb to mouse IL-1R3 (MAB-mR3) significantly attenuated heterogeneous cytokine-driven inflammation and disease severity. We conclude that in diseases driven by multiple cytokines, a single antagonistic agent such as a mAb to IL-1R3 is a therapeutic option with considerable translational benefit.


Assuntos
Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Proteína Acessória do Receptor de Interleucina-1/antagonistas & inibidores , Peritonite/imunologia , Pneumonia/imunologia , Psoríase/imunologia , Células A549 , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células HEK293 , Humanos , Imiquimode/toxicidade , Inflamação/patologia , Interleucina-1/imunologia , Proteína Acessória do Receptor de Interleucina-1/imunologia , Interleucina-1beta/imunologia , Interleucina-33/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/toxicidade , Peritonite/tratamento farmacológico , Peritonite/patologia , Pneumonia/tratamento farmacológico , Pneumonia/patologia , Psoríase/tratamento farmacológico , Psoríase/patologia , Transdução de Sinais/imunologia , Ácido Úrico/toxicidade
4.
Immunity ; 55(9): 1594-1608.e6, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36029766

RESUMO

Tumor-induced host wasting and mortality are general phenomena across species. Many groups have previously demonstrated endocrinal impacts of malignant tumors on host wasting in rodents and Drosophila. Whether and how environmental factors and host immune response contribute to tumor-associated host wasting and survival, however, are largely unknown. Here, we report that flies bearing malignant yki3SA-gut tumors exhibited the exponential increase of commensal bacteria, which were mostly acquired from the environment, and systemic IMD-NF-κB activation due to suppression of a gut antibacterial amidase PGRP-SC2. Either gut microbial elimination or specific IMD-NF-κB blockade in the renal-like Malpighian tubules potently improved mortality of yki3SA-tumor-bearing flies in a manner independent of host wasting. We further indicate that renal IMD-NF-κB activation caused uric acid (UA) overload to reduce survival of tumor-bearing flies. Therefore, our results uncover a fundamental mechanism whereby gut commensal dysbiosis, renal immune activation, and UA imbalance potentiate tumor-associated host death.


Assuntos
NF-kappa B , Neoplasias , Animais , Proteínas de Transporte , Drosophila , Homeostase , NF-kappa B/metabolismo , Ácido Úrico
5.
Immunity ; 51(2): 199-201, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433963

RESUMO

In this issue of Immunity, Kimball et al. (2019) show that restoring expression of the chromatin modifying enzyme Setdb2 in macrophages rescues impaired wound healing associated with type 2 diabetes. Their findings reveal epigenetic regulation as central to the resolution of macrophage-mediated inflammation in tissue repair and have therapeutic implications for the treatment of diabetic wounds.


Assuntos
Diabetes Mellitus Tipo 2 , Epigênese Genética , Histona Metiltransferases , Humanos , Macrófagos , Fenótipo , Ácido Úrico , Cicatrização
6.
Immunity ; 51(2): 258-271.e5, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31350176

RESUMO

Macrophage plasticity is critical for normal tissue repair to ensure transition from the inflammatory to the proliferative phase of healing. We examined macrophages isolated from wounds of patients afflicted with diabetes and of healthy controls and found differential expression of the methyltransferase Setdb2. Myeloid-specific deletion of Setdb2 impaired the transition of macrophages from an inflammatory phenotype to a reparative one in normal wound healing. Mechanistically, Setdb2 trimethylated histone 3 at NF-κB binding sites on inflammatory cytokine gene promoters to suppress transcription. Setdb2 expression in wound macrophages was regulated by interferon (IFN) ß, and under diabetic conditions, this IFNß-Setdb2 axis was impaired, leading to a persistent inflammatory macrophage phenotype in diabetic wounds. Setdb2 regulated the expression of xanthine oxidase and thereby the uric acid (UA) pathway of purine catabolism in macrophages, and pharmacologic targeting of Setdb2 or the UA pathway improved healing. Thus, Setdb2 regulates macrophage plasticity during normal and pathologic wound repair and is a target for therapeutic manipulation.


Assuntos
Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Macrófagos/fisiologia , Proteínas Nucleares/metabolismo , Idoso , Animais , Proteínas de Transporte/genética , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Histona-Lisina N-Metiltransferase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Fenótipo , Ácido Úrico/metabolismo , Cicatrização
7.
EMBO J ; 42(1): e111389, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36444797

RESUMO

The cellular activation of the NLRP3 inflammasome is spatiotemporally orchestrated by various organelles, but whether lysosomes contribute to this process remains unclear. Here, we show the vital role of the lysosomal membrane-tethered Ragulator complex in NLRP3 inflammasome activation. Deficiency of Lamtor1, an essential component of the Ragulator complex, abrogated NLRP3 inflammasome activation in murine macrophages and human monocytic cells. Myeloid-specific Lamtor1-deficient mice showed marked attenuation of NLRP3-associated inflammatory disease severity, including LPS-induced sepsis, alum-induced peritonitis, and monosodium urate (MSU)-induced arthritis. Mechanistically, Lamtor1 interacted with both NLRP3 and histone deacetylase 6 (HDAC6). HDAC6 enhances the interaction between Lamtor1 and NLRP3, resulting in NLRP3 inflammasome activation. DL-all-rac-α-tocopherol, a synthetic form of vitamin E, inhibited the Lamtor1-HDAC6 interaction, resulting in diminished NLRP3 inflammasome activation. Further, DL-all-rac-α-tocopherol alleviated acute gouty arthritis and MSU-induced peritonitis. These results provide novel insights into the role of lysosomes in the activation of NLRP3 inflammasomes by the Ragulator complex.


Assuntos
Inflamassomos , Peritonite , Camundongos , Humanos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamação , Desacetilase 6 de Histona/genética , alfa-Tocoferol , Ácido Úrico , Peritonite/induzido quimicamente , Lisossomos , Camundongos Endogâmicos C57BL
8.
J Biol Chem ; 300(3): 105765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367667

RESUMO

CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique "basic patch" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.


Assuntos
Lectinas Tipo C , Receptores Mitogênicos , Ácido Úrico , Humanos , Gota/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Receptores Mitogênicos/química , Receptores Mitogênicos/imunologia , Ácido Úrico/química , Ácido Úrico/imunologia , Domínios Proteicos , Cristalografia por Raios X , Imagem Individual de Molécula , Linhagem Celular
9.
Circulation ; 149(11): 860-884, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38152989

RESUMO

BACKGROUND: SGLT2 (sodium-glucose cotransporter 2) inhibitors (SGLT2i) can protect the kidneys and heart, but the underlying mechanism remains poorly understood. METHODS: To gain insights on primary effects of SGLT2i that are not confounded by pathophysiologic processes or are secondary to improvement by SGLT2i, we performed an in-depth proteomics, phosphoproteomics, and metabolomics analysis by integrating signatures from multiple metabolic organs and body fluids after 1 week of SGLT2i treatment of nondiabetic as well as diabetic mice with early and uncomplicated hyperglycemia. RESULTS: Kidneys of nondiabetic mice reacted most strongly to SGLT2i in terms of proteomic reconfiguration, including evidence for less early proximal tubule glucotoxicity and a broad downregulation of the apical uptake transport machinery (including sodium, glucose, urate, purine bases, and amino acids), supported by mouse and human SGLT2 interactome studies. SGLT2i affected heart and liver signaling, but more reactive organs included the white adipose tissue, showing more lipolysis, and, particularly, the gut microbiome, with a lower relative abundance of bacteria taxa capable of fermenting phenylalanine and tryptophan to cardiovascular uremic toxins, resulting in lower plasma levels of these compounds (including p-cresol sulfate). SGLT2i was detectable in murine stool samples and its addition to human stool microbiota fermentation recapitulated some murine microbiome findings, suggesting direct inhibition of fermentation of aromatic amino acids and tryptophan. In mice lacking SGLT2 and in patients with decompensated heart failure or diabetes, the SGLT2i likewise reduced circulating p-cresol sulfate, and p-cresol impaired contractility and rhythm in human induced pluripotent stem cell-derived engineered heart tissue. CONCLUSIONS: SGLT2i reduced microbiome formation of uremic toxins such as p-cresol sulfate and thereby their body exposure and need for renal detoxification, which, combined with direct kidney effects of SGLT2i, including less proximal tubule glucotoxicity and a broad downregulation of apical transporters (including sodium, amino acid, and urate uptake), provides a metabolic foundation for kidney and cardiovascular protection.


Assuntos
Cresóis , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Inibidores do Transportador 2 de Sódio-Glicose , Ésteres do Ácido Sulfúrico , Humanos , Camundongos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Ácido Úrico , Triptofano , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Proteômica , Toxinas Urêmicas , Células-Tronco Pluripotentes Induzidas/metabolismo , Glucose , Sódio/metabolismo , Diabetes Mellitus Tipo 2/complicações
10.
Int Immunol ; 36(6): 279-290, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386511

RESUMO

C-type lectin receptors (CLRs) are a family of pattern recognition receptors, which detect a broad spectrum of ligands via small carbohydrate-recognition domains (CRDs). CLEC12A is an inhibitory CLR that recognizes crystalline structures such as monosodium urate crystals. CLEC12A also recognizes mycolic acid, a major component of mycobacterial cell walls, and suppresses host immune responses. Although CLEC12A could be a therapeutic target for mycobacterial infection, structural information on CLEC12A was not available. We report here the crystal structures of human CLEC12A (hCLEC12A) in ligand-free form and in complex with 50C1, its inhibitory antibody. 50C1 recognizes human-specific residues on the top face of hCLEC12A CRD. A comprehensive alanine scan demonstrated that the ligand-binding sites of mycolic acid and monosodium urate crystals may overlap with each other, suggesting that CLEC12A utilizes a common interface to recognize different types of ligands. Our results provide atomic insights into the blocking and ligand-recognition mechanisms of CLEC12A and leads to the design of CLR-specific inhibitors.


Assuntos
Lectinas Tipo C , Receptores Mitogênicos , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Humanos , Receptores Mitogênicos/química , Receptores Mitogênicos/imunologia , Receptores Mitogênicos/metabolismo , Cristalografia por Raios X , Ligantes , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Ácido Úrico/química , Ácido Úrico/metabolismo , Ácido Úrico/imunologia
11.
Hum Genomics ; 18(1): 60, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858783

RESUMO

BACKGROUND: Epidemiological studies have revealed a significant association between impaired kidney function and certain mental disorders, particularly bipolar disorder (BIP) and major depressive disorder (MDD). However, the evidence regarding shared genetics and causality is limited due to residual confounding and reverse causation. METHODS: In this study, we conducted a large-scale genome-wide cross-trait association study to investigate the genetic overlap between 5 kidney function biomarkers (eGFRcrea, eGFRcys, blood urea nitrogen (BUN), serum urate, and UACR) and 2 mental disorders (MDD, BIP). Summary-level data of European ancestry were extracted from UK Biobank, Chronic Kidney Disease Genetics Consortium, and Psychiatric Genomics Consortium. RESULTS: Using LD score regression, we found moderate but significant genetic correlations between kidney function biomarker traits on BIP and MDD. Cross-trait meta-analysis identified 1 to 19 independent significant loci that were found shared among 10 pairs of 5 kidney function biomarkers traits and 2 mental disorders. Among them, 3 novel genes: SUFU, IBSP, and PTPRJ, were also identified in transcriptome-wide association study analysis (TWAS), most of which were observed in the nervous and digestive systems (FDR < 0.05). Pathway analysis showed the immune system could play a role between kidney function biomarkers and mental disorders. Bidirectional mendelian randomization analysis suggested a potential causal relationship of kidney function biomarkers on BIP and MDD. CONCLUSIONS: In conclusion, the study demonstrated that both BIP and MDD shared genetic architecture with kidney function biomarkers, providing new insights into their genetic architectures and suggesting that larger GWASs are warranted.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Estudo de Associação Genômica Ampla , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Polimorfismo de Nucleotídeo Único/genética , Rim/fisiopatologia , Rim/patologia , Predisposição Genética para Doença , Biomarcadores/sangue , Taxa de Filtração Glomerular/genética , Locos de Características Quantitativas/genética , Ácido Úrico/sangue
12.
FASEB J ; 38(10): e23676, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38783765

RESUMO

The escalating prevalence of metabolic syndrome poses a significant public health challenge, particularly among aging populations, with metabolic dysfunctions contributing to pro-inflammatory states. In this review, we delved into the less recognized association between hyperuricemia (HUA), a manifestation of metabolic syndrome and a primary risk factor for gout, and age-related macular degeneration (AMD), a sight-threatening ailment predominantly affecting the elderly. In recent years, inflammation, particularly its involvement in complement pathway dysregulation, has gained prominence in AMD pathophysiology. The contradictory role of uric acid (UA) in intercellular and intracellular environments was discussed, highlighting its antioxidant properties in plasma and its pro-oxidant effects intracellularly. Emerging evidence suggests a potential link between elevated serum uric acid levels and choroid neovascularization in AMD, providing insights into the role of HUA in retinal pathologies. Various pathways, including crystal-induced and non-crystal-induced mechanisms, were proposed to indicate the need for further research into the precise molecular interactions. The implication of HUA in AMD underscores its potential involvement in retinal pathologies, which entails interdisciplinary collaboration for a comprehensive understanding of its impact on retina and related clinical manifestations.


Assuntos
Gota , Hiperuricemia , Degeneração Macular , Humanos , Hiperuricemia/complicações , Hiperuricemia/metabolismo , Degeneração Macular/etiologia , Degeneração Macular/metabolismo , Gota/metabolismo , Gota/etiologia , Ácido Úrico/metabolismo , Ácido Úrico/sangue , Animais
13.
J Immunol ; 210(6): 745-752, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36705528

RESUMO

Gout is a chronic disease caused by monosodium urate crystal deposition. Previous studies have focused on the resident macrophage, infiltrating monocyte, and neutrophil responses to monosodium urate crystal, yet the mechanisms of the potential involvement of other immune cells remain largely unknown. In this study, we enrolled seven gout patients and five age-matched healthy individuals and applied single-cell mass cytometry to study the distribution of immune cell subsets in peripheral blood. To our knowledge, our study reveals the immune cell profiles of gout at different stages for the first time. We identified many immune cell subsets that are dysregulated in gout and promote gouty inflammation, especially those highly expressing CCR4 and OX40 (TNFR superfamily member 4), including CCR4+OX40+ monocytes, CCR4+OX40+CD56high NK cells, CCR4+OX40+CD4+ NK T cells, and CCR4+CD38+CD4+ naïve T cells. Notably, the plasma levels of CCL17 and CCL22, measured by ELISA, increased in the acute phase of gout and declined in the interval. We also found a clue that Th2-type immune responses may participate in gout pathology. Moreover, the subset of granzyme B+ (GZMB+) CD38+ NK cells is positively correlated with serum urea acid level, and another two γδT subsets, GZMB+CD161+ γδT cells and GZMB+CCR5+ γδT cells, are negatively correlated with erythrocyte sedimentation rate. In sum, gouty arthritis is not a disease simply mediated by macrophages; multiple types of immune cell may be involved in the pathogenesis of the disease. Future research needs to shift attention to other immune cell subsets, such as NK cells and T cells, which will facilitate the identification of novel therapeutic targets.


Assuntos
Artrite Gotosa , Gota , Humanos , Ácido Úrico , Monócitos , Análise de Célula Única
14.
J Immunol ; 210(5): 531-535, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637223

RESUMO

Secretion of IL-1ß, a potent cytokine that plays a key role in gout pathogenesis, is regulated by inflammasomes. TRAF1 has been linked to heightened risk to inflammatory arthritis. In this article, we show that TRAF1 negatively regulates inflammasome activation to limit caspase-1 and IL-1ß secretion in human and mouse macrophages. TRAF1 reduces linear ubiquitination and subsequent oligomerization of the adapter protein, ASC. i.p. injection of monosodium urate crystals resulted in increased inflammatory cell infiltrates and IL-1ß production in Traf1 knockout mice compared with wild type littermates. In a model of monosodium urate crystal-induced gout, Traf1 knockout mice exhibited more swelling in the knee joints, increased infiltration of inflammatory cells, and higher expression of proinflammatory cytokines. In summary, this study identifies TRAF1 as a key regulator of IL-1ß production and a potential therapeutic target for inflammasome-driven diseases such as gout.


Assuntos
Gota , Inflamassomos , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal , Citocinas , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fator 1 Associado a Receptor de TNF/genética , Ácido Úrico
15.
Cell Mol Life Sci ; 81(1): 114, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436813

RESUMO

Hyperuricemia is an independent risk factor for chronic kidney disease (CKD) and promotes renal fibrosis, but the underlying mechanism remains largely unknown. Unresolved inflammation is strongly associated with renal fibrosis and is a well-known significant contributor to the progression of CKD, including hyperuricemia nephropathy. In the current study, we elucidated the impact of Caspase-11/Gasdermin D (GSDMD)-dependent neutrophil extracellular traps (NETs) on progressive hyperuricemic nephropathy. We found that the Caspase-11/GSDMD signaling were markedly activated in the kidneys of hyperuricemic nephropathy. Deletion of Gsdmd or Caspase-11 protects against the progression of hyperuricemic nephropathy by reducing kidney inflammation, proinflammatory and profibrogenic factors expression, NETs generation, α-smooth muscle actin expression, and fibrosis. Furthermore, specific deletion of Gsdmd or Caspase-11 in hematopoietic cells showed a protective effect on renal fibrosis in hyperuricemic nephropathy. Additionally, in vitro studies unveiled the capability of uric acid in inducing Caspase-11/GSDMD-dependent NETs formation, consequently enhancing α-smooth muscle actin production in macrophages. In summary, this study demonstrated the contributory role of Caspase-11/GSDMD in the progression of hyperuricemic nephropathy by promoting NETs formation, which may shed new light on the therapeutic approach to treating and reversing hyperuricemic nephropathy.


Assuntos
Armadilhas Extracelulares , Hiperuricemia , Insuficiência Renal Crônica , Humanos , Hiperuricemia/complicações , Actinas , Ácido Úrico , Caspases , Inflamação , Fibrose , Gasderminas , Proteínas de Ligação a Fosfato
16.
Nano Lett ; 24(11): 3432-3440, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391135

RESUMO

Uricase-catalyzed uric acid (UA) degradation has been applied for hyperuricemia therapy, but this medication is limited by H2O2 accumulation, which can cause oxidative stress of cells, resulting in many other health issues. Herein, we report a robust cubic hollow nanocage (HNC) system based on polyvinylpyrrolidone-coated PdPt3 and PdIr3 to serve as highly efficient self-cascade uricase/peroxidase mimics to achieve the desired dual catalysis for both UA degradation and H2O2 elimination. These HNCs have hollow cubic shape with average wall thickness of 1.5 nm, providing desired synergy to enhance catalyst's activity and stability. Density functional theory calculations suggest the PdIr3 HNC surface tend to promote OH*/O* desorption for better peroxidase-like catalysis, while the PdPt3 HNC surface accelerates the UA oxidation by facilitating O2-to-H2O2 conversion. The dual catalysis power demonstrated by these HNCs in cell studies suggests their great potential as a new type of nanozyme for treating hyperuricemia.


Assuntos
Hiperuricemia , Peroxidase , Humanos , Peroxidase/uso terapêutico , Urato Oxidase/uso terapêutico , Povidona/uso terapêutico , Hiperuricemia/tratamento farmacológico , Peróxido de Hidrogênio , Ácido Úrico/metabolismo , Oxirredutases , Corantes
17.
Nano Lett ; 24(22): 6634-6643, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38742828

RESUMO

The effect of strong metal-support interaction (SMSI) has never been systematically studied in the field of nanozyme-based catalysis before. Herein, by coupling two different Pd crystal facets with MnO2, i.e., (100) by Pd cube (Pdc) and (111) by Pd icosahedron (Pdi), we observed the reconstruction of Pd atomic structure within the Pd-MnO2 interface, with the reconstructed Pdc (100) facet more disordered than Pdi (111), verifying the existence of SMSI in such coupled system. The rearranged Pd atoms in the interface resulted in enhanced uricase-like catalytic activity, with Pdc@MnO2 demonstrating the best catalytic performance. Theoretical calculations suggested that a more disordered Pd interface led to stronger interactions with intermediates during the uricolytic process. In vitro cell experiments and in vivo therapy results demonstrated excellent biocompatibility, therapeutic effect, and biosafety for their potential hyperuricemia treatment. Our work provides a brand-new perspective for the design of highly efficient uricase-mimic catalysts.


Assuntos
Hiperuricemia , Compostos de Manganês , Óxidos , Urato Oxidase , Hiperuricemia/tratamento farmacológico , Urato Oxidase/química , Urato Oxidase/uso terapêutico , Urato Oxidase/metabolismo , Óxidos/química , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Humanos , Paládio/química , Paládio/farmacologia , Animais , Catálise , Ácido Úrico/química , Camundongos
18.
J Biol Chem ; 299(8): 104976, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390985

RESUMO

Urate transporters play a pivotal role in urate handling in the human body, but the urate transporters identified to date do not account for all known molecular processes of urate handling, suggesting the presence of latent machineries. We recently showed that a urate transporter SLC2A12 is also a physiologically important exporter of ascorbate (the main form of vitamin C in the body) that would cooperate with an ascorbate importer, sodium-dependent vitamin C transporter 2 (SVCT2). Based on the dual functions of SLC2A12 and cooperativity between SLC2A12 and SVCT2, we hypothesized that SVCT2 might be able to transport urate. To test this proposal, we conducted cell-based analyses using SVCT2-expressing mammalian cells. The results demonstrated that SVCT2 is a novel urate transporter. Vitamin C inhibited SVCT2-mediated urate transport with a half-maximal inhibitory concentration of 36.59 µM, suggesting that the urate transport activity may be sensitive to physiological ascorbate levels in blood. Similar results were obtained for mouse Svct2. Further, using SVCT2 as a sodium-dependent urate importer, we established a cell-based urate efflux assay that will be useful for identification of other novel urate exporters as well as functional characterization of nonsynonymous variants of already-identified urate exporters including ATP-binding cassette transporter G2. While more studies will be needed to elucidate the physiological impact of SVCT2-mediated urate transport, our findings deepen understanding of urate transport machineries.


Assuntos
Transportadores de Ânions Orgânicos Dependentes de Sódio , Transportadores de Sódio Acoplados à Vitamina C , Ácido Úrico , Animais , Humanos , Camundongos , Ácido Ascórbico/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/genética , Ácido Úrico/metabolismo
19.
Pflugers Arch ; 476(1): 101-110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37770586

RESUMO

Acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons play an important role in inflammatory pain. The objective of this study is to observe the regulatory role of ASICs in monosodium urate (MSU) crystal-induced gout pain and explore the basis for ASICs in DRG neurons as a target for gout pain treatment. The gout arthritis model was induced by injecting MSU crystals into the ankle joint of mice. The circumference of the ankle joint was used to evaluate the degree of swelling; the von Frey filaments were used to determine the withdrawal threshold of the paw. ASIC currents and action potentials (APs) were recorded by patch clamp technique in DRG neurons. The results displayed that injecting MSU crystals caused ankle edema and mechanical hyperalgesia of the paw, which was relieved after amiloride treatment. The ASIC currents in DRG neurons were increased to a peak on the second day after injecting MSU crystals, which were decreased after amiloride treatment. MSU treatment increased the current density of ASICs in different diameter DRG cells. MSU treatment does not change the characteristics of AP. The results suggest that ASICs in DRG neurons participate in MSU crystal-induced gout pain.


Assuntos
Gota , Ácido Úrico , Camundongos , Animais , Ácido Úrico/farmacologia , Canais Iônicos Sensíveis a Ácido , Amilorida , Gota/induzido quimicamente , Dor
20.
Am J Physiol Renal Physiol ; 326(6): F1004-F1015, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634129

RESUMO

Humans are predisposed to gout because they lack uricase that converts uric acid to allantoin. Rodents have uricase, resulting in low basal serum uric acid. A uricase inhibitor raises serum uric acid in rodents. There were two aims of the study in polycystic kidney disease (PKD): 1) to determine whether increasing serum uric acid with the uricase inhibitor, oxonic acid, resulted in faster cyst growth and 2) to determine whether treatment with the xanthine oxidase inhibitor, oxypurinol, reduced the cyst growth caused by oxonic acid. Orthologous models of human PKD were used: PCK rats, a polycystic kidney and hepatic disease 1 (Pkhd1) gene model of autosomal recessive PKD (ARPKD) and Pkd1RC/RC mice, a hypomorphic Pkd1 gene model. In PCK rats and Pkd1RC/RC mice, oxonic acid resulted in a significant increase in serum uric acid, kidney weight, and cyst index. Mechanisms of increased cyst growth that were investigated were proinflammatory cytokines, the inflammasome, and crystal deposition in the kidney. Oxonic acid resulted in an increase in proinflammatory cytokines in the serum and kidney in Pkd1RC/RC mice. Oxonic acid did not cause activation of the inflammasome or uric acid crystal deposition in the kidney. In Pkd1RC/RC male and female mice analyzed together, oxypurinol decreased the oxonic acid-induced increase in cyst index. In summary, increasing serum uric acid by inhibiting uricase with oxonic acid results in an increase in kidney weight and cyst index in PCK rats and Pkd1RC/RC mice. The effect is independent of inflammasome activation or crystal deposition in the kidney.NEW & NOTEWORTHY This is the first reported study of uric acid measurements and xanthine oxidase inhibition in polycystic kidney disease (PKD) rodents. Raising serum uric acid with a uricase inhibitor resulted in increased kidney weight and cyst index in Pkd1RC/RC mice and PCK rats, elevated levels of proinflammatory cytokines in the serum and kidney in Pkd1RC/RC mice, and no uric acid crystal deposition or activation of the caspase-1 inflammasome in the kidney.


Assuntos
Modelos Animais de Doenças , Rim , Doenças Renais Policísticas , Urato Oxidase , Ácido Úrico , Animais , Ácido Úrico/sangue , Doenças Renais Policísticas/patologia , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/tratamento farmacológico , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Oxipurinol/farmacologia , Ácido Oxônico/farmacologia , Inibidores Enzimáticos/farmacologia , Ratos , Feminino , Inflamassomos/metabolismo , Citocinas/metabolismo , Citocinas/sangue , Camundongos , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA