Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2300453120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252960

RESUMO

MuSK is a receptor tyrosine kinase (RTK) that plays essential roles in the formation and maintenance of the neuromuscular junction. Distinct from most members of RTK family, MuSK activation requires not only its cognate ligand agrin but also its coreceptors LRP4. However, how agrin and LRP4 coactivate MuSK remains unclear. Here, we report the cryo-EM structure of the extracellular ternary complex of agrin/LRP4/MuSK in a stoichiometry of 1:1:1. This structure reveals that arc-shaped LRP4 simultaneously recruits both agrin and MuSK to its central cavity, thereby promoting a direct interaction between agrin and MuSK. Our cryo-EM analyses therefore uncover the assembly mechanism of agrin/LRP4/MuSK signaling complex and reveal how MuSK receptor is activated by concurrent binding of agrin and LRP4.


Assuntos
Agrina , Receptores Colinérgicos , Receptores Colinérgicos/metabolismo , Agrina/química , Agrina/metabolismo , Proteínas Relacionadas a Receptor de LDL/química , Transdução de Sinais , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
2.
Hum Mol Genet ; 28(16): 2648-2658, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30994901

RESUMO

Agrin is a large extracellular matrix protein whose isoforms differ in their tissue distribution and function. Motoneuron-derived y+z+ agrin regulates the formation of the neuromuscular junction (NMJ), while y-z- agrin is widely expressed and has diverse functions. Previously we identified a missense mutation (V1727F) in the second laminin globular (LG2) domain of agrin that causes severe congenital myasthenic syndrome. Here, we define pathogenic effects of the agrin V1727F mutation that account for the profound dysfunction of the NMJ. First, by expressing agrin variants in heterologous cells, we show that the V1727F mutation reduces the secretion of y+z+ agrin compared to wild type, whereas it has no effect on the secretion of y-z- agrin. Second, we find that the V1727F mutation significantly impairs binding of y+z+ agrin to both heparin and the low-density lipoprotein receptor-related protein 4 (LRP4) coreceptor. Third, molecular modeling of the LG2 domain suggests that the V1727F mutation primarily disrupts the y splice insert, and consistent with this we find that it partially occludes the contribution of the y splice insert to agrin binding to heparin and LRP4. Together, these findings identify several pathogenic effects of the V1727F mutation that reduce its expression and ability to bind heparan sulfate proteoglycan and LRP4 coreceptors involved in the muscle-specific kinase signaling pathway. These defects primarily impair the function of neural y+z+ agrin and combine to cause a severe CMS phenotype, whereas y-z- agrin function in other tissues appears preserved.


Assuntos
Agrina/genética , Agrina/metabolismo , Substituição de Aminoácidos , Regulação da Expressão Gênica , Proteoglicanas de Heparan Sulfato/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Mutação , Agrina/química , Alelos , Processamento Alternativo , Linhagem Celular , Proteoglicanas de Heparan Sulfato/química , Humanos , Imuno-Histoquímica , Proteínas Relacionadas a Receptor de LDL/química , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Relação Estrutura-Atividade
3.
Genes Dev ; 26(3): 247-58, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22302937

RESUMO

Synapses are the fundamental units of neural circuits that enable complex behaviors. The neuromuscular junction (NMJ), a synapse formed between a motoneuron and a muscle fiber, has contributed greatly to understanding of the general principles of synaptogenesis as well as of neuromuscular disorders. NMJ formation requires neural agrin, a motoneuron-derived protein, which interacts with LRP4 (low-density lipoprotein receptor-related protein 4) to activate the receptor tyrosine kinase MuSK (muscle-specific kinase). However, little is known of how signals are transduced from agrin to MuSK. Here, we present the first crystal structure of an agrin-LRP4 complex, consisting of two agrin-LRP4 heterodimers. Formation of the initial binary complex requires the z8 loop that is specifically present in neuronal, but not muscle, agrin and that promotes the synergistic formation of the tetramer through two additional interfaces. We show that the tetrameric complex is essential for neuronal agrin-induced acetylcholine receptor (AChR) clustering. Collectively, these results provide new insight into the agrin-LRP4-MuSK signaling cascade and NMJ formation and represent a novel mechanism for activation of receptor tyrosine kinases.


Assuntos
Agrina/química , Agrina/metabolismo , Modelos Moleculares , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de LDL/química , Receptores de LDL/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação , Linhagem Celular , Ativação Enzimática , Camundongos , Neurônios/metabolismo , Estrutura Quaternária de Proteína , Ratos
4.
J Aging Phys Act ; 28(1): 73-80, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629361

RESUMO

Elevated circulating C-terminal agrin fragment (CAF) is a marker of neuromuscular junction degradation and sarcopenia. This study sought to determine if resistance training (RT) impacted the serum levels of CAF in perimenopausal (PERI-M) and postmenopausal (POST-M) women. A total of 35 women, either PERI-M or POST-M, participated in 10 weeks of RT. Body composition, muscle strength, and serum estradiol and CAF were determined before and after the RT. The data were analyzed with two-way analysis of variance (p ≤ .05). Upper body and lower body strength was significantly increased, by 81% and 73% and 86% and 79% for the PERI-M and POST-M participants, respectively; however, there were no significant changes in body composition. Estradiol was significantly less for the POST-M participants at pretraining compared with the PERI-M participants. CAF moderately increased by 22% for the PERI-M participants in response to RT, whereas it significantly decreased by 49% for the POST-M participants. Ten weeks of RT reduced the circulating CAF in the POST-M women and might play a role in attenuating degenerative neuromuscular junction changes.


Assuntos
Agrina/sangue , Agrina/química , Pós-Menopausa/sangue , Treinamento Resistido , Feminino , Humanos , Pessoa de Meia-Idade , Força Muscular , Músculo Esquelético/fisiologia , Sarcopenia/sangue
5.
Muscle Nerve ; 57(5): 814-820, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29193204

RESUMO

INTRODUCTION: Agrin is essential for the formation and maintenance of neuromuscular junctions (NMJs). NT-1654 is a C-terminal fragment of mouse neural agrin. In this study, we determined the effects of NT-1654 on the severity of experimental autoimmune myasthenia gravis (EAMG). METHODS: EAMG was induced in female Lewis rats by immunization with the Torpedo acetylcholine receptor (tAChR) and complete Freund's adjuvant (CFA). NT-1654 was dissolved in phosphate-buffered saline (PBS) and injected daily subcutaneously into tAChR immunized rats during the first 10 days after immunization, and then every other day for the following 20 days. RESULTS: We showed that NT-1654 attenuated clinical severity, effectively promoted the clustering of AChRs at NMJs, and alleviated the impairment of NMJ transmission and the reduction of muscle-specific kinase (MuSK) in EAMG rats. DISCUSSION: We demonstrated that NT-1654 attenuated clinical severity, effectively promoted the clustering of AChRs at NMJs, and alleviated the impairment of NMJ transmission and the reduction of muscle-specific kinase (MuSK) in EAMG rats. Muscle Nerve 57: 814-820, 2018.


Assuntos
Agrina/uso terapêutico , Imunização/efeitos adversos , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Miastenia Gravis Autoimune Experimental/patologia , Fragmentos de Peptídeos/uso terapêutico , Potenciais de Ação/fisiologia , Agrina/biossíntese , Agrina/química , Animais , Autoanticorpos/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletromiografia , Feminino , Adjuvante de Freund/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Proteínas do Tecido Nervoso/metabolismo , Neurofibromina 1/metabolismo , Junção Neuromuscular/patologia , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/química , Ratos , Ratos Endogâmicos Lew , Receptores Colinérgicos/imunologia , Receptores Colinérgicos/metabolismo
6.
Eur Biophys J ; 47(7): 751-759, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29532137

RESUMO

The major challenges in biophysical characterization of human protein-carbohydrate interactions are obtaining monodispersed preparations of human proteins that are often post-translationally modified and lack of detection of carbohydrates by traditional detection systems. Light scattering (dynamic and static) techniques offer detection of biomolecules and their complexes based on their size and shape, and do not rely on chromophore groups (such as aromatic amino acid sidechains). In this study, we utilized dynamic light scattering, analytical ultracentrifugation and small-angle X-ray scattering techniques to investigate the solution properties of a complex resulting from the interaction between a 15 kDa heparin preparation and miniagrin, a miniaturized version of agrin. Results from dynamic light scattering, sedimentation equilibrium, and sedimentation velocity experiments signify the formation of a monodisperse complex with 1:1 stoichiometry, and low-resolution structures derived from the small-angle X-ray scattering measurements implicate an extended conformation for a side-by-side miniagrin‒heparin complex.


Assuntos
Agrina/metabolismo , Heparina/metabolismo , Agrina/química , Células HEK293 , Humanos , Hidrodinâmica , Modelos Moleculares , Ligação Proteica , Conformação Proteica
7.
Muscle Nerve ; 51(1): 132-3, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25186664

RESUMO

INTRODUCTION: The aim of this study was to examine the relationship between serum C-terminal agrin fragment (CAF) concentrations and neuromuscular fatigue in older adults. METHODS: Twenty-two healthy older men and women volunteered for this study. Resting fasted blood samples were collected and prepared for measurement of serum CAF concentration by a commercially available ELISA kit. The onset of neuromuscular fatigue was measured by monitoring electromyographic fatigue curves from the vastus lateralis muscle using the physical working capacity at fatigue threshold (PWCFT ) test. RESULTS: A significant inverse correlation for men was observed between CAF and PWCFT (r = -0.602; P = 0.05), but not for women (r = 0.208; P = 0.54). After controlling for age and body mass index, significant correlations (r = -0.69; P = 0.042) remained for men, but not for women (r = 0.12; P = 0.76). CONCLUSIONS: These data suggest that serum CAF concentrations were significantly related to the onset of neuromuscular fatigue independent of age and BMI in men only.


Assuntos
Agrina/sangue , Fadiga/sangue , Fadiga/fisiopatologia , Fadiga Muscular , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Agrina/química , Eletromiografia , Ergometria , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia
8.
Curr Top Membr ; 76: 255-303, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26610917

RESUMO

Several members of the proteoglycan family are integral components of basement membranes; other proteoglycan family members interact with or bind to molecular residents of the basement membrane. Proteoglycans are polyfunctional molecules, for they derive their inherent bioactivity from the amino acid motifs embedded in the core protein structure as well as the glycosaminoglycan (GAG) chains that are covalently attached to the core protein. The presence of the covalently attached GAG chains significantly expands the "partnering" potential of proteoglycans, permitting them to interact with a broad spectrum of targets, including growth factors, cytokines, chemokines, and morphogens. Thus proteoglycans in the basement membrane are poised to exert diverse effects on the cells intimately associated with basement membranes.


Assuntos
Agrina , Membrana Basal/metabolismo , Proteoglicanas de Heparan Sulfato , Agrina/química , Agrina/genética , Agrina/metabolismo , Animais , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos
9.
Trends Biochem Sci ; 35(12): 653-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20542436

RESUMO

Na(+),K(+)-ATPase (NKA) has a fundamental role in ion transport across the plasma membrane of animal cells and uses approximately 50% of brain energy consumption. Recent work has uncovered additional roles for NKA in signal transduction. How might such different functions of the sodium-potassium pump be connected and regulated? We envision an integrated model of ion pumping and signaling, considering in particular the recently discovered regulation of the sodium-potassium pump by agrin, a protein that is cleaved specifically by neurotrypsin at the synapse. Based on the recently solved structure of NKA and sequence analysis, we propose a molecular model for the agrin-NKA interaction, in which agrin displaces the NKA ß-subunit and exploits the ouabain-binding pocket.


Assuntos
Agrina/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , Agrina/química , Animais , Modelos Moleculares , ATPase Trocadora de Sódio-Potássio/química
10.
Biochim Biophys Acta ; 1834(10): 2166-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23467009

RESUMO

MuSK (muscle-specific kinase) is a receptor tyrosine kinase that plays a central signaling role in the formation of neuromuscular junctions (NMJs). MuSK is activated in a complex spatio-temporal manner to cluster acetylcholine receptors on the postsynaptic (muscle) side of the synapse and to induce differentiation of the nerve terminal on the presynaptic side. The ligand for MuSK is LRP4 (low-density lipoprotein receptor-related protein-4), a transmembrane protein in muscle, whose binding affinity for MuSK is potentiated by agrin, a neuronally derived heparan-sulfate proteoglycan. In addition, Dok7, a cytoplasmic adaptor protein, is also required for MuSK activation in vivo. This review focuses on the physical interplay between these proteins and MuSK for activation and downstream signaling, which culminates in NMJ formation. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.


Assuntos
Músculo Esquelético/metabolismo , Terminações Nervosas/metabolismo , Junção Neuromuscular/química , Receptores Proteína Tirosina Quinases/química , Receptores Colinérgicos/química , Agrina/química , Agrina/genética , Agrina/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Proteínas Relacionadas a Receptor de LDL/química , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Modelos Moleculares , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica
11.
Cell Mol Life Sci ; 70(17): 3077-88, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23178848

RESUMO

The neuromuscular junction (NMJ) is the most extensively studied model of neuronal synaptogenesis. Acetylcholine receptor (AChR) clustering on the postsynaptic membrane is a cardinal event in the differentiation of NMJs. AChR clustering and postsynaptic differentiation is orchestrated by sophisticated interactions among three proteins: the neuron-secreted proteoglycan agrin, the co-receptor LRP4, and the muscle-specific receptor tyrosine kinase MuSK. LRP4 and MuSK act as scaffolds for multiple binding partners, resulting in a complex and dynamic network of interacting proteins that is required for AChR clustering. In this review, we discuss the structural basis for NMJ postsynaptic differentiation mediated by the agrin-LRP4-MuSK signaling pathway.


Assuntos
Agrina/metabolismo , Diferenciação Celular , Proteínas Relacionadas a Receptor de LDL/metabolismo , Junção Neuromuscular/citologia , Receptores Colinérgicos/metabolismo , Transdução de Sinais , Agrina/química , Proteínas Relacionadas a Receptor de LDL/química , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/química
12.
Hum Mol Genet ; 20(23): 4617-33, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21890498

RESUMO

Congenital myasthenic syndromes (CMS) are inherited diseases affecting the neuromuscular junction (NMJ). Mutations in AGRIN (AGRN) and other genes in the AGRIN signaling pathway cause CMS, and gene targeting studies in mice confirm the importance of this pathway for NMJ formation. However, these mouse mutations are complete loss-of-function alleles that result in an embryonic failure of NMJ formation, and homozygous mice do not survive postpartum. Therefore, mouse models of AGRIN-related CMS that would allow preclinical testing or studies of postnatal disease progression are lacking. Using chemical mutagenesis in mice, we identified a point mutation in Agrn that results in a partial loss-of-function allele, creating a valid model of CMS. The mutation changes phenylalanine 1061 to serine in the SEA domain of AGRIN, a poorly characterized motif shared by other extracellular proteoglycans. NMJs in homozygous mice progressively degrade postnataly. Severity differs with genetic background, in different muscles, and in different regions within a muscle in a pattern matching mouse models of motor neuron disease. Mutant NMJs have decreased acetylcholine receptor density and an increased subsynaptic reticulum, evident by electron microscopy. Synapses eventually denervate and the muscles atrophy. Molecularly, several factors contribute to the partial loss of AGRIN's function. The mutant protein is found at NMJs, but is processed differently than wild-type, with decreased glycosylation, changes in sensitivity to the protease neurotrypsin and other proteolysis, and less efficient externalization and secretion. Therefore, the Agrn point mutation is a model for CMS caused by Agrn mutations and potentially other related neuromuscular diseases.


Assuntos
Agrina/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Síndromes Miastênicas Congênitas/genética , Agrina/química , Agrina/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Sequência de Bases , Membrana Celular/metabolismo , Glicosilação , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Mutantes/metabolismo , Mutação/genética , Síndromes Miastênicas Congênitas/patologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Fenótipo , Estabilidade Proteica , Transporte Proteico , Proteólise , Reprodutibilidade dos Testes
13.
Am J Nephrol ; 38(6): 501-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24356308

RESUMO

BACKGROUND: The C-terminal agrin fragment (CAF) is a cleavage product of agrin, the major proteoglycan of the glomerular basement membrane. This article studies if CAF could serve as a biomarker for renal function in renal transplant recipients. MATERIAL AND METHODS: We measured serum CAF and creatinine concentrations and calculated estimated glomerular filtration rate (eGFR) (MDRD) in 96 healthy individuals and in 110 end-stage renal disease patients undergoing kidney transplantation before and after transplantation. Correlation between CAF and creatinine concentrations/eGFR was calculated as within-patient (cWP) and between-patient correlations (cBP). Moreover, we evaluated the association of CAF with delayed graft function (DGF). The diagnostic value of CAF for early detection of DGF compared to creatinine was evaluated by receiver operating characteristics (ROC) analysis. RESULTS: CAF concentrations strongly correlated with creatinine (r = 0.86 (cWP), r = 0.74 (cBP)) and eGFR (MDRD) (r = 0.86 (cWP), r = 0.77 (cBP)). Pre-transplant (pre-Tx) CAF concentrations were 19-fold higher than in healthy individuals (1,115.0 (258.4-3,990.0) vs. 56.6 (20.0-109.5) pM). After transplantation, CAF decreased significantly faster than creatinine (postoperative days 1-3 (POD 1-3): 562.8 (101.6-2,113.0) pM; creatinine: pre-Tx 6.9 (3.1-15.7), POD 1-3: 6.4 (1.7-12.7) mg/dl, p < 0.001). Stable concentrations were reached 1-3 months after transplantation for CAF and creatinine (CAF 145.1 (6.7-851.0) pM; creatinine 1.6 (0.7-8.0) mg/dl). CAF concentrations at POD 1-3 were significantly associated with DGF and outperformed creatinine in early detection of DGF (area under the curve (AUC) CAF 80.7% (95% CI 72.3-89.1%) vs. AUC creatinine 71.3% (95% CI 61.8-81.1%), p = 0.061). CONCLUSION: CAF is a promising new and fast biomarker for kidney function and may serve as a new tool for the early detection of DGF.


Assuntos
Agrina/sangue , Biomarcadores/sangue , Transplante de Rim , Rim/metabolismo , Idoso , Agrina/química , Área Sob a Curva , Creatinina/sangue , Função Retardada do Enxerto/sangue , Feminino , Membrana Basal Glomerular/metabolismo , Taxa de Filtração Glomerular , Humanos , Falência Renal Crônica/sangue , Falência Renal Crônica/terapia , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Estrutura Terciária de Proteína , Proteoglicanas/sangue , Curva ROC , Estudos Retrospectivos , Fatores de Tempo
14.
Hum Genet ; 131(7): 1123-35, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22205389

RESUMO

We describe a severe form of congenital myasthenic syndrome (CMS) caused by two heteroallelic mutations: a nonsense and a missense mutation in the gene encoding agrin (AGRN). The identified mutations, Q353X and V1727F, are located at the N-terminal and at the second laminin G-like (LG2) domain of agrin, respectively. A motor-point muscle biopsy demonstrated severe disruption of the architecture of the neuromuscular junction (NMJ), including: dispersion and fragmentation of endplate areas with normal expression of acetylcholinesterase; simplification of postsynaptic membranes; pronounced reduction of the axon terminal size; widening of the primary synaptic cleft; and, collection of membranous debris material in the primary synaptic cleft and in the subsynaptic cytoplasm. Expression studies in heterologous cells revealed that the Q353X mutation abolished expression of full-length agrin. Moreover, the V1727F mutation decreased agrin-induced clustering of the acetylcholine receptor (AChR) in cultured C2 muscle cells by >100-fold, and phosphorylation of the MuSK receptor and AChR beta subunit by ~tenfold. Surprisingly, the V1727F mutant also displayed increased binding to α-dystroglycan but decreased binding to a neural (z+) agrin-specific antibody. Our findings demonstrate that agrin mutations can associate with a severe form of CMS and cause profound distortion of the architecture and function of the NMJ. The impaired ability of V1727F agrin to activate MuSK and cluster AChRs, together with its increased affinity to α-dystroglycan, mimics non-neural (z-) agrin and are important determinants of the pathogenesis of the disease.


Assuntos
Agrina/genética , Códon sem Sentido , Mutação de Sentido Incorreto , Síndromes Miastênicas Congênitas/genética , Acetilcolinesterase/metabolismo , Adulto , Agrina/química , Agrina/metabolismo , Sequência de Bases , Linhagem Celular , Distroglicanas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Síndromes Miastênicas Congênitas/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Linhagem , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Análise de Sequência de DNA
15.
Am J Hum Genet ; 85(2): 155-67, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19631309

RESUMO

We report the case of a congenital myasthenic syndrome due to a mutation in AGRN, the gene encoding agrin, an extracellular matrix molecule released by the nerve and critical for formation of the neuromuscular junction. Gene analysis identified a homozygous missense mutation, c.5125G>C, leading to the p.Gly1709Arg variant. The muscle-biopsy specimen showed a major disorganization of the neuromuscular junction, including changes in the nerve-terminal cytoskeleton and fragmentation of the synaptic gutters. Experiments performed in nonmuscle cells or in cultured C2C12 myotubes and using recombinant mini-agrin for the mutated and the wild-type forms showed that the mutated form did not impair the activation of MuSK or change the total number of induced acetylcholine receptor aggregates. A solid-phase assay using the dystrophin glycoprotein complex showed that the mutation did not affect the binding of agrin to alpha-dystroglycan. Injection of wild-type or mutated agrin into rat soleus muscle induced the formation of nonsynaptic acetylcholine receptor clusters, but the mutant protein specifically destabilized the endogenous neuromuscular junctions. Importantly, the changes observed in rat muscle injected with mutant agrin recapitulated the pre- and post-synaptic modifications observed in the patient. These results indicate that the mutation does not interfere with the ability of agrin to induce postsynaptic structures but that it dramatically perturbs the maintenance of the neuromuscular junction.


Assuntos
Agrina/genética , Mutação de Sentido Incorreto , Síndromes Miastênicas Congênitas/genética , Sinapses/metabolismo , Adulto , Agrina/química , Agrina/metabolismo , Animais , Biópsia , Linhagem Celular , Análise Mutacional de DNA , Distroglicanas/metabolismo , Feminino , Humanos , Masculino , Modelos Químicos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/cirurgia , Músculo Esquelético/ultraestrutura , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Junção Neuromuscular/ultraestrutura , Linhagem , Estrutura Terciária de Proteína , Ratos , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
16.
Proc Natl Acad Sci U S A ; 106(9): 3513-8, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19221030

RESUMO

Synapse formation at the neuromuscular junction (NMJ) requires an alternatively spliced variant of agrin (Z(+) agrin) that is produced only by neurons. Here, we show that Nova1 and Nova2, neuron-specific splicing factors identified as targets in autoimmune motor disease, are essential regulators of Z(+) agrin. Nova1/Nova2 double knockout mice are paralyzed and fail to cluster AChRs at the NMJ, and breeding them with transgenic mice constitutively expressing Z(+) agrin in motor neurons rescued AChR clustering. Surprisingly, however, these rescued mice remained paralyzed, while electrophysiologic studies demonstrated that the motor axon and synapse were functional-spontaneous and evoked recordings revealed synaptic transmission and muscle contraction. These results point to a proximal defect in motor neuron firing in the absence of Nova and reveal a previously unsuspected role for RNA regulation in the physiologic activation of motor neurons.


Assuntos
Agrina/metabolismo , Processamento Alternativo/genética , Antígenos de Neoplasias/metabolismo , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/fisiopatologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sinapses/metabolismo , Agrina/química , Agrina/genética , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/genética , Eletrofisiologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Doença dos Neurônios Motores/genética , Proteínas do Tecido Nervoso/genética , Antígeno Neuro-Oncológico Ventral , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética
17.
Mol Neurobiol ; 59(12): 7466-7485, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36197591

RESUMO

Neurotrypsin (NT) is a highly specific nervous system multi-domain serine protease best known for its selective processing of the potent synaptic organizer agrin. Its enzymatic activity is thought to influence processes of synaptic plasticity, with its deregulation causing accelerated neuromuscular junction (NMJ) degeneration or contributing to forms of mental retardation. These biological effects are likely to stem from NT-based regulation of agrin signaling. However, dissecting the exact biological implications of NT-agrin interplay is difficult, due to the scarce molecular detail regarding NT activity and NT-agrin interactions. We developed a strategy to reliably produce and purify a catalytically competent engineered variant of NT called "NT-mini" and a library of C-terminal agrin fragments, with which we performed a thorough biochemical and biophysical characterization of NT enzyme functionality. We studied the regulatory effects of calcium ions and heparin, identified NT's heparin-binding domain, and discovered how zinc ions induce modulation of enzymatic activity. Additionally, we investigated myotube differentiation and hippocampal neuron excitability, evidencing a dose-dependent increase in neuronal activity alongside a negative impact on myoblast fusion when using the active NT enzyme. Collectively, our results provide in vitro and cellular foundations to unravel the molecular underpinnings and biological significance of NT-agrin interactions.


Assuntos
Agrina , Fibras Musculares Esqueléticas , Agrina/química , Neurônios , Heparina , Sinapses
18.
J Biol Chem ; 285(5): 3114-25, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19940118

RESUMO

Clustering or overexpression of the transmembrane form of the extracellular matrix proteoglycan agrin in neurons results in the formation of numerous highly motile filopodia-like processes extending from axons and dendrites. Here we show that similar processes can be induced by overexpression of transmembrane-agrin in several non-neuronal cell lines. Mapping of the process-inducing activity in neurons and non-neuronal cells demonstrates that the cytoplasmic part of transmembrane agrin is dispensable and that the extracellular region is necessary for process formation. Site-directed mutagenesis reveals an essential role for the loop between beta-sheets 3 and 4 within the Kazal subdomain of the seventh follistatin-like domain of TM-agrin. An aspartic acid residue within this loop is critical for process formation. The seventh follistatin-like domain could be functionally replaced by the first and sixth but not by the eighth follistatin-like domain, demonstrating a functional redundancy among some follistatin-like domains of agrin. Moreover, a critical distance of the seventh follistatin-like domain to the plasma membrane appears to be required for process formation. These results demonstrate that different regions within the agrin protein are responsible for synapse formation at the neuromuscular junction and for process formation in central nervous system neurons and suggest a role for agrin's follistatin-like domains in the developing central nervous system.


Assuntos
Agrina/química , Folistatina/química , Agrina/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Sistema Nervoso Central/metabolismo , Galinhas , Chlorocebus aethiops , Feminino , Humanos , Mutagênese Sítio-Dirigida , Neurônios/metabolismo , Células PC12 , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos
19.
J Biol Chem ; 285(36): 27641-51, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20566625

RESUMO

Agrin isoforms with different bioactivities are synthesized by the nerve and the muscle. Neural agrin containing an 8-amino acid insert (z8) introduced by alternative splicing is the active form that induces synaptic differentiation at the neuromuscular junction. In addition to alternative splicing, extracellular calcium is also required for the activity of neural agrin. To understand better how the activity of agrin is regulated by alternative splicing, we have applied alanine substitution mutagenesis to the z8 insert and the calcium binding site in the minimally functional AgG3z8 fragment. Single alanine substitutions in the 4th through the 7th amino acid of the z8 splice insert significantly reduced the function of agrin, in terms of acetylcholine receptor clustering activity and the affinity for binding to the muscle surface. Mutation of the asparagine at the 4th position drastically reduces bioactivity such that it is equivalent to that of muscle form AgG3z0. These reduced activity mutants also show reduced magnitudes of the calcium-induced CD spectrum change from that observed in AgG3z8 fragments, indicating that cross-talk between calcium and the z8 insert is critical for the normal activity of agrin. However, removal of Ca(2+) binding via mutation of both aspartic acids in the calcium binding site did not totally eliminate the activity of AgG3z8. These results suggest a model wherein the z8 insert is a Ca(2+)-responsive allosteric element that is essential in forming an active conformation in neuronal agrin.


Assuntos
Agrina/química , Agrina/metabolismo , Asparagina/metabolismo , Mutagênese Insercional , Receptores Colinérgicos/metabolismo , Agrina/genética , Regulação Alostérica/efeitos dos fármacos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Células COS , Cálcio/metabolismo , Cálcio/farmacologia , Chlorocebus aethiops , Células HeLa , Humanos , Modelos Moleculares , Fibras Musculares Esqueléticas/metabolismo , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Ratos
20.
Exp Cell Res ; 316(14): 2260-77, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20471381

RESUMO

Filopodia sense the extracellular environment and direct movement in many cell types, including neurons. Recent reports suggest that the transmembrane form of the widely expressed proteoglycan agrin (TM-agrin) regulates formation and stability of neuronal filopodia. In order to elucidate the mechanism by which TM-agrin regulates filopodia, we investigated the role of agrin's glycosaminoglycan (GAG) chains in the induction of filopodia formation by TM-agrin over-expression in hippocampal neurons, and in the induction of filopodia-like processes in COS7 cells. Deletion of the GAG chains of TM-agrin sharply reduced formation of filopodia-like branched retraction fibers (BRFs) in COS7 cells, with deletion of the heparan sulfate GAG chains being most effective, and eliminated filopodia induction in hippocampal neurons. GAG chain deletion also reduced the activation of Cdc42 and Rac1 resulting from TM-agrin over-expression. Moreover, dominant-negative Cdc42 and Rac1 inhibited BRF formation. Lastly, over-expression of TM-agrin increased the adhesiveness of COS7 cells and this increase was reduced by deletion of the GAG chains. Our results suggest that TM-agrin regulates actin-based protrusions in large part through interaction of its GAG chains with extracellular or transmembrane proteins, leading to the activation of Cdc42 and Rac1.


Assuntos
Agrina/metabolismo , Glicosaminoglicanos/metabolismo , Pseudópodes/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Agrina/química , Animais , Western Blotting , Células COS , Linhagem Celular , Membrana Celular/química , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Genes gag/genética , Glicosaminoglicanos/química , Imuno-Histoquímica , Mutação/genética , Neurônios/metabolismo , Ratos , Proteínas rho de Ligação ao GTP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA