Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 258(6): 107, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897513

RESUMO

MAIN CONCLUSION: The present investigation profoundly asserted the catalytic potential of plant-based aldo-ketoreductase, postulating its role in polyketide biosynthesis and providing new insights for tailored biosynthesis of vital plant polyketides for therapeutics. Plants hold great potential as a future source of innovative biocatalysts, expanding the possibilities within chemical reactions and generating a variety of benefits. The aldo-keto reductase (AKR) superfamily includes a huge collection of NAD(P)H-dependent oxidoreductases that carry out a variety of redox reactions essential for biosynthesis, detoxification, and intermediary metabolism. The present study involved the isolation, cloning, and purification of a novel aldo-ketoreductase (AvAKR) from the leaves of Aloe vera (Aloe barbadensis Miller) by heterologous gene expression in Escherichia coli based on the unigene sequences of putative ketoreductase and cDNA library screening by oligonucleotide hybridization. The in-silico structural analysis, phylogenetic relationship, and molecular modeling were outranged to approach the novelty of the sequence. Additionally, agroinfiltration of the candidate gene tagged with a green fluorescent protein (GFP) was employed for transient expression in the Nicotiana benthamiana to evaluate the sub-cellular localization of the candidate gene. The AvAKR preferred cytoplasmic localization and shared similarities with the known plant AKRs, keeping the majority of the conserved active-site residues in the AKR superfamily enzymes. The enzyme facilitated the NADPH-dependent reduction of various carbonyl substrates, including benzaldehyde and sugars, proclaiming a broad spectrum range. Our study successfully isolated and characterized a novel aldo-ketoreductase (AvAKR) from Aloe vera, highlighting its versatile NADPH-dependent carbonyl reduction proficiency therewith showcasing its potential as a versatile biocatalyst in diverse redox reactions.


Assuntos
Aldeído Redutase , Aloe , Aldo-Ceto Redutases/genética , Aldeído Redutase/genética , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aloe/genética , Aloe/metabolismo , Filogenia , NADP/genética , Plantas/metabolismo
2.
J Chem Inf Model ; 63(20): 6261-6282, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37788831

RESUMO

Aldose reductase (ALR2) is a notable enzyme of the polyol pathway responsible for aggravating diabetic neuropathy complications. The first step begins when it catalyzes the reduction of glucose to sorbitol with NADPH as a coenzyme. Elevated concentrations of sorbitol damage the tissues, leading to complications like neuropathy. Though considerable effort has been pushed toward the successful discovery of potent inhibitors, its discovery still remains an elusive task. To this end, we present a 3D convolutional neural network (3D-CNN) based ALR2 inhibitor classification technique by dealing with snapshots of images captured from 3D chemical structures with multiple rotations as input data. The CNN-based architecture was trained on the 360 sets of image data along each axis and further prediction on the Maybridge library by each of the models. Subjecting the retrieved hits to molecular docking leads to the identification of the top 10 molecules with high binding affinity. The hits displayed a better blood-brain barrier penetration (BBB) score (90% with more than four scores) as compared to standard inhibitors (38%), reflecting the superior BBB penetrating efficiency of the hits. Followed by molecular docking, the biological evaluation spotlighted five compounds as promising ALR2 inhibitors and can be considered as a likely prospect for further structural optimization with medicinal chemistry efforts to improve their inhibition efficacy and consolidate them as new ALR2 antagonists in the future. In addition, the study also demonstrated the usefulness of scaffold analysis of the molecules as a method for investigating the significance of structurally diverse compounds in data-driven studies. For reproducibility and accessibility purposes, all of the source codes used in our study are publicly available.


Assuntos
Aldeído Redutase , Complicações do Diabetes , Humanos , Simulação de Acoplamento Molecular , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Reprodutibilidade dos Testes , Inibidores Enzimáticos/metabolismo , Redes Neurais de Computação , Sorbitol/farmacologia
3.
Mol Divers ; 27(4): 1713-1733, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36103032

RESUMO

In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been recognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahydroisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 94.21 ± 2.33 to 430.00 ± 2.33 nM and 49.22 ± 3.64 to 897.20 ± 43.63 nM, respectively. Compounds 11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more effectiveness than standard drug epalrestat. The synthesized molecules' absorption, distribution, metabolism, and excretion (ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated using molecular-docking simulations.


Assuntos
Aldeído Redutase , Hidrazonas , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Hidrazonas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Benzaldeídos/farmacologia
4.
J Mol Recognit ; 35(12): e2991, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36073557

RESUMO

Aldose reductase (AR, AKR1B1; EC 1.1.1.21) is an aldo-keto reductase that has been widely investigated as an enzyme crucially involved in the pathogenesis of several chronic complications, including nephropathy, neuropathy, retinopathy, and cataracts associated with diabetes mellitus. Although sulfonamides have been reported to possess many other biological activities, in continuation of our interest in designing and discovering potent inhibitors of AR, herein, we have evaluated the AR inhibitory potential of N-substituted phthalazine sulfonamide derivatives 5a-l. The biological studies revealed that all the derivatives show excellent activity against AR, with KI constants ranging from 67.73 to 495.20 nM. Among these agents, 4-(6-nitro-1,4-dioxo-1,2,3,4-tetrahydrophthalazine-2-carbonyl)benzenesulfonamide (5e) and 1,4-dioxo-3-(4-sulfamoylbenzoyl)-1,2,3,4-tetrahydrophthalazine-6-carboxylic acid (5f) showed prominent inhibitory activity with KI values of 67.73 and 148.20 nM, respectively, vs AR and were found to be more potent than epalrestat (KI  = 852.50 nM), the only AR inhibitor currently used in the therapy. Moreover, molecular docking studies were also performed to rationalize binding site interactions of these sulfonamides (5a-l) with the target enzyme AR. According to ADME-Tox, predicts were also determined that these derivatives be ARIs displaying suitable drug-like properties. The sulfonamides identified in this study may be used to develop lead therapeutic agents inhibiting diabetic complications.


Assuntos
Aldeído Redutase , Inibidores Enzimáticos , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Ftalazinas/farmacologia , Sulfonamidas/farmacologia
5.
Drug Dev Res ; 83(3): 586-604, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34585414

RESUMO

A series of novel sulfonates containing quinazolin-4(3H)-one ring derivatives was designed to inhibit aldose reductase (ALR2, EC 1.1.1.21). Novel quinazolinone derivatives (1-21) were synthesized from the reaction of sulfonated aldehydes with 3-amino-2-alkylquinazolin-4(3H)-ones in glacial acetic acid with good yields (85%-94%). The structures of the novel molecules were characterized using IR, 1 H-NMR, 13 C-NMR, and HRMS. All the novel quinazolinones (1-21) demonstrated nanomolar levels of inhibitory activity against ALR2 (KI s are in the range of 101.50-2066.00 nM). Besides, 4-[(2-isopropyl-4-oxoquinazolin-3[4H]-ylimino)methyl]phenyl benzenesulfonate (15) showed higher inhibitor activity inhibited ALR2 up to 7.7-fold compared to epalrestat, a standard inhibitor. Binding interactions between ALR2 and quinazolinones have been investigated using Schrödinger Small-Molecule Drug Discovery Suite 2021-1, reported possible inhibitor-ALR2 interactions. Both in vitro and in silico study results suggest that these quinazolin-4(3H)-one ring derivatives (1-21) require further molecular modification to improve their drug nominee potency as an ALR2 inhibitor.


Assuntos
Aldeído Redutase , Inibidores Enzimáticos , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Quinazolinonas , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163804

RESUMO

NAD(H)/NADP(H)-dependent aldehyde/alcohol oxidoreductase (AAOR) participates in a wide range of physiologically important cellular processes by reducing aldehydes or oxidizing alcohols. Among AAOR substrates, furan aldehyde is highly toxic to microorganisms. To counteract the toxic effect of furan aldehyde, some bacteria have evolved AAOR that converts furan aldehyde into a less toxic alcohol. Based on biochemical and structural analyses, we identified Bacillus subtilis YugJ as an atypical AAOR that reduces furan aldehyde. YugJ displayed high substrate specificity toward 5-hydroxymethylfurfural (HMF), a furan aldehyde, in an NADPH- and Ni2+-dependent manner. YugJ folds into a two-domain structure consisting of a Rossmann-like domain and an α-helical domain. YugJ interacts with NADP and Ni2+ using the interdomain cleft of YugJ. A comparative analysis of three YugJ structures indicated that NADP(H) binding plays a key role in modulating the interdomain dynamics of YugJ. Noticeably, a nitrate ion was found in proximity to the nicotinamide ring of NADP in the YugJ structure, and the HMF-reducing activity of YugJ was inhibited by nitrate, providing insights into the substrate-binding mode of YugJ. These findings contribute to the characterization of the YugJ-mediated furan aldehyde reduction mechanism and to the rational design of improved furan aldehyde reductases for the biofuel industry.


Assuntos
Aldeído Redutase/química , Aldeído Redutase/metabolismo , Bacillus subtilis/enzimologia , Furaldeído/análogos & derivados , NADP/metabolismo , Níquel/metabolismo , Aldeído Redutase/genética , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Furaldeído/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Especificidade por Substrato
7.
Molecules ; 26(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430436

RESUMO

YqhD, an E. coli alcohol/aldehyde oxidoreductase, is an enzyme able to produce valuable bio-renewable fuels and fine chemicals from a broad range of starting materials. Herein, we report the first computational solution-phase structure-dynamics analysis of YqhD, shedding light on the effect of oxidized and reduced NADP/H cofactor binding on the conformational dynamics of the biocatalyst using molecular dynamics (MD) simulations. The cofactor oxidation states mainly influence the interdomain cleft region conformations of the YqhD monomers, involved in intricate cofactor binding and release. The ensemble of NADPH-bound monomers has a narrower average interdomain space resulting in more hydrogen bonds and rigid cofactor binding. NADP-bound YqhD fluctuates between open and closed conformations, while it was observed that NADPH-bound YqhD had slower opening/closing dynamics of the cofactor-binding cleft. In the light of enzyme kinetics and structural data, simulation findings have led us to postulate that the frequently sampled open conformation of the cofactor binding cleft with NADP leads to the more facile release of NADP while increased closed conformation sampling during NADPH binding enhances cofactor binding affinity and the aldehyde reductase activity of the enzyme.


Assuntos
Aldeído Redutase/química , Aldeído Redutase/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , NADP/química , NADP/metabolismo , Sítios de Ligação , Ligação de Hidrogênio , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato
8.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916292

RESUMO

Methanolic leaf extracts of four Lauraceae species endemic to Laurisilva forest (Apollonias barbujana, Laurus novocanariensis, Ocotea foetens and Persea indica) were investigated for the first time for their potential to inhibit key enzymes linked to type-2 diabetes (α-amylase, α-glucosidase, aldose reductase) and obesity (pancreatic lipase), and protein glycation. Lauraceae extracts revealed significant inhibitory activities in all assays, altough with different ability between species. In general, P. indica showed the most promissing results. In the protein glycation assay, all analysed extracts displayed a stronger effect than a reference compound: aminoguanidine (AMG). The in vitro anti-diabetic, anti-obesity and anti-glycation activities of analysed extracts showed correlation with their flavonols and flavan-3-ols (in particular, proanthocyanins) contents. These Lauraceae species have the capacity to assist in adjuvant therapy of type-2 diabetes and associated complications, through modulation of the activity of key metabolic enzymes and prevention of advanced glycation end-products (AGEs) formation.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 2/metabolismo , Glicoproteínas/metabolismo , Hipoglicemiantes/farmacologia , Lauraceae/química , Obesidade/metabolismo , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/química , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/etiologia , Florestas , Glicosilação , Hipoglicemiantes/química , Redes e Vias Metabólicas , Estrutura Molecular , Obesidade/enzimologia , Obesidade/etiologia , Fenóis/química , Extratos Vegetais/química , Ratos
9.
Molecules ; 26(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641501

RESUMO

Diabetes mellitus is a global threat affecting millions of people of different age groups. In recent years, the development of naturally derived anti-diabetic agents has gained popularity. Okra is a common vegetable containing important bioactive components such as abscisic acid (ABA). ABA, a phytohormone, has been shown to elicit potent anti-diabetic effects in mouse models. Keeping its anti-diabetic potential in mind, in silico study was performed to explore its role in inhibiting proteins relevant to diabetes mellitus- 11ß-hydroxysteroid dehydrogenase (11ß-HSD1), aldose reductase, glucokinase, glutamine-fructose-6-phosphate amidotransferase (GFAT), peroxisome proliferator-activated receptor-gamma (PPAR-gamma), and Sirtuin family of NAD(+)-dependent protein deacetylases 6 (SIRT6). A comparative study of the ABA-protein docked complex with already known inhibitors of these proteins relevant to diabetes was compared to explore the inhibitory potential. Calculation of molecular binding energy (ΔG), inhibition constant (pKi), and prediction of pharmacokinetics and pharmacodynamics properties were performed. The molecular docking investigation of ABA with 11-HSD1, GFAT, PPAR-gamma, and SIRT6 revealed considerably low binding energy (ΔG from -8.1 to -7.3 Kcal/mol) and predicted inhibition constant (pKi from 6.01 to 5.21 µM). The ADMET study revealed that ABA is a promising drug candidate without any hazardous effect following all current drug-likeness guidelines such as Lipinski, Ghose, Veber, Egan, and Muegge.


Assuntos
Abelmoschus/química , Ácido Abscísico/farmacologia , Diabetes Mellitus/metabolismo , Hipoglicemiantes/farmacologia , Proteínas/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Ácido Abscísico/química , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacocinética , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Simulação por Computador , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glucoquinase/química , Glucoquinase/metabolismo , Glutamina/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , PPAR gama/química , PPAR gama/metabolismo , Proteínas/química , Sirtuínas/química , Sirtuínas/metabolismo
10.
Insect Mol Biol ; 29(5): 490-497, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681683

RESUMO

We describe a new member of the aldo-keto reductase (AKR) superfamily in the silkworm Bombyx mori. On the basis of its amino acid sequence and phylogenetic tree, this AKR belongs to the AKR1B family and has been designated as bmALD1. In the current study, recombinant bmALD1 was overexpressed, purified to homogeneity and kinetically characterized. We discovered that bmALD1 uses NADPH as a coenzyme to reduce carbonyl compounds such as DL-glyceraldehyde, glucose and 2-nonenal. No NADH-dependent activity was detected. To the best of our knowledge, bmALD1 is only the third AKR characterized in silkworm which, given its substrate specificity, could play a major role in glucose metabolism and antioxidant reactions. Our data provide an increased understanding of insect AKR function.


Assuntos
Aldeído Redutase/genética , Bombyx/genética , Proteínas de Insetos/genética , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Sequência de Aminoácidos , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Cinética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Filogenia , Alinhamento de Sequência , Especificidade por Substrato
11.
Eur Biophys J ; 49(3-4): 267-277, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32356119

RESUMO

The stability of Debaryomyces nepalensis NCYC 3413 xylose reductase, a homodimeric enzyme recombinantly expressed and purified from E. coli Rosetta cells, was studied at different pH ranging from 5.0 to 10.0. Deactivation kinetics at different pH were studied by analyzing residual activity of the recombinant enzyme over time at 40 °C whereas conformational changes and stability dependence were investigated by using circular dichroism and differential scanning calorimetry. Four osmolytes viz. glycerol, sucrose, trehalose and sorbitol were explored for their effect on the deactivation and melting temperatures of the enzyme under neutral and extreme pH conditions. The enzyme was found to be catalytically and structurally stable at pH 7.0 with half-life of 250 min and a melting temperature of 50 °C. It was found that alteration in both secondary and tertiary structures caused enzyme deactivation in acidic pH while increased deactivation rates at alkaline pH was attributed to the variation of tertiary structure over time. Estimated thermodynamic parameters also showed that the enzyme stability was highest at neutral pH with ΔH of 348 kcal/mole and ΔG40 of 9.53 kcal/mole. All four osmolytes were effective in enhancing enzyme stability by several folds at extreme pH with sorbitol being the most efficient, which increased enzyme half-life by 11-fold at pH 10.0 and 8-fold at pH 5.0.


Assuntos
Aldeído Redutase/química , Osmose/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Saccharomycetales/enzimologia , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Termodinâmica
12.
Bioorg Med Chem ; 28(15): 115575, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32631572

RESUMO

Therapeutic interventions with aldose reductase inhibitors appear to be a promising approach to major pathological conditions (i.e. neuropathy/angiopathy related to chronic hyperglycemia, chronic inflammation and cancer). Until now, the most potent aldose reductase inhibitors have been carboxylic acid derivatives, which poorly permeate biological membranes. In this work, continuing our previous works, we promote the bioisosteric replacement of the carboxylic acid moiety to make equally potent yet more druggable inhibitors.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/química , Indóis/química , Fenóis/química , Sulfonas/química , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Animais , Domínio Catalítico , Desenho de Fármacos , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Indóis/síntese química , Indóis/metabolismo , Simulação de Acoplamento Molecular , Fenóis/síntese química , Fenóis/metabolismo , Ligação Proteica , Ratos , Sulfonas/síntese química , Sulfonas/metabolismo
13.
Bioorg Chem ; 97: 103640, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086051

RESUMO

Inhibitors of aldose reductase are rate-limiting enzymes and could play a key role to prevent the complications of diabetes. In our attempt to develop novel inhibitors of aldose reductase, the derivatives of rhodanine-3-hippuric acid-pyrazole hybrid were synthesized and characterised by spectral data. The biological studies reveal that all the compounds show an excellent activity against ALR2 with IC50 values ranging from 0.04 to 1.36 µM. Among these the synthesised compounds 6a-m, 6g and 6e showed specific inhibitory activity with IC50 values of 0.04 and 0.06 µM respectively against ALR2 and found to be more potent than epalrestat (IC50 = 0.87 µM), the only aldose reductase inhibitor currently used in the therapy. Molecular docking analysis using the AR-NADP+ complex as a receptor was performed with all the synthesized compounds. All the compounds exhibit a well-defined binding mode within the AR active site, similarly to previous described AR inhibitors, with the anion head group bound to the catalytic center, blocking thus its activity. By forming hydrogen bonds with Tyr48 and His110 of the protein from ALR2 (PDB ID: 2FZD), the compounds 6g and 6e interrupt the proton donation mechanism, which is necessary for the catalytic activity of ALR2.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Rodanina/análogos & derivados , Rodanina/farmacologia , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Hipuratos/química , Hipuratos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
14.
Bioprocess Biosyst Eng ; 43(12): 2153-2163, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32627063

RESUMO

Apple pomace was studied as a raw material for the production of xylitol and 2G ethanol, since this agroindustrial residue has a high concentration of carbohydrate macromolecules, but is still poorly studied for the production of fermentation bioproducts, such as polyols. The dry biomass was subjected to dilute-acid hydrolysis with H2SO4 to obtain the hemicellulosic hydrolysate, which was concentrated, detoxified and fermented. The hydrolyzate after characterization was submitted to submerged fermentations, which were carried out in Erlenmeyer flasks using, separately, the yeasts Candida guilliermondii and Kluyveromyces marxianus. High cellulose (32.62%) and hemicellulose (23.60%) contents were found in this biomass, and the chemical hydrolysis yielded appreciable quantities of fermentable sugars, especially xylose. Both yeasts were able to metabolize xylose, but Candida guilliermondii produced only xylitol (9.35 g L-1 in 96 h), while K. marxianus produced ethanol as the main product (10.47 g L-1 in 24 h) and xylitol as byproduct (9.10 g L-1 xylitol in 96 h). Maximum activities of xylose reductase and xylitol dehydrogenase were verified after 24 h of fermentation with C. guilliermondii (0.23 and 0.53 U/mgprot, respectively) and with K. marxianus (0.08 e 0.08 U/mgprot, respectively). Apple pomace has shown potential as a raw material for the fermentation process, and the development of a biotechnological platform for the integrated use of both the hemicellulosic and cellulosic fraction could add value to this residue and the apple production chain.


Assuntos
Biotecnologia/métodos , Etanol/química , Malus/metabolismo , Xilitol/química , Aldeído Redutase/química , Biomassa , Reatores Biológicos , Candida , Celulose/metabolismo , D-Xilulose Redutase/química , Fermentação , Glucose/metabolismo , Hidrólise , Kluyveromyces , Polímeros/química , Polissacarídeos/química , Saccharomycetales , Fatores de Tempo , Xilose/metabolismo
15.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158254

RESUMO

As rate-limited enzyme of polyol pathway, aldose reductase (ALR2) is one of the key inhibitory targets for alleviating diabetic complications. To reduce the toxic side effects of the inhibitors and to decrease the level of oxidative stress, the inhibitory selectivity towards ALR2 against detoxicating aldehyde reductase (ALR1) and antioxidant activity are included in the design of multifunctional ALR2 inhibitors. Hydroxypyridinone derivatives were designed, synthesized and evaluated their inhibitory behavior and antioxidant activity. Notably, {2-[2-(3,4-dihydroxy-phenyl)-vinyl]-5-hydroxy-4-oxo-4H-pyridin-1-yl}-acetic acid (7l) was the most potent, with IC50 values of 0.789 µM. Moreover, 7l showed excellent selectivity towards ALR2 with selectivity index 25.23, which was much higher than that of eparlestat (17.37), the positive control. More significantly, 7l performed powerful antioxidative action. At a concentration of 1 µM, phenolic compounds 7l scavenged DPPH radical with an inhibitory rate of 41.48%, which was much higher than that of the well-known antioxidant Trolox, at 11.89%. Besides, 7l remarkably suppressed lipid peroxidation with a rate of 88.76% at a concentration of 100 µM. The binding mode derived from molecular docking proved that the derivatives were tightly bound to the activate site, suggesting strongly inhibitory action of derivatives against ALR2. Therefore, these results provided an achievement of multifunctional ALR2 inhibitors capable with potency for both selective ALR2 inhibition and as antioxidants.


Assuntos
Acetatos , Aldeído Redutase , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Acetatos/síntese química , Acetatos/química , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
16.
Molecules ; 25(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322431

RESUMO

Diabetes is a major health problem that is associated with high risk of various complications. Medicinal plants hold great promise against diabetes. The traditional use of Cleome droserifolia as an antidiabetic agent was correlated to its flavonol glycosides content. In the current study, five major flavonol glycosides appeared on the RP-HPLC chromatogram of the aqueous extract namely; quercetin-3-O-ß-d-glucosyl-7-O-α-rhamnoside (1), isorhamnetin-7-O-ß-neohesperidoside (2), isorhamnetin-3-O-ß-d-glucoside (3) kaempferol-4'-methoxy-3,7-O-α-dirhamnoside (4), and isorhamnetin-3-O-α-(4″-acetylrhamnoside)-7-O-α-rhamnoside (5). The inhibitory activities of these compounds were tested in vitro against several enzymes involved in diabetes management. Only the relatively less polar methoxylated flavonol glycosides (4, 5) showed mild to moderate α-amylase and α-glucosidase inhibitory activities. Compounds 1-4 displayed remarkable inhibition of dipeptidyl peptidase IV (DPPIV) enzyme (IC50 0.194 ± 0.06, 0.573 ± 0.03, 0.345 ± 0.02 and 0.281 ± 0.05 µg/mL, respectively) comparable to vildagliptin (IC50 0.154 ± 0.02 µg/mL). Moreover, these compounds showed high potential in preventing diabetes complications through inhibiting aldose reductase enzyme and combating oxidative stress. Both isorhamnetin glycoside derivatives (2, 3) exhibited the highest activities in aldose reductase inhibition and compound 2 (IC50 5.45 ± 0.26 µg/mL) was even more potent than standard quercetin (IC50 7.77 ± 0.43 µg/mL). Additionally, these flavonols exerted excellent antioxidant capacities through 2, 2-diphenyl-1-picrylhydrazil (DPPH) and ferric reducing antioxidant (FRAP) assays.


Assuntos
Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química , Glicosídeos/farmacologia , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Antioxidantes/química , Compostos de Bifenilo/química , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão , Cleome , Desenho de Fármacos , Sequestradores de Radicais Livres , Humanos , Hipoglicemiantes , Técnicas In Vitro , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estresse Oxidativo , Picratos/química , Vildagliptina/farmacologia , alfa-Amilases/química , alfa-Glucosidases/metabolismo
17.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101612

RESUMO

Many aldehydes, such as furfural, are present in high quantities in lignocellulose lysates and are fermentation inhibitors, which makes biofuel production from this abundant carbon source extremely challenging. Cbei_3974 has recently been identified as an aldo-keto reductase responsible for partial furfural resistance in Clostridium beijerinckii Rational engineering of this enzyme could enhance the furfural tolerance of this organism, thereby improving biofuel yields. We report an extensive characterization of Cbei_3974 and a single-crystal X-ray structure of Cbei_3974 in complex with NADPH at a resolution of 1.75 Å. Docking studies identified residues involved in substrate binding, and an activity screen revealed the substrate tolerance of the enzyme. Hydride transfer, which is partially rate limiting under physiological conditions, occurs from the pro-R hydrogen of NADPH. Enzyme isotope labeling revealed a temperature-independent enzyme isotope effect of unity, indicating that the enzyme does not use dynamic coupling for catalysis and suggesting that the active site of the enzyme is optimally configured for catalysis with the substrate tested.IMPORTANCE Here we report the crystal structure and biophysical properties of an aldehyde reductase that can detoxify furfural, a common inhibitor of biofuel fermentation found in lignocellulose lysates. The data contained here will serve as a guide for protein engineers to develop improved enzyme variants that would impart furfural resistance to the microorganisms used in biofuel production and thus lead to enhanced biofuel yields from this sustainable resource.


Assuntos
Aldeído Redutase/química , Proteínas de Bactérias/química , Clostridium beijerinckii/química , Furaldeído/metabolismo , Aldeído Redutase/metabolismo , Proteínas de Bactérias/metabolismo , Clostridium beijerinckii/enzimologia , Inativação Metabólica
18.
Bioorg Med Chem ; 27(8): 1658-1669, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30858026

RESUMO

A series of quinoxalinone scaffold-based acyl sulfonamides were designed as aldose reductase inhibitors and evaluated for aldose reductase (ALR2)/aldehyde reductase (ALR1) inhibition and antioxidation. Compounds 9b-g containing styryl side chains at C3-side exhibited good ALR2 inhibitory activity and selectivity. Of them, 9g demonstrated the most potent inhibitory activity with an IC50 value of 0.100 µM, and also exhibited excellent antioxidant activity, even comparable to the typical antioxidant Trolox. Compounds 9 had higher lipid-water partition coefficients relative to the carboxylic acid compounds 8, indicating that they may have better lipophilicity and membrane permeability. Structure-activity relationship (SAR) studies found that acyl trifluoromethanesulfonamide group at N1 and the C3-dihydroxystyryl side chain were the key structure for improving the aldose reductase inhibitory activity and antioxidant activity.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Quinoxalinas/química , Quinoxalinas/farmacologia , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia
19.
Bioorg Chem ; 87: 857-866, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30551808

RESUMO

Aldose reductase is an important enzyme in the polyol pathway, where glucose is converted to fructose, and sorbitol is released. Aldose reductase activity increases in diabetes as the glucose levels increase, resulting in increased sorbitol production. Sorbitol, being less cell permeable tends to accumulate in tissues such as eye lenses, peripheral nerves and glomerulus that are not insulin sensitive. This excessive build-up of sorbitol is responsible for diabetes associated complications such as retinopathy and neuropathy. In continuation of our interest to design and discover potent inhibitors of aldo-keto reductases (AKRs; aldehyde reductase ALR1 or AKR1A, and aldose reductase ALR2 or AKR1B), herein we designed and investigated a series of new benzoxazinone-thiosemicarbazones (3a-r) as ALR2 and ALR1 inhibitors. Most compounds exhibited excellent inhibitory activities with IC50 values in lower micro-molar range. Compounds 3b and 3l were found to be most active ALR2 inhibitors with IC50 values of 0.52 ±â€¯0.04 and 0.19 ±â€¯0.03 µM, respectively, both compounds were more effective inhibitors as compared to the standard ALR2 inhibitor (sorbinil, with IC50 value of 3.14 ±â€¯0.02 µM).


Assuntos
Aldeído Redutase/antagonistas & inibidores , Benzoxazinas/farmacologia , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Benzoxazinas/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Estrutura Molecular , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 20(1)2019 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30621365

RESUMO

While in search of an enzyme for the conversion of xylose to xylitol at elevated temperatures, a xylose reductase (XR) gene was identified in the genome of the thermophilic fungus Chaetomium thermophilum. The gene was heterologously expressed in Escherichia coli as a His6-tagged fusion protein and characterized for function and structure. The enzyme exhibits dual cofactor specificity for NADPH and NADH and prefers D-xylose over other pentoses and investigated hexoses. A homology model based on a XR from Candida tenuis was generated and the architecture of the cofactor binding site was investigated in detail. Despite the outstanding thermophilicity of its host the enzyme is, however, not thermostable.


Assuntos
Aldeído Redutase/química , Aldeído Redutase/metabolismo , Chaetomium/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Coenzimas/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/isolamento & purificação , Meia-Vida , Concentração de Íons de Hidrogênio , Cinética , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA