Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.373
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Metab Brain Dis ; 39(4): 589-609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351421

RESUMO

This study aimed to investigate the action of two different formulations of curcumin (Cur)-loaded nanocapsules (Nc) (Eudragit [EUD] and poly (ɛ-caprolactone) [PCL]) in an amnesia mice model. We also investigated the formulations' effects on scopolamine-induced (SCO) depressive- and anxiety-like comorbidities, the cholinergic system, oxidative parameters, and inflammatory markers. Male Swiss mice were randomly divided into five groups (n = 8): group I (control), group II (Cur PCL Nc 10 mg/kg), group III (Cur EUD Nc 10 mg/kg), group IV (free Cur 10 mg/kg), and group V (SCO). Treatments with Nc or Cur (free) were performed daily or on alternate days. After 30 min of treatment, the animals received the SCO and were subjected to behavioral tests 30 min later (Barnes maze, open-field, object recognition, elevated plus maze, tail suspension tests, and step-down inhibitory avoidance tasks). The animals were then euthanized and tissue was removed for biochemical assays. Our results demonstrated that Cur treatment (Nc or free) protected against SCO-induced amnesia and depressive-like behavior. The ex vivo assays revealed lower acetylcholinesterase (AChE) and catalase (CAT) activity, reduced thiobarbituric species (TBARS), reactive species (RS), and non-protein thiols (NSPH) levels, and reduced interleukin-6 (IL-6) and tumor necrosis factor (TNF) expression. The treatments did not change hepatic markers in the plasma of mice. After treatments on alternate days, Cur Nc had a more significant effect than the free Cur protocol, implying that Cur may have prolonged action in Nc. This finding supports the concept that it is possible to achieve beneficial effects in nanoformulations, and treatment on alternate days differs from the free Cur protocol regarding anti-amnesic effects in mice.


Assuntos
Amnésia , Curcumina , Modelos Animais de Doenças , Nanocápsulas , Animais , Curcumina/farmacologia , Curcumina/administração & dosagem , Curcumina/uso terapêutico , Camundongos , Masculino , Amnésia/tratamento farmacológico , Amnésia/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Escopolamina
2.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612521

RESUMO

The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.


Assuntos
Di-Hidroergotamina , Escopolamina , Animais , Ratos , Histamina , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Encéfalo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Antagonistas dos Receptores H2 da Histamina
3.
Molecules ; 29(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39339395

RESUMO

This current study aims to analyze the potential bioactivities possessed by the enzymatic hydrolysates of commercial bovine, porcine, and tilapia gelatins using bioinformatics in combination with in vitro and in vivo studies. The hydrolysate with superior inhibition of angiotensin converting enzyme (ACE) activity was used to treat the D-galactose (DG)-induced amnesic mice. In silico digestion of the gelatins led to the identification of peptide sequences with potential antioxidant, ACE-inhibitory, and anti-amnestic properties. The results of in vitro digestion revealed that the <1 kDa peptide fraction of porcine gelatin hydrolysate obtained after 1 h digestion with papain (PP) (PP1, <1 kDa) potently inhibited ACE, acetylcholinesterase, and prolyl endopeptidase activities at 87.42%, 21.24%, and 48.07%, respectively. Administering the PP1 to DG-induced amnesic mice ameliorated the spatial cognitive impairment and Morris water maze learning abilities. The dentate area morphology in the PP1-treated mice was relatively similar to the control group. In addition, PP1 enhanced the antioxidant capacity in the DG-induced amnesic mice. This study suggests that PP1 could serve as a potential treatment tool against oxidative stress, hypertension, and neurodegenerative diseases.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Antioxidantes , Gelatina , Animais , Gelatina/química , Camundongos , Antioxidantes/farmacologia , Antioxidantes/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Papaína/metabolismo , Suínos , Acetilcolinesterase/metabolismo , Bovinos , Simulação por Computador , Aprendizagem em Labirinto/efeitos dos fármacos , Masculino , Galactose/química , Amnésia/tratamento farmacológico , Amnésia/induzido quimicamente , Hidrólise
4.
Metab Brain Dis ; 38(4): 1261-1272, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36735154

RESUMO

The blackberry (Rubus sp.) is a popular fruit that has a high concentration of phenolic compounds. Pharmacological investigations have demonstrated the important biological activities of the blackberry extract, such as neuroprotective actions. This study aimed to evaluate the effects of blackberry extract on memory and neurochemical parameters in rats subjected to scopolamine (SCO)-induced amnesia. Male rats were divided into five groups: I, control (saline); II, SCO; III, SCO + Rubus sp. (100 mg/kg); IV, SCO + Rubus sp. (200 mg/kg); and V, SCO + donepezil (5 mg/kg). Blackberry extract and donepezil were orally administered for 10 days. On day 11, group I received saline, and groups II, III, IV, and V received SCO (1 mg/kg) intraperitoneally after object recognition behavioral training. Twenty-four hours after the training session, animals were subjected to an object recognition test. Finally, the animals were euthanized, and the cerebral cortex, hippocampus, and cerebellum were collected to evaluate the oxidative stress and acetylcholinesterase (AChE) activity. Rubus sp. extract prevented memory impairment induced by SCO in a manner similar to that of donepezil. Additionally, Rubus sp. extract and donepezil prevented the increase in AChE activity induced by SCO in all the evaluated brain structures. SCO induced oxidative damage in the cerebral cortex, hippocampus, and cerebellum, which was prevented by Rubus sp. and donepezil. Our results suggest that the antioxidant and anticholinesterase activities of Rubus sp. are associated with memory improvement; hence, it can potentially be used for the treatment of neurodegenerative diseases.


Assuntos
Rubus , Ratos , Masculino , Animais , Rubus/metabolismo , Acetilcolinesterase/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/prevenção & controle , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/induzido quimicamente , Escopolamina/farmacologia , Hipocampo/metabolismo , Córtex Cerebral/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Cerebelo/metabolismo , Aprendizagem em Labirinto
5.
Drug Dev Ind Pharm ; 49(2): 240-247, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37032647

RESUMO

OBJECTIVE: The purpose of the study is to assess the bioavailability and neuroprotective effect of hesperetin (Hesp)-loaded nanofibers. METHODS: Electrospinning was used to create and characterize polyvinyl pyrrolidone-based Hesp-loaded nanofibers. To evaluate the produced nanofibers, preclinical studies were conducted. The study involved five groups of Wistar rats, and the treatments were administered as follows. Group 1 (control) was given regular saline for 14 d. On the 14th day, Group 2 was given scopolamine. Group 3 was given donepezil for 14 d and then scopolamine on the 14th. Group 4 was given Hesp for 14 d and then scopolamine on the 14th. Group 5 was given Hesp-loaded nanofibers for 14 d, followed by scopolamine on the 14th. On the 14th day, rats' memory was tested using Cook's pole climbing apparatus and the Morris water maze (MWM). On the 15th day, rats from each group were slaughtered, brain tissues were separated, and biochemical and histological analyses were performed. In addition, in vitro dissolution experiments and pharmacokinetic studies were carried out. RESULTS: When compared to the control group, scopolamine-treated rats had considerably longer escape latency times, as well as increased acetylcholinesterase (AChE) activity, lipid peroxidation, degeneration, and inflammation in the hippocampus. These parameters were greatly recovered by donepezil and Hesp-loaded nanofibers that had been pretreated. Because of the greatly improved bioavailability of Hesp, the Hesp-loaded nanofibers significantly protected rats from scopolamine-induced amnesia. CONCLUSIONS: Hesp-loaded nanofibers have an excellent neuroprotective effect against scopolamine-induced amnesia due to enhanced bioavailability.


Assuntos
Nanofibras , Fármacos Neuroprotetores , Ratos , Animais , Donepezila/farmacologia , Fármacos Neuroprotetores/farmacologia , Ratos Wistar , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Acetilcolinesterase/uso terapêutico , Disponibilidade Biológica , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Escopolamina/efeitos adversos , Aprendizagem em Labirinto
6.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628900

RESUMO

The role of histamine H3 receptors (H3Rs) in memory and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer's disease (AD), is well-accepted. Therefore, the procognitive effects of acute systemic administration of H3R antagonist E169 (2.5-10 mg/kg, i.p.) on MK801-induced amnesia in C57BL/6J mice using the novel object recognition test (NORT) were evaluated. E169 (5 mg) provided a significant memory-improving effect on MK801-induced short- and long-term memory impairments in NORT. The E169 (5 mg)-provided effects were comparable to those observed with the reference phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and were abrogated with the H3R agonist (R)-α-methylhistamine (RAMH). Additionally, our results demonstrate that E169 ameliorated MK801-induced memory deficits by antagonism of H3Rs and by modulation of the level of disturbance in the expression of PI3K, Akt, and GSK-3ß proteins, signifying that E169 mitigated the Akt-mTOR signaling pathway in the hippocampus of tested mice. Moreover, the results observed revealed that E169 (2.5-10 mg/kg, i.p.) did not alter anxiety levels and locomotor activity of animals in open field tests, demonstrating that performances improved following acute systemic administration with E169 in NORT are unrelated to changes in emotional response or in spontaneous locomotor activity. In summary, these obtained results suggest the potential of H3R antagonists such as E169, with good in silico physicochemical properties and stable retained key interactions in docking studies at H3R, in simultaneously modulating disturbed brain neurotransmitters and the imbalanced Akt-mTOR signaling pathway related to neurodegenerative disorders, e.g., AD.


Assuntos
Doença de Alzheimer , Antagonistas dos Receptores Histamínicos H3 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Maleato de Dizocilpina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinase , Serina-Treonina Quinases TOR , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Transdução de Sinais , Cognição
7.
Bull Exp Biol Med ; 175(4): 427-432, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37768459

RESUMO

The participation of DNA methylation processes in the mechanisms of anterograde and retrograde amnesia caused by impaired reconsolidation of conditioned food aversion memory by NMDA glutamate receptor antagonists or serotonin receptor antagonists, respectively, were studied on grape snails. Anterograde amnesia was characterized by impaired formation of long-term memory during repeated learning. Administration of a DNA methyltransferase (DNMT) inhibitor to amnestic animals resulted in accelerated formation of long-term memory during 1 day of repetitive training vs 3 days during initial training. In serotonin-dependent retrograde amnesia, repeated learning without DNMT inhibitor administration or after inhibitor injections led to the formation of long-term memory. The dynamics of memory formation was similar in both cases and did not differ from that during the initial training: the memory was formed within 3 days of training. Thus, epigenetic processes of DNA methylation are selectively involved in the mechanisms of anterograde amnesia, but do not participate in the mechanisms of retrograde amnesia.


Assuntos
Amnésia Anterógrada , Animais , Metilação de DNA , Amnésia Retrógrada/genética , Amnésia/induzido quimicamente , Amnésia/genética , Inibidores Enzimáticos , Epigênese Genética
8.
Neurobiol Learn Mem ; 192: 107638, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595026

RESUMO

Understanding the neurobiological mechanisms of drug-related learning and memory formation may help the treatment of cognitive disorders. Dysfunction of the cannabinoid and serotonergic systems has been demonstrated in learning and memory disorders. The present paper investigates the phenomenon called state-dependent memory (SDM) induced by ACPA (a selective cannabinoid CB1 receptor agonist) and 8-OH-DPAT (a nonselective 5-HT1A receptor agonist) with special focus on the role of the 5-HT1A receptor in the effects of both ACPA and 8-OH-DPAT SDM and cross state-dependent memory retrieval between ACPA and 8-OH-DPAT in a step-down inhibitory avoidance task. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated, and all drugs were microinjected into the intended injection sites. A single-trial step-down inhibitory avoidance task was used to assess memory retrieval and state-dependence. Post-training and/or pre-test microinjections of ACPA (1 and 2 ng/mouse) and 8-OH-DPAT (0.5 and 1 µg/mouse) dose-dependently induced amnesia. Pre-test administration of the same doses of ACPA and 8-OH-DPAT reversed the post-training ACPA- and 8-OH-DPAT-induced amnesia, respectively. This phenomenon has been named SDM. 8-OH-DPAT (1 µg/mouse) reversed the amnesia induced by ACPA (0.5, 1, and 2 ng/mouse) and induced ACPA SDM. ACPA (2 ng/mouse) reversed the amnesia induced by 8-OH-DPAT (0.25, 0.5, and 1 µg/mouse) and induced 8-OH-DPAT SDM. Pre-test administration of a 5-HT1A receptor antagonist, (S)-WAY 100,135 (0.25 and 0.5 µg/mouse), 5 min before ACPA and 8-OH-DPAT dose-dependently inhibited ACPA- and 8-OH-DPAT-induced SDM, respectively. The present study results demonstrated ACPA- and 8-OH-DPAT- induced SDM. Overall, the data revealed that dorsal hippocampal 5-HT1A receptor mechanisms play a pivotal role in modulating cross state-dependent memory retrieval between ACPA and 8-OH-DPAT.


Assuntos
Canabinoides , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Amnésia/induzido quimicamente , Animais , Aprendizagem da Esquiva , Agonistas de Receptores de Canabinoides/farmacologia , Hipocampo , Masculino , Camundongos , Receptor CB1 de Canabinoide , Receptor 5-HT1A de Serotonina
9.
Neurochem Res ; 47(8): 2357-2372, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35618945

RESUMO

The current study aimed to examine the effect of post-weaning treatment with probiotics on memory formation under stress during the adult period in male Wistar rats. Considering GABA is a potential mediator between probiotics and the host, the present study also investigated the involvement of the GABAergic system in the probiotic response. The hippocampal and prefrontal cortical (PFC) expression levels of BDNF and c-Fos were also assessed to show whether the treatments affect the memory-related signaling pathway. Three weeks after birth, the post-weaning rats were fed with probiotic water (PW) or tap water (TW) for 2, 3, 4, or 5 weeks. Exposure to acute stress impaired memory formation in a passive avoidance learning task. Feeding the post-weaning animals with probiotic strains (3, 4, or 5 weeks) inhibited stress-induced amnesia of the adult period. Post-training intracerebroventricular (ICV) microinjection of muscimol improved stress-induced amnesia in the animals fed with TW. ICV microinjection of muscimol inhibited probiotic treatment's significant effect on the stress response in the memory task. The expression levels of BDNF and c-Fos in the PFC and the hippocampus were significantly decreased in the stress animal group. The levels of BDNF and c-Fos were increased in the PW/stress animal group. The muscimol response was compounded with the decreased levels of BDNF and c-Fos in the PFC and the hippocampus. Thus, the GABA-A receptor mechanism may mediate the inhibitory effect of this probiotic mixture on stress-induced amnesia, which may be associated with the PFC and hippocampal BDNF/c-Fos signaling changes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Probióticos , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/prevenção & controle , Animais , Aprendizagem da Esquiva , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Masculino , Muscimol/farmacologia , Probióticos/farmacologia , Probióticos/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Água/metabolismo , Desmame
10.
Alcohol Clin Exp Res ; 46(8): 1497-1514, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35702924

RESUMO

BACKGROUND: Alcohol-induced blackouts describe memory loss resulting from alcohol consumption. Approximately half of college students report experiencing a blackout in their lifetime. Blackouts are associated with an increased risk for negative consequences, including serious injury. Research has documented two types of blackouts, en bloc (EB) and fragmentary (FB). However, research is limited by the lack of a validated measure that differentiates between these two forms of blackout. This study used a mixed-methods approach to improve the assessment of FB and EB among young adults. Specifically, we sought to improve the existing Alcohol-Induced Blackout Measure (ABOM), which was derived from a relatively small pool of items that did not distinguish FB from EB. METHODS: Study 1 used three rounds of cognitive interviewing with U.S. college students (N = 31) to refine existing assessment items. Nineteen refined blackout items were retained for Study 2. Study 2 used face validity, factor analysis, item response theory, and external validation analyses to test the two-factor blackout model among U.S. heavy-drinking college students (N = 474) and to develop and validate a new blackout measure (ABOM-2). RESULTS: Iterative factor analyses demonstrated that the items were well represented by correlated EB and FB factors, consistent with our hypothesis. External validation analyses demonstrated convergent and discriminant validity. These analyses also provided preliminary evidence for the two factors having differential predictive validity (e.g., FB correlated with enhancement drinking motives, while EB correlated with coping and conformity motives). CONCLUSIONS: The Alcohol-Induced Blackout Measure-2 (ABOM-2) improves the measurement of blackout experiences among college students. Its use could facilitate the examination of EB and FB as differential predictors of alcohol-related outcomes in future studies.


Assuntos
Amnésia Anterógrada , Estudantes , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/psicologia , Amnésia/induzido quimicamente , Etanol/efeitos adversos , Humanos , Motivação , Estudantes/psicologia , Universidades , Adulto Jovem
11.
Metab Brain Dis ; 37(7): 2521-2532, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895244

RESUMO

Genistein (GE) or 4',5,7-trihydroxyflavone, a plant derived isoflavone, is a biologically active compound having several beneficial properties. Studies showed that GE possesses anti-neoplastic, anti-tumor, anti-helminthic, anti-oxidant, and anti-inflammatory activities. Herein, we investigated the neuroprotective effects of GE in a mouse model of hypoxia-induced amnesia. Mice were exposed to hypoxic conditions (10% O2) in a designated hypoxia chamber and co-treated with GE (10, 20, or 30 mg/kg) for 4 weeks. Following this, behavioral tests were performed to evaluate memory performance. We assessed microglial activation in the hippocampus, amygdala, and pre-frontal cortex (PFC) regions by evaluating the Iba-1 and GFAP transcript levels, and MIP-1ß, Cox-2, and IL6 protein levels. Apoptosis was assessed by evaluating Bax, BAD, and Bcl-2 mRNA levels, and caspase-3 activity. To uncover the underlying molecular mechanism, we evaluated the levels of Nrf2, HO-1, and NQO1 in different brain regions of mice from all groups. Results showed that hypoxia-exposed mice have reduced performance in the behavioral tests and GE treatment enhanced the memory performance in hypoxia-exposed mice. Moreover, hypoxia-exposed mice showed increased expression of microglial activation markers and enhanced apoptosis in the hippocampus, amygdala, and PFC. GE treatment suppressed microglial activation and prevented apoptosis in the brain of hypoxia-exposed mice. Furthermore, hypoxia-exposure reduced the expression of Nrf2, NQO1, and HO-1 while GE treatment ameliorated this decrease in different regions of hypoxia-exposed mice brain. In conclusion, GE prevents cognitive dysfunction by suppressing microglial activation and inhibiting apoptosis in the hypoxia-exposed mice brain.


Assuntos
Genisteína , Fármacos Neuroprotetores , Animais , Camundongos , Genisteína/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Interleucina-6/metabolismo , Antioxidantes/farmacologia , Caspase 3/metabolismo , Microglia/metabolismo , Ciclo-Oxigenase 2/metabolismo , Quimiocina CCL4/metabolismo , Proteína X Associada a bcl-2/metabolismo , Amnésia/induzido quimicamente , Apoptose , Encéfalo/metabolismo , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , RNA Mensageiro
12.
BMC Biol ; 19(1): 17, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33499865

RESUMO

BACKGROUND: Long-term memory formation is generally assumed to involve the permanent storage of recently acquired memories, making them relatively insensitive to disruption, a process referred to as memory consolidation. However, when retrieved under specific circumstances, consolidated fear memories are thought to return to a labile state, thereby opening a window for modification (e.g., attenuation) of the memory. Several interventions during a critical time frame after this destabilization seem to be able to alter the retrieved memory, for example by pharmacologically interfering with the restabilization process, either by direct protein synthesis inhibition or indirectly, using drugs that can be safely administered in patients (e.g., propranolol). Here, we find that, contrary to expectations, systemic pharmacological manipulations in auditory fear-conditioned rats do not lead to drug-induced post-retrieval amnesia. RESULTS: In a series of well-powered auditory fear conditioning experiments (four with propranolol, 10 mg/kg, two with rapamycin, 20-40 mg/kg, one with anisomycin, 150 mg/kg and cycloheximide, 1.5 mg/kg), we found no evidence for reduced cued fear memory expression during a drug-free test in adult male Sprague-Dawley rats that had previously received a systemic drug injection upon retrieval of the tone fear memory. All experiments used standard fear conditioning and reactivation procedures with freezing as the behavioral read-out (conceptual or exact replications of published reports) and common pharmacological agents. Additional tests confirmed that the applied drug doses and administration routes were effective in inducing their conventional effects on expression of fear (propranolol, acutely), body weight (rapamycin, anisomycin, cycloheximide), and consolidation of extinction memories (cycloheximide). CONCLUSIONS: In contrast with previously published studies, we did not find evidence for drug-induced post-retrieval amnesia, underlining that this effect, as well as its clinical applicability, may be considerably more constrained and less readily reproduced than what the current literature would suggest.


Assuntos
Amnésia/induzido quimicamente , Percepção Auditiva , Medo/psicologia , Memória/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
13.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458662

RESUMO

Alzheimer's disease is an emerging health disorder associated with cognitive decline and memory loss. In this study, six curcumin analogs (1a−1f) were synthesized and screened for in vitro cholinesterase inhibitory potential. On the basis of promising results, they were further investigated for in vivo analysis using elevated plus maze (EPM), Y-maze, and novel object recognition (NOR) behavioral models. The binding mode of the synthesized compounds with the active sites of cholinesterases, and the involvement of the cholinergic system in brain hippocampus was determined. The synthesized curcumin analog 1d (p < 0.001, n = 6), and 1c (p < 0.01, n = 6) showed promising results by decreasing retention time in EPM, significantly increasing % SAP in Y-maze, while significantly (p < 0.001) enhancing the % discrimination index (DI) and the time exploring the novel objects in NORT mice behavioral models. A molecular docking study using MOE software was used for validation of the inhibition of cholinesterase(s). It has been indicated from the current research work that the synthesized curcumin analogs enhanced memory functions in mice models and could be used as valuable therapeutic molecules against neurodegenerative disorders. To determine their exact mechanism of action, further studies are suggested.


Assuntos
Curcumina , Escopolamina , Acetilcolinesterase/metabolismo , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Animais , Colinérgicos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Colinesterases , Modelos Animais de Doenças , Aprendizagem em Labirinto , Camundongos , Simulação de Acoplamento Molecular , Escopolamina/efeitos adversos
14.
Bull Exp Biol Med ; 172(5): 528-533, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35348960

RESUMO

Impairment of reconsolidation of conditioned food aversion memory led to the development of a specific anterograde amnesia: repeated training of amnestic snails did not induce long-term memory formation. DNA demethylation caused by injections of DNA methyltransferase inhibitor (DNAMT) during repeated training led to long-term memory formation. Injections of an NMDA glutamate receptor antagonist or a serotonin receptor antagonist prevented memory formation induced by administration of DNAMT inhibitor and repeated training. We hypothesize that methylation-dependent repression of neuronal genes underlies anterograde amnesia. Demethylation eliminated the blockade of these genes and created conditions for long-term memory formation, the induction mechanisms of which involve neurotransmitter receptors.


Assuntos
Amnésia Anterógrada , Amnésia/induzido quimicamente , Amnésia/genética , Animais , Aprendizagem da Esquiva , Metilação de DNA , Caracois Helix/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Neurotransmissores
15.
Int J Neuropsychopharmacol ; 24(2): 142-157, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32977336

RESUMO

BACKGROUND: Current therapies in Alzheimer's disease (AD), including Memantine, have proven to be only symptomatic but not curative or disease modifying. Fluoroethylnormemantine (FENM) is a structural analogue of Memantine, functionalized with a fluorine group that allowed its use as a positron emission tomography tracer. We here analyzed FENM neuroprotective potential in a pharmacological model of AD compared with Memantine. METHODS: Swiss mice were treated intracerebroventricularly with aggregated Aß 25-35 peptide and examined after 1 week in a battery of memory tests (spontaneous alternation, passive avoidance, object recognition, place learning in the water-maze, topographic memory in the Hamlet). Toxicity induced in the mouse hippocampus or cortex was analyzed biochemically or morphologically. RESULTS: Both Memantine and FENM showed symptomatic anti-amnesic effects in Aß 25-35-treated mice. Interestingly, FENM was not amnesic when tested alone at 10 mg/kg, contrarily to Memantine. Drugs injected once per day prevented Aß 25-35-induced memory deficits, oxidative stress (lipid peroxidation, cytochrome c release), inflammation (interleukin-6, tumor necrosis factor-α increases; glial fibrillary acidic protein and Iba1 immunoreactivity in the hippocampus and cortex), and apoptosis and cell loss (Bcl-2-associated X/B-cell lymphoma 2 ratio; cell loss in the hippocampus CA1 area). However, FENM effects were more robust than observed with Memantine, with significant attenuations vs the Aß 25-35-treated group. CONCLUSIONS: FENM therefore appeared as a potent neuroprotective drug in an AD model, with a superior efficacy compared with Memantine and an absence of direct amnesic effect at higher doses. These results open the possibility to use the compound at more relevant dosages than those actually proposed in Memantine treatment for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amnésia/tratamento farmacológico , Memantina/análogos & derivados , Memantina/farmacologia , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/prevenção & controle , Amnésia/induzido quimicamente , Amnésia/prevenção & controle , Peptídeos beta-Amiloides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Memantina/administração & dosagem , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Fragmentos de Peptídeos/farmacologia
16.
Hum Psychopharmacol ; 36(3): e2774, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368617

RESUMO

OBJECTIVE: Acute administration of benzodiazepines is considered a pharmacological model of general organic anterograde amnesias (OAA). We sought to determine which type of amnesia these drugs best model by comparing the effects of diazepam with those reported in amnesiacs regarding working memory capacity (WMC), susceptibility to retroactive interference (RI), and accelerated forgetting. METHODS: In this double-blind, parallel-group design study, 30 undergraduates were randomly allocated to acute oral treatments with 15 mg diazepam or placebo. WMC and story recall were assessed pre- and post-treatment. Story presentation was succeeded by 10 min of RI (spotting differences in pictures) or minimal RI (doing nothing in a darkened room). Delayed story recall was assessed under diazepam and 7 days later in a drug-free session to assess accelerated forgetting. RESULTS: Recall of stories encoded under diazepam, whether reactivated or not, was severely impaired (anterograde amnesia). However, diazepam did not impair WMC, increase susceptibility to RI, or accelerate forgetting. CONCLUSIONS: Diazepam's amnestic effects mirror those in patients with probable severe medial temporal damage, mostly restricted to initial consolidation and differ from other OAA (Korsakoff syndrome, frontal, transient epileptic, posttraumatic amnesia, and most progressive amnesias) in terms of WMC, susceptibility to RI and accelerated forgetting.


Assuntos
Amnésia Anterógrada , Amnésia/induzido quimicamente , Amnésia Anterógrada/induzido quimicamente , Amnésia Anterógrada/diagnóstico , Benzodiazepinas/efeitos adversos , Humanos , Memória de Curto Prazo , Rememoração Mental
17.
Metab Brain Dis ; 36(5): 901-910, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651274

RESUMO

Memory disorders are a result of a number of factors, of which elevated brain oxidative stress and acetylcholinesterase (AChE) activity are significant hallmarks. A number of Citrus species have cognition-enhancing capacity mediated by their antioxidant and anti-cholinesterase activities. This study was designed to assess the cognitive-enhancing, antioxidant and anticholinesterase potentials of Citrus reticulata var. kinnow (CR) leaf extracts. CR extracts were examined by bioactivity guided fractionation using in-vitro DPPH and Ellman assays to determine antioxidant and AChE inhibitory capacity. The most active component was further evaluated for memory improvement effects using mouse model of scopolamine induced amnesia. Passive shock avoidance test and elevated plus maze test were employed to determine cognitive functions while brain biochemical parameters were measured to establish the neuroprotective mechanism. The methanol extract (ME) showed marked AChE inhibitory and antioxidant activities, therefore, it was fractionated. Comparative analysis of all obtained fractions revealed that ethylacetate fraction (EAF) was most active. Both ME and EAF improved cognitive dysfunction caused by scopolamine in mice by reducing TBARS levels and brain AChE activity. TLC densitometric studies showed appreciable levels of naringenin in ME (0.32 % w/w) and EAF (1.14 % w/w). The observed memory enhancement effects of ME and EAF could be attributed to their ability to inhibit AChE activity and antioxidant effects due to presence of flavonoids.


Assuntos
Amnésia/tratamento farmacológico , Citrus , Cognição/efeitos dos fármacos , Memória/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Acetilcolinesterase/metabolismo , Amnésia/induzido quimicamente , Amnésia/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Feminino , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Folhas de Planta
18.
ScientificWorldJournal ; 2021: 6649574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994883

RESUMO

Garugapinnata Roxb. (Burseraceae) is a medium-sized tree widely available all over the tropical regions of Asia. Bryophyllum pinnatum (Lam) Oken. (Crassulaceae) is an indigenous and exotic plant grown in tropical regions. Both plants have been used for their anti-inflammatory, antioxidant, anticancer, wound healing, antidiabetic activities, etc. This investigation was designed to explore the result shown by methanolic extract of Garuga pinnata bark and Bryophyllum pinnatum leaves, on cognitive power and retention of the memory in experimental mice along with quantification of phenolic compounds and DPPH radicals neutralizing capacity. The memory-enhancing activity was determined by the elevated plus-maze method in Scopolamine-induced amnesic mice, using Piracetam as allopathic and Shankhpushpi as ayurvedic standard drugs. Two doses (200 and 400 mg/kg p.o.) of both extracts were administered to mice up to 8 consecutive days; transfer latency of individual group was recorded after 45 minutes and memory of the experienced things was examined after 1 day. DPPH assay method and the Folin-Ciocalteu method were employed to determine antioxidant potency and total phenol amount, respectively. 400 mg/kg of the methanolic B. pinnatum bark extract significantly improved memory and learning of mice with transfer latency (TL) of 32.75 s, which is comparable to that of standard Piracetam (21.78 s) and Shankhpushpi (27.83 s). Greater phenolic content was quantified in B. pinnatum bark extract (156.80 ± 0.33 µg GAE/mg dry extract) as well as the antioxidant potency (69.77% of free radical inhibition at the 100 µg/mL concentration). Our study proclaimed the scientific evidence for the memory-boosting effect of both plants.


Assuntos
Amnésia/tratamento farmacológico , Antioxidantes/farmacologia , Burseraceae/química , Kalanchoe/química , Nootrópicos/farmacologia , Compostos Fitoquímicos/farmacologia , Amnésia/induzido quimicamente , Amnésia/fisiopatologia , Animais , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Cognição/efeitos dos fármacos , Cognição/fisiologia , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Nootrópicos/isolamento & purificação , Fenóis/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Picratos/antagonistas & inibidores , Piracetam/farmacologia , Casca de Planta/química , Extratos Vegetais/química , Folhas de Planta/química , Preparações de Plantas/farmacologia , Escopolamina/administração & dosagem
19.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579030

RESUMO

Neuroinflammation plays an essential role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease. Although coumarins have been shown to improve cognitive function in animal models and exert anti-inflammatory effects in cell cultures, the exact mechanism of their neuroprotective effects has not yet been fully elucidated. The present study aimed to investigate the neuroprotective effects of xanthotoxin (furanocoumarin) and umbelliferone (simple coumarin) in lipopolysaccharide-induced cognitive dysfunction in mice. For evaluation memory and learning processes, a passive avoidance test was used. Furthermore, acetylcholinesterase level and impact on the tumor necrosis factor α, interleukin 10 levels in the whole brain, and cyclooxygenase-II in hippocampus was established. Subchronic administration of both coumarins (15 mg/kg) enhanced the learning and memory function, but only the xanthotoxin improved cognitive processes impaired by lipopolysaccharide (0.8 mg/kg) administration. Behavioral results stay in line with acetylcholinesterase level in the brain. A statistically significant decrease in the level of tumor necrosis factor α and cyclooxygenase-II in lipopolysaccharide-treated rodents after coumarins' administration was observed. Together, our findings demonstrate that both coumarins improved cognitive functions, but only xanthotoxin significantly enhanced the learning and memory function and reduced the level of acetylcholinesterase in lipopolysaccharide-treated mice. This effect may suggest that only furanocoumarin-xanthotoxin attenuates neuroinflammation and enhances cholinergic neurotransmission, thus it can be a potential remedy with procognitive potential effective in treatment of neuroinflammatory disease.


Assuntos
Amnésia/tratamento farmacológico , Cognição/efeitos dos fármacos , Metoxaleno/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Umbeliferonas/uso terapêutico , Amnésia/induzido quimicamente , Animais , Lipopolissacarídeos , Locomoção/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos
20.
Molecules ; 26(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066108

RESUMO

Lindera obtusiloba Blume (family, Lauraceae), native to Northeast Asia, has been used traditionally in the treatment of trauma and neuralgia. In this study, we investigated the neuroinflammatory effect of methanol extract of L. obtusiloba stem (LOS-ME) in a scopolamine-induced amnesia model and lipopolysaccharide (LPS)-stimulated BV2 microglia cells. LOS-ME downregulated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, inflammatory cytokines, and inhibited the phosphorylation of nuclear factor kappa-B (NF-ĸB) and extracellular signal-regulated kinase (ERK) in LPS-stimulated BV2 cells. Male C57/BL6 mice were orally administered 20 and 200 mg/kg of LOS-ME for one week, and 2 mg/kg of scopolamine was administered intraperitoneally on the 8th day. In vivo behavioral experiments (Y-maze and Morris water maze test) confirmed that LOS-ME alleviated cognitive impairments induced by scopolamine and the amount of iNOS expression decreased in the hippocampus of the mouse brain. Microglial hyper-activation was also reduced by LOS-ME pretreatment. These findings suggest that LOS-ME might have potential in the treatment for cognitive improvement by regulating neuroinflammation.


Assuntos
Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Anti-Inflamatórios/administração & dosagem , Lindera/química , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fitoterapia/métodos , Extratos Vegetais/administração & dosagem , Escopolamina/efeitos adversos , Animais , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA