Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anesth Analg ; 132(1): 110-118, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32118620

RESUMO

BACKGROUND: Propofol can be measured in exhaled gas. Exhaled and plasma propofol concentrations correlate well, but the relationship with tissue concentrations remains unknown. We thus evaluated the relationship between exhaled, plasma, and various tissue propofol concentrations. Because the drug acts in the brain, we focused on the relationship between exhaled and brain tissue propofol concentrations. METHODS: Thirty-six male Sprague-Dawley rats were anesthetized with propofol, ketamine, and rocuronium for 6 hours. Animals were randomly assigned to propofol infusions at 20, 40, or 60 mg·kg·h (n = 12 per group). Exhaled propofol concentrations were measured at 15-minute intervals by multicapillary column-ion mobility spectrometry. Arterial blood samples, 110 µL each, were collected 15, 30, and 45 minutes, and 1, 2, 4, and 6 hours after the propofol infusion started. Propofol concentrations were measured in brain, lung, liver, kidney, muscle, and fat tissue after 6 hours. The last exhaled and plasma concentrations were used for linear regression analyses with tissue concentrations. RESULTS: The correlation of exhaled versus plasma concentrations (R = 0.71) was comparable to the correlation of exhaled versus brain tissue concentrations (R = 0.75) at the end of the study. In contrast, correlations between plasma and lung and between lung and exhaled propofol concentrations were poor. Less than a part-per-thousand of propofol was exhaled over 6 hours. CONCLUSIONS: Exhaled propofol concentrations correlate reasonably well with brain tissue and plasma concentrations in rats, and may thus be useful to estimate anesthetic drug effect. The equilibration between plasma propofol and exhaled gas is apparently independent of lung tissue concentration. Only a tiny fraction of administered propofol is eliminated via the lungs, and exhaled quantities thus have negligible influence on plasma concentrations.


Assuntos
Anestésicos Intravenosos/metabolismo , Encéfalo/metabolismo , Plasma/metabolismo , Propofol/metabolismo , Anestésicos Intravenosos/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Testes Respiratórios/métodos , Expiração/efeitos dos fármacos , Masculino , Plasma/efeitos dos fármacos , Propofol/administração & dosagem , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
2.
Biochem Biophys Res Commun ; 525(4): 909-914, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171526

RESUMO

Propofol is a clinically important intravenous anesthetic. We previously reported that it directly inhibited 5-lipoxygenase (5-LOX), a key enzyme for leukotriene biosynthesis. Because the hydroxyl group in propofol (propofol 1-hydroxyl) is critical for its anesthetic effect, we examined if its presence would be inevitable for 5-lipoxygenase recognition. Fropofol is developed by substituting the hydroxy group in propofol with fluorine. We found that propofol 1-hydroxyl was important for 5-lipoxygenase recognition, but it was not absolutely necessary. Azi-fropofol bound to 5-LOX at one of the two propofol binding sites of 5-LOX (pocket around Phe-187), suggesting that propofol 1-hydroxyl is important for 5-LOX inhibition at the other propofol binding site (pocket around Val-431). Interestingly, 5-hydroperoxyeicosatetraenoic acid (5-HpETE) production was significantly increased by stimulation with calcium ionophore A23187 in HEK293 cells expressing 5-LOX, suggesting that the fropofol binding site is important for the conversion from 5-HpETE to leukotriene A4. We also indicated that propofol 1-hydroxyl might have contributed to interaction with wider targets among our body.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Propofol/química , Propofol/metabolismo , Anestésicos Intravenosos/química , Anestésicos Intravenosos/metabolismo , Araquidonato 5-Lipoxigenase/química , Araquidonato 5-Lipoxigenase/genética , Ácido Araquidônico/sangue , Sítios de Ligação , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Células HEK293 , Humanos , Leucotrieno B4/metabolismo , Leucotrienos/metabolismo , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/metabolismo , Simulação de Acoplamento Molecular , Mutagênese , Propofol/farmacologia , Conformação Proteica , Relação Estrutura-Atividade
3.
Neurochem Res ; 44(9): 2147-2155, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31385137

RESUMO

Inhibitors of acetylcholinesterase (AChE), which have an important role in the prevention of excessive AChE activity and ß-amyloid (Aß) formation are widely used in the symptomatic treatment of Alzheimer's disease (AD). The inhibitory effect of anesthetic agents on AChE was determined by several approaches, including binding mechanisms, molecular docking and kinetic analysis. Inhibitory effect of intravenous anesthetics on AChE as in vitro and in vivo have been discovered. The midazolam, propofol and thiopental have shown competitive inhibition type (midazolam > propofol > thiopental) and Ki values were found to be 3.96.0 ± 0.1, 5.75 ± 0.12 and 29.65 ± 2.04 µM, respectively. The thiopental and midazolam showed inhibition effect on AChE in vitro, whereas they showed activation effect in vivo when they are combined together. The order of binding of the drugs to the active site of the 4M0E receptor was found to be midazolam > propofol > thiopental. This study on anesthetic agents that are now widely used in surgical applications, have provided a molecular basis for investigating the drug-enzyme interactions mechanism. In addition, the study is important in understanding the molecular mechanism of inhibitors that are effective in the treatment of AD.


Assuntos
Acetilcolinesterase/metabolismo , Anestésicos Intravenosos/farmacologia , Inibidores da Colinesterase/farmacologia , Midazolam/farmacologia , Propofol/farmacologia , Tiopental/farmacologia , Acetilcolinesterase/química , Adulto , Anestésicos Intravenosos/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/metabolismo , Humanos , Cinética , Masculino , Midazolam/metabolismo , Simulação de Acoplamento Molecular , Propofol/metabolismo , Ligação Proteica , Tiopental/metabolismo , Adulto Jovem
4.
Mol Pharmacol ; 93(5): 468-476, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29439087

RESUMO

GABAA receptors activated by the transmitter GABA are potentiated by several allosterically acting drugs, including the intravenous anesthetic propofol. Propofol can also directly activate the receptor, albeit at higher concentrations. Previous functional studies have identified amino acid residues whose substitution reduces potentiation of GABA-activated receptors by propofol while enhancing the ability of propofol to directly activate the receptor. One interpretation of such observations is that the mutation has specific effects on the sites or processes involved in potentiation or activation. We show here that divergent effects on potentiation and direct activation can be mediated by increased constitutive open probability in the mutant receptor without any specific effect on the interactions between the allosteric drug and the receptor. By simulating GABAA receptor activity using the concerted transition model, we demonstrate that the predicted degree of potentiation is reduced as the level of constitutive activity increases. The model further predicts that a potentiating effect of an allosteric modulator is a computable value that depends on the level of constitutive activity, the amplitude of the response to the agonist, and the amplitude of the direct activating response to the modulator. Specific predictions were confirmed by electrophysiological data from the binary α1ß3 and concatemeric ternary ß2α1γ2L+ß2α1 GABAA receptors. The corollaries of reduced potentiation due to increased constitutive activity are isobolograms that conform to simple additivity and a loss of separation between the concentration-response relationships for direct activation and potentiation.


Assuntos
Anestésicos Intravenosos/farmacologia , Mutação , Propofol/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/genética , Regulação Alostérica , Anestésicos Intravenosos/metabolismo , Animais , Células Cultivadas , Sinergismo Farmacológico , Agonistas GABAérgicos/farmacologia , Humanos , Propofol/metabolismo , Receptores de GABA-A/metabolismo , Xenopus , Ácido gama-Aminobutírico/metabolismo
5.
Mol Pharmacol ; 93(2): 178-189, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29192122

RESUMO

GABAA receptors can be directly activated and potentiated by the intravenous anesthetic propofol. Previous photolabeling, modeling, and functional data have identified two binding domains through which propofol acts on the GABAA receptor. These domains are defined by the ß(M286) residue at the ß"+"-α"-" interface in the transmembrane region and the ß(Y143) residue near the ß"-" surface in the junction between the extracellular and transmembrane domains. In the ternary receptor, there are predicted to be two copies of each class of sites, for a total of four sites per receptor. We used ß2α1γ2L and ß2α1 concatemeric constructs to determine the functional effects of the ß(Y143W) and ß(M286W) mutations to gain insight into the number of functional binding sites for propofol and the energetic contributions stemming from propofol binding to the individual sites. A mutation of each of the four sites affected the response to propofol, indicating that each of the four sites is functional in the wild-type receptor. The mutations mainly impaired stabilization of the open state by propofol, i.e., reduced gating efficacy. The effects were similar for mutations at either site and were largely additive and independent of the presence of other Y143W or M286W mutations in the receptor. The two classes of sites appeared to differ in affinity for propofol, with the site affected by M286W having about a 2-fold higher affinity. Our analysis indicates there may be one or two additional functionally equivalent binding sites for propofol, other than those modified by substitutions at ß(Y143) and ß(M286).


Assuntos
Anestésicos Intravenosos/farmacologia , Propofol/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/metabolismo , Animais , Sítios de Ligação , Relação Dose-Resposta a Droga , Ativação do Canal Iônico/efeitos dos fármacos , Mutação , Propofol/administração & dosagem , Propofol/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/genética , Xenopus laevis
6.
Pharm Res ; 35(9): 182, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30062590

RESUMO

PURPOSE: Changes in drug absorption and first-pass metabolism have been reported throughout the pediatric age range. Our aim is to characterize both intestinal and hepatic CYP3A-mediated metabolism of midazolam in children in order to predict first-pass and systemic metabolism of CYP3A substrates. METHODS: Pharmacokinetic (PK) data of midazolam and 1-OH-midazolam from 264 post-operative children 1-18 years of age after oral administration were analyzed using a physiological population PK modelling approach. In the model, consisting of physiological compartments representing the gastro-intestinal tract and liver,intrinsic intestinal and hepatic clearances were estimated to derive values for bioavailability and plasma clearance. RESULTS: The whole-organ intrinsic clearance in the gut wall and liver were found to increase with body weight, with a 105 (95% confidence interval (CI): 5-405) times lower intrinsic gut wall clearance than the intrinsic hepatic clearance (i.e. 5.08 L/h (relative standard error (RSE) 10%) versus 527 L/h (RSE 7%) for a 16 kg individual, respectively). When expressed per gram of organ, intrinsic clearance increases with increasing body weight in the gut wall, but decreases in the liver, indicating that CYP3A-mediated intrinsic clearance and local bioavailability in the gut wall and liver do not change with age in parallel. The resulting total bioavailability was found to be age-independent with a median of 20.8% in children (95%CI: 3.8-50.0%). CONCLUSION: In conclusion, the intrinsic CYP3A-mediated gut wall clearance is substantially lower than the intrinsic hepatic CYP3A-mediated clearance in children from 1 to 18 years of age, and contributes less to the overall first-pass metabolism compared to adults.


Assuntos
Anestésicos Intravenosos/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Midazolam/farmacocinética , Adolescente , Algoritmos , Anestésicos Intravenosos/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Midazolam/metabolismo , Modelos Biológicos
7.
J Neurosci ; 34(6): 2155-9, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24501356

RESUMO

Propofol is an intravenous general anesthetic that alters neuronal excitability by modulating agonist responses of pentameric ligand-gated ion channels (pLGICs). Evidence suggests that propofol enhancement of anion-selective pLGICs is mediated by a binding site between adjacent subunits, whereas propofol inhibition of cation-selective pLGICs occurs via a binding site contained within helices M1-M4 of individual subunits. We considered this idea by testing propofol modulation of homomeric human glycine receptors (GlyRs) and nematode glutamate-gated chloride channels (GluCls) recombinantly expressed in Xenopus laevis oocytes with electrophysiology. The Haemonchus contortus AVR-14B GluCl was inhibited by propofol with an IC50 value of 252 ± 48 µM, providing the first example of propofol inhibition of an anion-selective pLGIC. Remarkably, inhibition was converted to enhancement by a single I18'S substitution in the channel-forming M2 helix (EC50 = 979 ± 88 µM). When a previously identified site between adjacent subunits was disrupted by the M3 G329I substitution, both propofol inhibition and enhancement of GluCls were severely impaired (IC50 and EC50 values could not be calculated). Similarly, when the equivalent positions were examined in GlyRs, the M2 S18'I substitution significantly altered the maximum level of enhancement by propofol, and the M3 A288I substitution abolished propofol enhancement. These data are not consistent with separate binding sites for the opposing effects of propofol. Instead, these data suggest that propofol enhancement and inhibition are mediated by binding to a single site in anion-selective pLGICs, and the modulatory effect on channel gating depends on the M2 18' residue.


Assuntos
Anestésicos Intravenosos/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Propofol/metabolismo , Anestésicos Intravenosos/farmacologia , Animais , Sítios de Ligação/fisiologia , Proteínas de Caenorhabditis elegans/agonistas , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Cristalização , Feminino , Humanos , Canais Iônicos de Abertura Ativada por Ligante/agonistas , Propofol/farmacologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Xenopus laevis
8.
Anesthesiology ; 122(4): 787-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25575161

RESUMO

BACKGROUND: Most anesthetics, particularly intravenous agents such as propofol and etomidate, enhance the actions of the neurotransmitter γ-aminobutyric acid (GABA) at the GABA type A receptor. However, there is no agreement as where anesthetics bind to the receptor. A novel approach would be to identify regions on the receptor that are state-dependent, which would account for the ability of anesthetics to affect channel opening by binding differentially to the open and closed states. METHODS: The open and closed structures of the GABA type A receptor homologues Gloeobacter ligand-gated ion channel and glutamate-gated chloride channel were compared, and regions in the channels that move on channel opening and closing were identified. Docking calculations were performed to investigate possible binding of propofol to the GABA type A ß3 homomer in this region. RESULTS: A comparison between the open and closed states of the Gloeobacter ligand-gated ion channel and glutamate-gated chloride channel channels identified a region at the top of transmembrane domains 2 and 3 that shows maximum movement when the channels transition between the open and closed states. Docking of propofol into the GABA type A ß3 homomer identified two putative binding cavities in this same region, one with a high affinity and one with a lower affinity. Both cavities were adjacent to a histidine residue that has been photolabeled by a propofol analog, and both sites would be disrupted on channel closing. CONCLUSIONS: These calculations support the conclusion of a recent photolabeling study that propofol acts at a site at the interface between the extracellular and transmembrane domains, close to the top of transmembrane domain 2.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Propofol/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Sequência de Aminoácidos , Anestésicos Intravenosos/metabolismo , Animais , Sítios de Ligação/fisiologia , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
9.
Anesthesiology ; 122(1): 72-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25254904

RESUMO

BACKGROUND: Postliver transplantation acute kidney injury (AKI) severely affects patient survival, whereas the mechanism is unclear and effective therapy is lacking. The authors postulated that reperfusion induced enhancement of connexin32 (Cx32) gap junction plays a critical role in mediating postliver transplantation AKI and that pretreatment/precondition with the anesthetic propofol, known to inhibit gap junction, can confer effective protection. METHODS: Male Sprague-Dawley rats underwent autologous orthotopic liver transplantation (AOLT) in the absence or presence of treatments with the selective Cx32 inhibitor, 2-aminoethoxydiphenyl borate or propofol (50 mg/kg) (n = 8 per group). Also, kidney tubular epithelial (NRK-52E) cells were subjected to hypoxia-reoxygenation and the function of Cx32 was manipulated by three distinct mechanisms: cell culture in different density; pretreatment with Cx32 inhibitors or enhancer; Cx32 gene knock-down (n = 4 to 5). RESULTS: AOLT resulted in significant increases of renal Cx32 protein expression and gap junction, which were coincident with increases in oxidative stress and impairment in renal function and tissue injury as compared to sham group. Similarly, hypoxia-reoxygenation resulted in significant cellular injury manifested as reduced cell growth and increased lactate dehydrogenase release, which was significantly attenuated by Cx32 gene knock-down but exacerbated by Cx32 enhancement. Propofol inhibited Cx32 function and attenuated post-AOLT AKI. In NRK-52E cells, propofol reduced posthypoxic reactive oxygen species production and attenuated cellular injury, and the cellular protective effects of propofol were reinforced by Cx32 inhibition but cancelled by Cx32 enhancement. CONCLUSION: Cx32 plays a critical role in AOLT-induced AKI and that inhibition of Cx32 function may represent a new and major mechanism whereby propofol reduces oxidative stress and subsequently attenuates post-AOLT AKI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Conexinas/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Transplante de Fígado/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Propofol/farmacologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Anestésicos Intravenosos/metabolismo , Anestésicos Intravenosos/farmacologia , Animais , Western Blotting/métodos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Conexinas/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transplante de Fígado/métodos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Complicações Pós-Operatórias/genética , Complicações Pós-Operatórias/metabolismo , Propofol/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína beta-1 de Junções Comunicantes
10.
Acta Anaesthesiol Scand ; 59(3): 319-28, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25565144

RESUMO

BACKGROUND: Breath analysis of propofol is a potential noninvasive method for approximating the plasma propofol concentration. There have been various reported techniques for measuring the exhaled propofol concentration at steady state; however, the propofol concentration undergoes marked changes during clinical anesthesia. Therefore, this study investigated the use of membrane inlet-ion mobility spectrometry (MI-IMS) to monitor exhaled propofol discontinuously and continuously during propofol anesthesia. METHODS: The study included 19 patients of American Society of Anesthesiologists physical status I or II. In experiment I (discontinuous study), breath and blood samples were collected discontinuously, with stable target propofol concentrations of 2.8 µg/ml, 3.2 µg/ml, 3.5 µg/ml, and 3.8 µg/ml. In experiment II (continuous study), propofol concentration was maintained at 3.5 µg/ml after induction, and exhaled breath was collected continuously every 3 min during propofol infusion. Relationships of the exhaled propofol concentration with the plasma propofol concentration, measured by high-performance liquid chromatography and the continuously measured bispectral (BIS) index were investigated. RESULTS: Comparison of the exhaled and plasma propofol concentrations revealed a bias ± precision of 2.1% ± 14.6% (95% limits of agreement: - 26.5-30.7%) in experiment I and - 10.4% ± 13.2 (- 36.3-15.4%) in experiment II. In both experiments, exhaled propofol concentrations measured by MI-IMS were consistent with, the propofol effect represented by the BIS index. CONCLUSIONS: MI-IMS may be a suitable method to predict plasma propofol concentration online during propofol anesthesia. Monitoring exhaled propofol may improve the safety of propofol anesthesia.


Assuntos
Anestésicos Intravenosos/metabolismo , Testes Respiratórios/instrumentação , Testes Respiratórios/métodos , Internet , Propofol/metabolismo , Análise Espectral/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória/instrumentação , Monitorização Intraoperatória/métodos
11.
Angew Chem Int Ed Engl ; 54(27): 7815-8, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26015026

RESUMO

Noninvasive, real-time pharmacokinetic (PK) monitoring of ketamine, propofol, and valproic acid, and their metabolites was achieved in mice, using secondary electrospray ionization and high-resolution mass spectrometry. The PK profile of a drug influences its efficacy and toxicity because it determines exposure time and levels. The antidepressant and anaesthetic ketamine (Ket) and four Ket metabolites were studied in detail and their PK was simultaneously determined following application of different sub-anaesthetic doses of Ket. Bioavailability after oral administration vs. intraperitoneal injection was also investigated. In contrast to conventional studies that require many animals to be sacrificed even for low-resolution PK curves, this novel approach yields real-time PK curves with a hitherto unmatched time resolution (10 s), and none of the animals has to be sacrificed. This thus represents a major step forward not only in animal welfare, but also major cost and time savings.


Assuntos
Analgésicos/farmacocinética , Testes Respiratórios/métodos , Ketamina/farmacocinética , Espectrometria de Massas por Ionização por Electrospray/métodos , Administração Oral , Analgésicos/administração & dosagem , Analgésicos/metabolismo , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/metabolismo , Anestésicos Intravenosos/farmacocinética , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacocinética , Testes Respiratórios/instrumentação , Desenho de Equipamento , Injeções Intraperitoneais , Ketamina/administração & dosagem , Ketamina/metabolismo , Camundongos , Propofol/administração & dosagem , Propofol/metabolismo , Propofol/farmacocinética , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Ácido Valproico/administração & dosagem , Ácido Valproico/metabolismo , Ácido Valproico/farmacocinética
12.
J Biol Chem ; 288(27): 19343-57, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23677991

RESUMO

GABA type A receptors (GABAAR), the brain's major inhibitory neurotransmitter receptors, are the targets for many general anesthetics, including volatile anesthetics, etomidate, propofol, and barbiturates. How such structurally diverse agents can act similarly as positive allosteric modulators of GABAARs remains unclear. Previously, photoreactive etomidate analogs identified two equivalent anesthetic-binding sites in the transmembrane domain at the ß(+)-α(-) subunit interfaces, which also contain the GABA-binding sites in the extracellular domain. Here, we used R-[(3)H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB), a potent stereospecific barbiturate anesthetic, to photolabel expressed human α1ß3γ2 GABAARs. Protein microsequencing revealed that R-[(3)H]mTFD-MPAB did not photolabel the etomidate sites at the ß(+)-α(-) subunit interfaces. Instead, it photolabeled sites at the α(+)-ß(-) and γ(+)-ß(-) subunit interfaces in the transmembrane domain. On the (+)-side, α1M3 was labeled at Ala-291 and Tyr-294 and γ2M3 at Ser-301, and on the (-)-side, ß3M1 was labeled at Met-227. These residues, like those in the etomidate site, are located at subunit interfaces near the synaptic side of the transmembrane domain. The selectivity of R-etomidate for the ß(+)-α(-) interface relative to the α(+)-ß(-)/γ(+)-ß(-) interfaces was >100-fold, whereas that of R-mTFD-MPAB for its sites was >50-fold. Each ligand could enhance photoincorporation of the other, demonstrating allosteric interactions between the sites. The structural heterogeneity of barbiturate, etomidate, and propofol derivatives is accommodated by varying selectivities for these two classes of sites. We hypothesize that binding at any of these homologous intersubunit sites is sufficient for anesthetic action and that this explains to some degree the puzzling structural heterogeneity of anesthetics.


Assuntos
Anestésicos Intravenosos/química , Barbitúricos/química , Etomidato/química , Receptores de GABA-A/química , Anestésicos Intravenosos/metabolismo , Barbitúricos/metabolismo , Sítios de Ligação , Etomidato/metabolismo , Células HEK293 , Humanos , Ligantes , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Subunidades Proteicas , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Análise de Sequência de Proteína
13.
J Biol Chem ; 288(24): 17420-31, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23640880

RESUMO

General anesthetics exert many of their CNS actions by binding to and modulating membrane-embedded pentameric ligand-gated ion channels (pLGICs). The structural mechanisms underlying how anesthetics modulate pLGIC function remain largely unknown. GLIC, a prokaryotic pLGIC homologue, is inhibited by general anesthetics, suggesting anesthetics stabilize a closed channel state, but in anesthetic-bound GLIC crystal structures the channel appears open. Here, using functional GLIC channels expressed in oocytes, we examined whether propofol induces structural rearrangements in the GLIC transmembrane domain (TMD). Residues in the GLIC TMD that frame intrasubunit and intersubunit water-accessible cavities were individually mutated to cysteine. We measured and compared the rates of modification of the introduced cysteines by sulfhydryl-reactive reagents in the absence and presence of propofol. Propofol slowed the rate of modification of L240C (intersubunit) and increased the rate of modification of T254C (intrasubunit), indicating that propofol binding induces structural rearrangements in these cavities that alter the local environment near these residues. Propofol acceleration of T254C modification suggests that in the resting state propofol does not bind in the TMD intrasubunit cavity as observed in the crystal structure of GLIC with bound propofol (Nury, H., Van Renterghem, C., Weng, Y., Tran, A., Baaden, M., Dufresne, V., Changeux, J. P., Sonner, J. M., Delarue, M., and Corringer, P. J. (2011) Nature 469, 428-431). In silico docking using a GLIC closed channel homology model suggests propofol binds to intersubunit sites in the TMD in the resting state. Propofol-induced motions in the intersubunit cavity were distinct from motions associated with channel activation, indicating propofol stabilizes a novel closed state.


Assuntos
Anestésicos Intravenosos/metabolismo , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Propofol/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Anestésicos Intravenosos/farmacologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cianobactérias , Cisteína/química , Cisteína/genética , Concentração de Íons de Hidrogênio , Cinética , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/genética , Potenciais da Membrana/efeitos dos fármacos , Metanossulfonato de Metila/análogos & derivados , Metanossulfonato de Metila/química , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Propofol/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas , Homologia Estrutural de Proteína , Xenopus laevis
14.
Pharmazie ; 69(11): 829-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25985579

RESUMO

Propofol (2,6-diisopropylphenol) is intravenously administered for anesthetic induction and maintenance, and is rapidly metabolized into its glucuronide, mainly by UDP-glucuronosyltransferase 1A9 (UGT1A9). In this study, propofol glucuronidation by liver microsomes (HLM), intestinal microsomes (HIM) and kidney microsomes (HKM) of humans were examined. The expression of UGT1A9 protein in HLM, HIM and HKM was analyzed by immunoblotting. The staining band intensities for UGT1A9 of HIM and HKM were 12% and 119% those of HLM, respectively. The kinetics of propofol glucuronidation by HLM and HKM exhibited substrate inhibition, whereas the kinetics by HIM followed the Michaelis-Menten model. The K(m), V(max) and CL(int) values of HLM were 41.8 µM, 5.21 nmol/min/mg protein and 126 µl/min/mg protein, respectively. The K(m) value of HIM was significantly higher (6.7-fold) than that of HLM, and the V(max) and CL(int) values were significantly lower (56% and 8.3%, respectively) than those of HLM. The K(m) value of HKM was comparable to that of HLM, and the V(max) and CL(int) values were significantly higher (2.1- and 3.7-fold, respectively) than those of HLM, respectively. These findings suggest that UGT1A9 expressed in the kidney as well as in the liver plays an important role in propofol glucuronidation. The information gained in this study should contribute to an appropriate use of drugs metabolized by UGT1A9.


Assuntos
Anestésicos Intravenosos/metabolismo , Glucuronosiltransferase/metabolismo , Microssomos/metabolismo , Propofol/metabolismo , Anestésicos Intravenosos/farmacocinética , Glucuronídeos/metabolismo , Humanos , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Rim/metabolismo , Microssomos Hepáticos , Propofol/farmacocinética , Distribuição Tecidual , UDP-Glucuronosiltransferase 1A
15.
J Biol Chem ; 287(33): 27762-70, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22730325

RESUMO

GABA(A) receptors mediate fast inhibitory synaptic transmission. The transmembrane ion channel is lined by a ring of five α helices, M2 segments, one from each subunit. An outer ring of helices comprising the alternating M1, M3, and M4 segments from each subunit surrounds the inner ring and forms the interface with the lipid bilayer. The structural rearrangements that follow agonist binding and culminate in opening of the ion pore remain incompletely characterized. Propofol and other intravenous general anesthetics bind at the ßM3-αM1 subunit interface. We sought to determine whether this region undergoes conformational changes during GABA activation. We measured the reaction rate of p-chloromercuribenzenesulfonate (pCMBS) with cysteines substituted in the GABA(A) receptor α1M1 and ß2M3 segments. In the presence of GABA, the pCMBS reaction rate increased significantly in a cluster of residues in the extracellular third of the α1M1 segment facing the ß2M3 segment. Mutation of the ß2M2 segment 19' position, R269Q, altered the pCMBS reaction rate with several α1M1 Cys, some only in the resting state and others only in the GABA-activated state. Thus, ß2R269 is charged in both states. GABA activation induced disulfide bond formation between ß2R269C and α1I228C. The experiments demonstrate that α1M1 moves in relationship to ß2M2R269 during gating. Thus, channel gating does not involve rigid body movements of the entire transmembrane domain. Channel gating causes changes in the relative position of transmembrane segments both within a single subunit and relative to the neighboring subunits.


Assuntos
Ativação do Canal Iônico , Bicamadas Lipídicas/química , Receptores de GABA-A/química , Substituição de Aminoácidos , Anestésicos Intravenosos/química , Anestésicos Intravenosos/metabolismo , Animais , Bicamadas Lipídicas/metabolismo , Mutação de Sentido Incorreto , Propofol/química , Propofol/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ratos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Xenopus laevis
16.
Anesth Analg ; 117(4): 803-811, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23960033

RESUMO

BACKGROUND: We previously demonstrated that propofol interacted with the leukocyte adhesion molecule leukocyte function-associated antigen-1 (LFA-1) and inhibited the production of interleukin-2 via LFA-1 in a dependent manner. However, the binding site(s) of propofol on LFA-1 remains unknown. METHODS: First, the inhibition of LFA-1's ligand binding by propofol was confirmed in an enzyme-linked immunosorbent assay (ELISA) ELISA-type assay. The binding site of propofol on LFA-1 was probed with a photolabeling experiment using a photoactivatable propofol analog called azi-propofol-m. The adducted residues of LFA-1 by this compound were determined using liquid chromatography-mass spectrometry. In addition, the binding of propofol to the ligand-binding domain of LFA-1 was examined using 1-aminoanthracene (1-AMA) displacement assay. Furthermore, the binding site(s) of 1-AMA and propofol on LFA-1 was studied using the docking program GLIDE. RESULTS: We demonstrated that propofol impaired the binding of LFA-1 to its ligand intercellular adhesion molecule-1. The photolabeling experiment demonstrated that the adducted residues were localized in the allosteric cavity of the ligand-binding domain of LFA-1 called "lovastatin site." The shift of fluorescence spectra was observed when 1-AMA was coincubated with the low-affinity conformer of LFA-1 ligand-binding domain (wild-type [WT] αL I domain), not with the high-affinity conformer, suggesting that 1-AMA bound only to WT αL I domain. In the 1-AMA displacement assay, propofol decreased 1-AMA fluorescence signal (at 520 nm), suggesting that propofol competed with 1-AMA and bound to the WT αL I domain. The docking simulation demonstrated that both 1-AMA and propofol bound to the lovastatin site, which agreed with the photolabeling experiment. CONCLUSIONS: We demonstrated that propofol bound to the lovastatin site in LFA-1. Previously we showed that the volatile anesthetics isoflurane and sevoflurane bound to this site. Taken together, the lovastatin site is an example of the common binding sites for anesthetics currently used clinically.


Assuntos
Anestésicos Inalatórios/metabolismo , Anestésicos Intravenosos/metabolismo , Isoflurano/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Éteres Metílicos/metabolismo , Propofol/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Humanos , Ligantes , Lovastatina/metabolismo , Antígeno-1 Associado à Função Linfocitária/química , Ligação Proteica/fisiologia , Sevoflurano
17.
Eur J Drug Metab Pharmacokinet ; 38(2): 97-103, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23161395

RESUMO

In neonates, propofol mainly undergoes hydroxylation to quinol metabolites with only limited glucuronidation. The aim of this study is to search for covariates of neonatal propofol biotransformation based on 24 h urine collections. In neonates receiving an intravenous propofol bolus for short procedural sedation, urine was collected during 24 h. Urinary propofol metabolites [propofol glucuronide (PG), 1- and 4-quinol glucuronide (QG)] were determined using high-performance liquid chromatography after a dual-step solid phase extraction combined with ultraviolet and fluorescence detection. Propofol metabolites, their contribution to total metabolite elimination and propofol glucuronide/quinol glucuronide (PG/QG) ratio were determined. The impact of continuous [postmenstrual age (PMA), postnatal age (PNA), body weight, propofol dose, creatinaemia] and dichotomous variables [PNA ≤ 7 days (yes/no), PNA ≥ 10 days (yes/no), hyperbilirubinaemia (yes/no), cardiopathy (yes/no)] on PG/QG ratio and on patients with low (≤10 %) vs. high (>10 %) urinary PG recovery were examined. Thirty-two neonates were included. Median total propofol metabolite recovery was 40.95 (2.01-129.81) % with PG/QG ratio 0.44 (0.01-5.93). PNA (dichotomous 7 days as well as 10 days) was a significant covariate of PG/QG ratio. Late PNA more frequently resulted in high urinary PG fraction. Significance was more pronounced with PNA 10 days as cut-off point for early neonatal life compared to 7 days. Age 10 days is pivotal in early life propofol metabolism. This confirms earlier documented propofol clearance studies. This is the first report of the modified quantification assay used to determine urinary propofol metabolites in neonates.


Assuntos
Anestésicos Intravenosos/metabolismo , Propofol/metabolismo , Feminino , Glucuronídeos/urina , Humanos , Recém-Nascido , Injeções Intravenosas , Masculino , Propofol/administração & dosagem
18.
Anesthesiology ; 116(2): 311-23, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22222473

RESUMO

BACKGROUND: Various pharmacodynamic response surface models have been developed to quantitatively describe the relationship between two or more drug concentrations with their combined clinical effect. We examined the interaction of remifentanil and sevoflurane on the probability of tolerance to shake and shout, tetanic stimulation, laryngeal mask airway insertion, and laryngoscopy in patients to compare the performance of five different response surface models. METHODS: Forty patients preoperatively received different combined concentrations of remifentanil (0-12 ng/ml) and sevoflurane (0.5-3.5 vol.%) according to a criss-cross design (160 concentration pairs, four per patient). After having reached pseudosteady state, the response to shake and shout, tetanic stimulation, laryngeal mask airway insertion, and laryngoscopy was recorded. For the analysis of the probability of tolerance, five different interaction models were tested: Greco, Reduced Greco, Minto, Scaled C50(O) Hierarchical, and Fixed C50(O) Hierarchical model. All calculations were performed with NONMEM VI (Icon Development Solutions, Ellicott City, MD). RESULTS: The pharmacodynamic interaction between sevoflurane and remifentanil was strongly synergistic for both the hypnotic and the analgesic components of anesthesia. The Greco model did not result in plausible parameter estimates. The Fixed C50(O) Hierarchical model performed slightly better than the Scaled C50(O) Hierarchical and Reduced Greco models, whereas the Minto model fitted less well. CONCLUSION: We showed the importance of exploring various surface model approaches when studying drug interactions. The Fixed C50(O) Hierarchical model fits our data on sevoflurane remifentanil interaction best and appears to be an appropriate model for use in hypnotic-opioid drug interaction.


Assuntos
Anestésicos Inalatórios/metabolismo , Anestésicos Intravenosos/metabolismo , Éteres Metílicos/metabolismo , Modelos Biológicos , Piperidinas/metabolismo , Adulto , Anestésicos Inalatórios/administração & dosagem , Anestésicos Intravenosos/administração & dosagem , Interações Medicamentosas/fisiologia , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Éteres Metílicos/administração & dosagem , Piperidinas/administração & dosagem , Estudos Prospectivos , Remifentanil , Sevoflurano , Adulto Jovem
19.
Anesth Analg ; 114(1): 122-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22025496

RESUMO

BACKGROUND: Human serum albumin (HSA) is an important carrier for opioids. However, the locations of the binding sites remain unclear. In the present study, we have characterized opioid-HSA interactions using multiple biochemical and biophysical techniques to reveal: (a) the location of the binding site(s); (b) whether naloxone shares the binding site with morphine; and (c) whether opioid agonists share their binding site(s) with general anesthetics. METHODS: Elution chromatography to determine the global interactions and tryptophan intrinsic fluorescence to determine the localized interactions of opioids with HSA were used. Competition studies using isothermal titration calorimetry were used to determine the overlap of binding site(s) among opioid agonists, antagonists, and general anesthetics. An automatic docking calculation was used to predict the possible binding sites and to assess findings of the solution studies. RESULTS: For elution chromatography with immobilized HSA, the retention times of naloxone, morphine, and fentanyl were prolonged but shorter than that of propofol. The inhibition of tryptophan fluorescence by naloxone was not affected by morphine or fentanyl. The calorimetric heat profiles of propofol and halothane interaction with HSA were changed significantly, but not equally by morphine, naloxone, or fentanyl. Consistent with direct binding studies, docking results demonstrated that opioids share sites with general anesthetics; a distinct binding site for naloxone was revealed near the sole tryptophan in HSA that is not shared with morphine. CONCLUSIONS: The interaction of opioids with HSA is weak in comparison with propofol. Naloxone has a distinct binding site in HSA not shared with opioid agonists. Opioids share binding sites with general anesthetics in HSA.


Assuntos
Analgésicos Opioides/metabolismo , Fentanila/metabolismo , Morfina/metabolismo , Albumina Sérica/metabolismo , Analgésicos Opioides/química , Anestésicos Intravenosos/metabolismo , Sítios de Ligação , Ligação Competitiva , Calorimetria , Cromatografia de Afinidade , Fentanila/química , Humanos , Modelos Moleculares , Morfina/química , Naloxona/metabolismo , Antagonistas de Entorpecentes/metabolismo , Propofol/metabolismo , Ligação Proteica , Conformação Proteica , Albumina Sérica/química , Espectrometria de Fluorescência
20.
Comput Math Methods Med ; 2022: 8501948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132332

RESUMO

METHODS: We compare nine index values, select CNN+EEG, which has good correlation with BIS index, as an anesthesia state observation index to identify the parameters of the model, and establish a model based on self-attention and dual resistructure convolutional neural network. The data of 93 groups of patients were selected and randomly grouped into three parts: training set, validation set, and test set, and compared the best and worst results predicted by BIS. RESULT: The best result is that the model's accuracy of predicting BLS on the test set has an overall upward trend, eventually reaching more than 90%. The overall error shows a gradual decrease and eventually approaches zero. The worst result is that the model's accuracy of predicting BIS on the test set has an overall upward trend. The accuracy rate is relatively stable without major fluctuations, but the final accuracy rate is above 70%. CONCLUSION: The prediction of BIS indicators by the deep learning method CNN algorithm shows good results in statistics.


Assuntos
Anestésicos Intravenosos/administração & dosagem , Atenção/efeitos dos fármacos , Monitorização Neurofisiológica Intraoperatória/métodos , Redes Neurais de Computação , Propofol/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Anestésicos Intravenosos/metabolismo , Biologia Computacional , Aprendizado Profundo , Eletroencefalografia/estatística & dados numéricos , Humanos , Monitorização Neurofisiológica Intraoperatória/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Propofol/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA