RESUMO
Adoptive immunotherapy, or the infusion of lymphocytes, is a promising approach for the treatment of cancer and certain chronic viral infections. The application of the principles of synthetic biology to enhance T cell function has resulted in substantial increases in clinical efficacy. The primary challenge to the field is to identify tumor-specific targets to avoid off-tumor, on-target toxicity. Given recent advances in efficacy in numerous pilot trials, the next steps in clinical development will require multicenter trials to establish adoptive immunotherapy as a mainstream technology.
Assuntos
Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Viroses/imunologia , Viroses/terapia , Transferência Adotiva , Animais , Antígenos/genética , Antígenos/imunologia , Biomarcadores , Terapia Baseada em Transplante de Células e Tecidos , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Neoplasias/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transdução Genética , Viroses/genéticaRESUMO
Macrophages protect the body from damage and disease by targeting antibody-opsonized cells for phagocytosis. Though antibodies can be raised against antigens with diverse structures, shapes, and sizes, it is unclear why some are more effective at triggering immune responses than others. Here, we define an antigen height threshold that regulates phagocytosis of both engineered and cancer-specific antigens by macrophages. Using a reconstituted model of antibody-opsonized target cells, we find that phagocytosis is dramatically impaired for antigens that position antibodies >10 nm from the target surface. Decreasing antigen height drives segregation of antibody-bound Fc receptors from the inhibitory phosphatase CD45 in an integrin-independent manner, triggering Fc receptor phosphorylation and promoting phagocytosis. Our work shows that close contact between macrophage and target is a requirement for efficient phagocytosis, suggesting that therapeutic antibodies should target short antigens in order to trigger Fc receptor activation through size-dependent physical segregation.
Assuntos
Anticorpos Monoclonais/imunologia , Antígenos/química , Macrófagos/imunologia , Proteínas Opsonizantes/metabolismo , Fagocitose , Animais , Anticorpos Monoclonais/química , Antígenos/genética , Antígenos/imunologia , Antígeno Carcinoembrionário/química , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/imunologia , Edição de Genes , Integrinas/metabolismo , Antígenos Comuns de Leucócito/química , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Macrófagos/citologia , Camundongos , Proteínas Opsonizantes/química , Fosforilação , Células RAW 264.7 , Receptores Fc/imunologia , Receptores Fc/metabolismo , Lipossomas Unilamelares/químicaRESUMO
Lipids are produced site-specifically in cells and then distributed nonrandomly among membranes via vesicular and nonvesicular trafficking mechanisms. The latter involves soluble amphitropic proteins extracting specific lipids from source membranes to function as molecular solubilizers that envelope their insoluble cargo before transporting it to destination sites. Lipid-binding and lipid transfer structural motifs range from multi-ß-strand barrels, to ß-sheet cups and baskets covered by α-helical lids, to multi-α-helical bundles and layers. Here, we focus on how α-helical proteins use amphipathic helical layering and bundling to form modular lipid-binding compartments and discuss the functional consequences. Preformed compartments generally rely on intramolecular disulfide bridging to maintain conformation (e.g., albumins, nonspecific lipid transfer proteins, saposins, nematode polyprotein allergens/antigens). Insights into nonpreformed hydrophobic compartments that expand and adapt to accommodate a lipid occupant are few and provided mostly by the three-layer, α-helical ligand-binding domain of nuclear receptors. The simple but elegant and nearly ubiquitous two-layer, α-helical glycolipid transfer protein (GLTP)-fold now further advances understanding.
Assuntos
Albuminas/química , Alérgenos/química , Antígenos/química , Proteínas de Transporte/química , Lipídeos/química , Albuminas/genética , Albuminas/metabolismo , Alérgenos/genética , Alérgenos/metabolismo , Animais , Antígenos/genética , Antígenos/metabolismo , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios ProteicosAssuntos
Antígenos/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Expressão Gênica , Tolerância Imunológica , Timo/imunologia , Timo/metabolismo , Animais , Antígenos/imunologia , História do Século XX , Humanos , Camundongos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologiaRESUMO
The optimization of therapeutic antibodies through traditional techniques, such as candidate screening via hybridoma or phage display, is resource-intensive and time-consuming. In recent years, computational and artificial intelligence-based methods have been actively developed to accelerate and improve the development of therapeutic antibodies. In this study, we developed an end-to-end sequence-based deep learning model, termed AttABseq, for the predictions of the antigen-antibody binding affinity changes connected with antibody mutations. AttABseq is a highly efficient and generic attention-based model by utilizing diverse antigen-antibody complex sequences as the input to predict the binding affinity changes of residue mutations. The assessment on the three benchmark datasets illustrates that AttABseq is 120% more accurate than other sequence-based models in terms of the Pearson correlation coefficient between the predicted and experimental binding affinity changes. Moreover, AttABseq also either outperforms or competes favorably with the structure-based approaches. Furthermore, AttABseq consistently demonstrates robust predictive capabilities across a diverse array of conditions, underscoring its remarkable capacity for generalization across a wide spectrum of antigen-antibody complexes. It imposes no constraints on the quantity of altered residues, rendering it particularly applicable in scenarios where crystallographic structures remain unavailable. The attention-based interpretability analysis indicates that the causal effects of point mutations on antibody-antigen binding affinity changes can be visualized at the residue level, which might assist automated antibody sequence optimization. We believe that AttABseq provides a fiercely competitive answer to therapeutic antibody optimization.
Assuntos
Complexo Antígeno-Anticorpo , Aprendizado Profundo , Complexo Antígeno-Anticorpo/química , Antígenos/química , Antígenos/genética , Antígenos/metabolismo , Antígenos/imunologia , Afinidade de Anticorpos , Sequência de Aminoácidos , Biologia Computacional/métodos , Humanos , Mutação , Anticorpos/química , Anticorpos/imunologia , Anticorpos/genética , Anticorpos/metabolismoAssuntos
Doenças Autoimunes/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Hipersensibilidade/prevenção & controle , Imunoterapia/métodos , Neoplasias/prevenção & controle , Pesquisa Translacional Biomédica/tendências , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/uso terapêutico , Antígenos/química , Antígenos/genética , Antígenos/imunologia , Doenças Autoimunes/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/biossíntese , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/biossíntese , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/patologia , Citocinas/agonistas , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/imunologia , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/biossíntese , Humanos , Hipersensibilidade/imunologia , Imunoensaio/métodos , Neoplasias/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/biossínteseRESUMO
CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.
Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Ceramidas/imunologia , Memória Imunológica , Receptores CCR5/deficiência , Animais , Antígenos/genética , Linfócitos T CD4-Positivos/citologia , Ceramidas/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Receptores CCR5/imunologiaRESUMO
IgNAR exhibits significant promise in the fields of cancer and anti-virus biotherapies. Notably, the variable regions of IgNAR (VNAR) possess comparable antigen binding affinity with much smaller molecular weight (â¼12 kDa) compared to IgNAR. Antigen specific VNAR screening is a changeling work, which limits its application in medicine and therapy fields. Though phage display is a powerful tool for VNAR screening, it has a lot of drawbacks, such as small library coverage, low expression levels, unstable target protein, complicating and time-consuming procedures. Here we report VANR screening with next generation sequencing (NGS) could effectively overcome the limitations of phage display, and we successfully identified approximately 3000 BAFF-specific VNARs in Chiloscyllium plagiosum vaccinated with the BAFF antigen. The results of modelling and molecular dynamics simulation and ELISA assay demonstrated that one out of the top five abundant specific VNARs exhibited higher binding affinity to the BAFF antigen than those obtained through phage display screening. Our data indicates NGS would be an alternative way for VNAR screening with plenty of advantages.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Tubarões , Tubarões/imunologia , Tubarões/genética , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Antígenos/imunologia , Antígenos/genética , Doenças dos Peixes/imunologiaRESUMO
When displayed on erythrocytes, peptides and proteins can drive antigen-specific immune tolerance. Here, we investigated a straightforward approach based on erythrocyte binding to promote antigen-specific tolerance to both peptides and proteins. We first identified a robust erythrocyte-binding ligand. A pool of one million fully d-chiral peptides was injected into mice, blood cells were isolated, and ligands enriched on these cells were identified using nano-liquid chromatography-tandem mass spectrometry. One round of selection yielded a murine erythrocyte-binding ligand with an 80 nM apparent dissociation constant, Kd We modified an 83-kDa bacterial protein and a peptide antigen derived from ovalbumin (OVA) with the identified erythrocyte-binding ligand. An administration of the engineered bacterial protein led to decreased protein-specific antibodies in mice. Similarly, mice given the engineered OVA-derived peptide had decreased inflammatory anti-OVA CD8+ T cell responses. These findings suggest that our tolerance-induction strategy is applicable to both peptide and protein antigens and that our in vivo selection strategy can be used for de novo discovery of robust erythrocyte-binding ligands.
Assuntos
Antígenos/genética , Antígenos/metabolismo , Eritrócitos/metabolismo , Engenharia de Proteínas/métodos , Animais , Antígenos/química , Linhagem Celular , Bases de Dados Factuais , Feminino , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ligação ProteicaRESUMO
Tumors are often infiltrated by T lymphocytes recognizing either self- or mutated antigens but are generally inactive, although they often show signs of prior clonal expansion. Hypothesizing that this may be due to peripheral tolerance, we formulated nanoparticles containing innate immune stimulants that we found were sufficient to activate self-specific CD8+ T cells and injected them into two different mouse tumor models, B16F10 and MC38. These nanoparticles robustly activated and/or expanded antigen-specific CD8+ tumor-infiltrating T cells, along with a decrease in regulatory CD4+ T cells and an increase in Interleukin-17 producers, resulting in significant tumor growth retardation or elimination and the establishment of immune memory in surviving mice. Furthermore, nanoparticles with modification of stimulating human T cells enabled the robust activation of endogenous T cells in patient-derived tumor organoids. These results indicate that breaking peripheral tolerance without regard to the antigen specificity creates a promising pathway for cancer immunotherapy.
Assuntos
Antígenos/imunologia , Imunidade Inata/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Melanoma Experimental/terapia , Animais , Antígenos/genética , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Melanoma Experimental/imunologia , Camundongos , Nanopartículas/uso terapêuticoRESUMO
Nerve/glial antigen 2 (NG2) is a protein marker of NG2 glia and mural cells, and NG2 promoter activity is utilized to target these cells. However, the NG2 promoter cannot target NG2 glia and mural cells separately. This has been an obstacle for NG2 glia-specific manipulation. Here, we developed transgenic mice in which either cell type can be targeted using the NG2 promoter. We selected a tetracycline-controllable gene induction system for cell type-specific transgene expression, and generated NG2-tetracycline transactivator (tTA) transgenic lines. We crossed tTA lines with the tetO-ChR2 (channelrhodopsin-2)-EYFP line to characterize tTA-dependent transgene induction. We isolated two unique NG2-tTA mouse lines: one that induced ChR2-EYFP only in mural cells, likely due to the chromosomal position effect of NG2-tTA insertion, and the other that induced it in both cell types. We then applied a Cre-mediated set-subtraction strategy to the latter case and eliminated ChR2-EYFP from mural cells, resulting in NG2 glia-specific transgene induction. We further demonstrated that tTA-dependent ChR2 expression could manipulate cell function. Optogenetic mural cell activation decreased cerebral blood flow, as previously reported, indicating that tTA-mediated ChR2 expression was sufficient to impact cellular function. ChR2-mediated depolarization was observed in NG2 glia in acute hippocampal slices. In addition, ChR2-mediated depolarization of NG2 glia inhibited their proliferation but promoted their differentiation in juvenile mice. Since the tTA-tetO combination is expandable, the mural cell-specific NG2-tTA line and the NG2 glia-specific NG2-tTA line will permit us to conduct observational and manipulation studies to examine in vivo function of these cells separately.
Assuntos
Neuroglia , Optogenética , Animais , Camundongos , Neuroglia/metabolismo , Camundongos Transgênicos , Antígenos/genética , Antígenos/metabolismo , Tetraciclinas/metabolismoRESUMO
As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques.
Assuntos
Anticorpos/química , Dissulfetos/isolamento & purificação , Domínios de Imunoglobulina , Fragmentos de Peptídeos/isolamento & purificação , Domínios e Motivos de Interação entre Proteínas , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Afinidade de Anticorpos , Formação de Anticorpos , Especificidade de Anticorpos , Antígenos/genética , Antígenos/imunologia , Linfócitos B/fisiologia , Bovinos , Complemento C5/química , Complemento C5/genética , Complemento C5/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Dissulfetos/química , Dissulfetos/imunologia , Mapeamento de Epitopos/métodos , Humanos , Imunização , Domínios de Imunoglobulina/genética , Modelos Moleculares , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Domínios e Motivos de Interação entre Proteínas/genéticaRESUMO
Ag-inexperienced memory-like T (AIMT) cells are functionally unique T cells, representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and an unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multiomics approaches, including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice, independent of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Cohousing with feral mice changed the bacterial colonization of laboratory strains but had only minimal effects on the CD8+ T cell compartment, including AIMT cells.
Assuntos
Envelhecimento/genética , Antígenos/genética , Memória Imunológica/genética , Linfócitos T/imunologia , Envelhecimento/imunologia , Animais , Antígenos/imunologia , Evolução Clonal , Instabilidade Genômica , Memória Imunológica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , FenótipoRESUMO
Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method-VolcanoFinder-to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder.
Assuntos
Introgressão Genética , Genética Populacional/métodos , Genoma Humano/genética , Modelos Genéticos , Polimorfismo Genético , África Subsaariana , Alelos , Antígenos/genética , População Negra/genética , Simulação por Computador , Europa (Continente) , Evolução Molecular , Haplótipos , Humanos , Proteínas de Filamentos Intermediários/genética , Receptores da Tireotropina/genética , Proteínas S100/genética , Seleção Genética , Software , População Branca/genéticaRESUMO
The antigen-presenting molecule MR1 (MHC class I-related protein 1) presents metabolite antigens derived from microbial vitamin B2 synthesis to activate mucosal-associated invariant T (MAIT) cells. Key aspects of this evolutionarily conserved pathway remain uncharacterized, including where MR1 acquires ligands and what accessory proteins assist ligand binding. We answer these questions by using a fluorophore-labeled stable MR1 antigen analog, a conformation-specific MR1 mAb, proteomic analysis, and a genome-wide CRISPR/Cas9 library screen. We show that the endoplasmic reticulum (ER) contains a pool of two unliganded MR1 conformers stabilized via interactions with chaperones tapasin and tapasin-related protein. This pool is the primary source of MR1 molecules for the presentation of exogenous metabolite antigens to MAIT cells. Deletion of these chaperones reduces the ER-resident MR1 pool and hampers antigen presentation and MAIT cell activation. The MR1 antigen-presentation pathway thus co-opts ER chaperones to fulfill its unique ability to present exogenous metabolite antigens captured within the ER.
Assuntos
Retículo Endoplasmático/genética , Antígenos de Histocompatibilidade Classe I/genética , Metaboloma/genética , Antígenos de Histocompatibilidade Menor/genética , Proteômica , Apresentação de Antígeno/genética , Antígenos/genética , Antígenos/imunologia , Sistemas CRISPR-Cas/genética , Humanos , Ligantes , Ativação Linfocitária/genética , Proteínas de Membrana Transportadoras/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Riboflavina/genéticaRESUMO
Polymorphic variation of immune system proteins can drive variability of individual immune responses. Endoplasmic reticulum aminopeptidase 1 (ERAP1) generates antigenic peptides for presentation by major histocompatibility complex class I molecules. Coding SNPs in ERAP1 have been associated with predisposition to inflammatory rheumatic disease and shown to affect functional properties of the enzyme, but the interplay between combinations of these SNPs as they exist in allotypes has not been thoroughly explored. We used phased genotype data to estimate ERAP1 allotype frequency in 2504 individuals across five major human populations, generated highly pure recombinant enzymes corresponding to the ten most common ERAP1 allotypes, and systematically characterized their in vitro enzymatic properties. We find that ERAP1 allotypes possess a wide range of enzymatic activities, up to 60-fold, whose ranking is substrate dependent. Strikingly, allotype 10, previously associated with Behçet's disease, is consistently a low-activity outlier, suggesting that a significant percentage of individuals carry a subactive ERAP1 gene. Enzymatic analysis revealed that ERAP1 allotypes can differ in both catalytic efficiency and substrate affinity, differences that can change intermediate accumulation in multistep trimming reactions. Alterations in efficacy of an allosteric inhibitor that targets the regulatory site suggest that allotypic variation influences the communication between the regulatory and the active site. Our work defines the wide landscape of ERAP1 activity in human populations and demonstrates how common allotypes can induce substrate-dependent variability in antigen processing, thus contributing, in synergy with major histocompatibility complex haplotypes, to immune response variability and predisposition to chronic inflammatory conditions.
Assuntos
Aminopeptidases/imunologia , Aminopeptidases/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Aminopeptidases/genética , Apresentação de Antígeno/imunologia , Antígenos/genética , Antígenos/imunologia , Bases de Dados Genéticas , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Genótipo , Haplótipos/genética , Haplótipos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/genética , Peptídeos/metabolismo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Proteins are modulated by a variety of posttranslational modifications including methylation. Despite its importance, the majority of protein methylation modifications discovered by mass spectrometric analyses are functionally uncharacterized, partly owing to the difficulty in obtaining reliable methylsite-specific antibodies. To elucidate how functional methylsite-specific antibodies recognize the antigens and lead to the development of a novel method to create such antibodies, we use an immunized library paired with phage display to create rabbit monoclonal antibodies recognizing trimethylated Lys260 of MAP3K2 as a representative substrate. We isolated several methylsite-specific antibodies that contained unique complementarity determining region sequence. We characterized the mode of antigen recognition by each of these antibodies using structural and biophysical analyses, revealing the molecular details, such as binding affinity toward methylated/nonmethylated antigens and structural motif that is responsible for recognition of the methylated lysine residue, by which each antibody recognized the target antigen. In addition, the comparison with the results of Western blotting analysis suggests a critical antigen recognition mode to generate cross-reactivity to protein and peptide antigen of the antibodies. Computational simulations effectively recapitulated our biophysical data, capturing the antibodies of differing affinity and specificity. Our exhaustive characterization provides molecular architectures of functional methylsite-specific antibodies and thus should contribute to the development of a general method to generate functional methylsite-specific antibodies by de novo design.
Assuntos
Anticorpos Monoclonais/química , Antígenos/química , Fragmentos Fab das Imunoglobulinas/química , Lisina/química , MAP Quinase Quinase Quinase 2/química , Peptídeos/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Afinidade de Anticorpos , Especificidade de Anticorpos , Antígenos/genética , Antígenos/imunologia , Sítios de Ligação , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Reações Cruzadas , Cristalografia por Raios X , Humanos , Fragmentos Fab das Imunoglobulinas/biossíntese , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Cinética , Lisina/imunologia , MAP Quinase Quinase Quinase 2/genética , MAP Quinase Quinase Quinase 2/imunologia , Metilação , Simulação de Dinâmica Molecular , Biblioteca de Peptídeos , Peptídeos/genética , Peptídeos/imunologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , CoelhosRESUMO
In mammalian oocytes and embryos, the subcortical maternal complex (SCMC) and cytoplasmic lattices (CPLs) are two closely related structures. Their detailed compositions and functions remain largely unclear. Here, we characterize Nlrp4f as a novel component associated with the SCMC and CPLs. Disruption of maternal Nlrp4f leads to decreased fecundity and delayed preimplantation development in the mouse. Lack of Nlrp4f affects organelle distribution in mouse oocytes and early embryos. Depletion of Nlrp4f disrupts CPL formation but does not affect the interactions of other SCMC proteins. Interestingly, the loss of Khdc3 or Tle6, two other SCMC proteins, also disrupts CPL formation in mouse oocytes. Thus, the absence of CPLs and aberrant distribution of organelles in the oocytes caused by disruption of the examined SCMC genes, including previously reported Zbed3, Nlrp5, Ooep and Padi6, indicate that the SCMC is required for CPL formation and organelle distribution. Consistent with the role of the SCMC in CPL formation, the SCMC forms before CPLs during mouse oogenesis. Together, our results suggest that the SCMC protein Nlrp4f is involved in CPL formation and organelle distribution in mouse oocytes.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoplasma/metabolismo , Organelas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos/genética , Antígenos/metabolismo , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imunoprecipitação , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Oócitos/citologia , Oócitos/metabolismo , Gravidez , Proteína-Arginina Desiminase do Tipo 6/genética , Proteína-Arginina Desiminase do Tipo 6/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismoRESUMO
Methylation of circulating free DNA (CfDNA) has emerged as an efficient marker of tumor screening and prognostics. However, no efficient methylation marker has been developed for monitoring liver metastasis (LM) in colorectal cancer (CRC). Utilizing methylome profiling and bisulfite sequencing polymerase chain reaction of paired primary and LM sites, significantly increased methylation of TCHH was identified in the process of LM in CRC in the present study. Methylight analysis of TCHH methylation in CfDNA displayed a promisingly discriminative power between CRC with and without LM. Besides, significant coefficient of TCHH methylation and LM tumor volume was also validated. Together, these results indicated the potential of TCHH methylation in CfDNA as a monitoring marker of LM in CRC.
Assuntos
Antígenos/genética , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Neoplasias Colorretais/genética , Metilação de DNA/genética , DNA de Neoplasias/genética , Proteínas de Filamentos Intermediários/genética , Neoplasias Hepáticas/genética , Neoplasias Colorretais/patologia , Epigenoma/genética , Humanos , Neoplasias Hepáticas/patologia , PrognósticoRESUMO
Protective MHC class I-dependent immune responses require an overlap between repertoires of proteins directly presented on target cells and cross-presented by professional APC, specifically dendritic cells. How stable proteins that rely on defective ribosomal proteins for direct presentation are captured for cell-to-cell transfer remains enigmatic. In this study, we address this issue using a combination of in vitro (C57BL/6-derived mouse cell lines) and in vivo (C57BL/6 mouse strains) approaches involving stable and unstable versions of OVA model Ags displaying defective ribosomal protein-dependent and -independent Ag presentation, respectively. Apoptosis, but not necrosis, of donor cells was found associated with robust global protein aggregate formation and captured stable proteins permissive for cross-presentation. Potency of aggregates to serve as Ag source was directly demonstrated using polyglutamine-equipped model substrates. Collectively, our data implicate global protein aggregation in apoptotic cells as a mechanism that ensures the overlap between MHC class I epitopes presented directly or cross-presented by APC and demonstrate the unusual ability of dendritic cells to process stable protein aggregates.