Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 130: 106236, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371817

RESUMO

Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor and a therapeutic target for metabolic disorders. Numerous CB1 antagonists have been developed, but their functional selectivities and bias towards G protein or ß-arrestin signaling have not been systemically characterized. In this study, we analyzed the binding affinities and downstream signaling of two series of pyrazole derivatives bearing 1-aminopiperidine (Series I) or 4-aminothiomorpholine 1,1-dioxide (Series II) moieties, as well as the well-known CB1 antagonists rimonabant and taranabant. Analyses of the results for the Series I and II derivatives showed that minor structure modifications to their functional groups and especially the incorporation of 1-aminopiperidine or 4-aminothiomorpholine 1,1-dioxide motifs can profoundly affect their bias toward G protein or ß-arrestin signaling, and that their binding affinity and functional activity can be disassociated. Docking and molecular dynamics simulations revealed that the binding modes of Series I and II antagonists differed primarily in that Series I antagonists formed an additional hydrogen bond with the receptor, whereas those in Series II formed a water bridge.


Assuntos
Antagonistas de Receptores de Canabinoides , Proteínas de Ligação ao GTP , Antagonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/metabolismo , Rimonabanto , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores de Canabinoides/metabolismo
2.
Nat Chem Biol ; 16(6): 667-675, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393901

RESUMO

N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inibidores Enzimáticos/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosfatidiletanolaminas/metabolismo , Fosfolipase D/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Medo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Receptores de Canabinoides/metabolismo , Transdução de Sinais
3.
Mol Pharmacol ; 96(5): 619-628, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31515283

RESUMO

Cannabinoid receptor 1 (CB1) is a potential therapeutic target for the treatment of pain, obesity and obesity-related metabolic disorders, and addiction. The crystal structure of human CB1 has been determined in complex with the stabilizing antagonist AM6538. In the present study, we characterize AM6538 as a tight-binding/irreversible antagonist of CB1, as well as two derivatives of AM6538 (AM4112 and AM6542) as slowly dissociating CB1 antagonists across binding simulations and cellular signaling assays. The long-lasting nature of AM6538 was explored in vivo wherein AM6538 continues to block CP55,940-mediated behaviors in mice up to 5 days after a single injection. In contrast, the effects of SR141716A abate in mice 2 days after injection. These studies demonstrate the functional outcome of CB1 antagonist modification and open the path for development of long-lasting CB1 antagonists.


Assuntos
Antagonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Nitratos/metabolismo , Nitratos/farmacologia , Piperidinas/metabolismo , Piperidinas/farmacologia , Pirazóis/metabolismo , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptor CB1 de Canabinoide/química
4.
Proc Natl Acad Sci U S A ; 112(27): 8469-74, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100912

RESUMO

G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1-it simultaneously increases agonist binding, decreases G--protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Algoritmos , Animais , Ligação Competitiva , Células COS , Chlorocebus aethiops , Cicloexanóis/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Indóis/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Mutação , Piperidinas/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pirazóis/metabolismo , Ensaio Radioligante , Receptor CB1 de Canabinoide/genética , Rimonabanto
5.
Molecules ; 23(9)2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30200181

RESUMO

Two 3D quantitative structure⁻activity relationships (3D-QSAR) models for predicting Cannabinoid receptor 1 and 2 (CB1 and CB2) ligands have been produced by way of creating a practical tool for the drug-design and optimization of CB1 and CB2 ligands. A set of 312 molecules have been used to build the model for the CB1 receptor, and a set of 187 molecules for the CB2 receptor. All of the molecules were recovered from the literature among those possessing measured Ki values, and Forge was used as software. The present model shows high and robust predictive potential, confirmed by the quality of the statistical analysis, and an adequate descriptive capability. A visual understanding of the hydrophobic, electrostatic, and shaping features highlighting the principal interactions for the CB1 and CB2 ligands was achieved with the construction of 3D maps. The predictive capabilities of the model were then used for a scaffold-hopping study of two selected compounds, with the generation of a library of new compounds with high affinity for the two receptors. Herein, we report two new 3D-QSAR models that comprehend a large number of chemically different CB1 and CB2 ligands and well account for the individual ligand affinities. These features will facilitate the recognition of new potent and selective molecules for CB1 and CB2 receptors.


Assuntos
Agonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/química , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Desenho de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Software , Eletricidade Estática
6.
J Pharmacol Exp Ther ; 362(1): 210-218, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28442584

RESUMO

Synthetic cannabinoids (SCs) represent an emerging class of abused drugs associated with psychiatric complications and other substantial health risks. These ligands are largely sold over the internet for human consumption, presumably because of their high cannabinoid 1 receptor (CB1R) affinity and their potency in eliciting pharmacological effects similar to Δ9-tetrahydrocannabinol (THC), as well as circumventing laws illegalizing this plant. Factors potentially contributing to the increased prevalence of SC abuse and related hospitalizations, such as increased CB1R efficacy and non-CB1R targets, highlight the need for quantitative pharmacological analyses to determine receptor mediation of the pharmacological effects of cannabinoids. Accordingly, the present study used pA2 and pKB analyses for quantitative determination of CB1R mediation in which we utilized the CB1R-selective inverse agonist/antagonist rimonabant to elicit rightward shifts in the dose-response curves of five SCs (i.e., A-834,735D; WIN55,212-2; CP55,950; JWH-073; and CP47,497) and THC in producing common cannabimimetic effects (i.e., catalepsy, antinociception, and hypothermia). The results revealed overall similarity of pA2 and pKB values for these compounds and suggest that CB1Rs, and not other pharmacological targets, largely mediated the central pharmacological effects of SCs. More generally, affinity estimation offers a powerful pharmacological approach to assess potential receptor heterogeneity subserving in vivo pharmacological effects of SCs.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Canabinoides/metabolismo , Dronabinol/metabolismo , Piperidinas/metabolismo , Pirazóis/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Antagonistas de Receptores de Canabinoides/administração & dosagem , Canabinoides/administração & dosagem , Relação Dose-Resposta a Droga , Dronabinol/administração & dosagem , Combinação de Medicamentos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Piperidinas/administração & dosagem , Pirazóis/administração & dosagem , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto
7.
J Pharmacol Exp Ther ; 362(2): 278-286, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28533288

RESUMO

Synthetic cannabinoids have been prohibited due to abuse liability and toxicity. Four such synthetic cannabinoids, AM-2201 ([1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-ylmethanone), CP-47,497 (2-[(1R,3S)-3-hydroxycyclohexyl]-5-(2-methyloctan-2-yl)phenol), JWH-122 [(4-methylnaphthalen-1-yl)-(1-pentylindol-3-yl)methanone], and JWH-250 [2-(2-methoxyphenyl)-1-(1-pentylindol-3-yl)ethanone], were tested for their capacity to produce CB1 receptor-mediated discriminative stimulus effects in two groups of rhesus monkeys. One group (n = 4) discriminated Δ9-tetrahydrocannabinol (∆9-THC; 0.1 mg/kg i.v.), and a second group (n = 4) discriminated the cannabinoid antagonist rimonabant (1 mg/kg i.v.) while receiving 1 mg/kg/12 hours of ∆9-THC. AM-2201, JWH-122, CP-47,497, JWH-250, and ∆9-THC increased ∆9-THC lever responding. Duration of action was 1-2 hours for AM-2201, JWH-122, and JWH-250 and 4-5 hours for CP-47,497 and ∆9-THC. Rimonabant (1 mg/kg) surmountably antagonized the discriminative stimulus effects of all cannabinoid agonists; the magnitude of rightward shift was 10.6-fold for AM-2201, 10.7-fold for JWH-122, 11.0-fold for CP-47,497, and 15.7-fold for JWH-250. The respective pKB values were not significantly different: 6.61, 6.65, 6.66, and 6.83. In ∆9-THC-treated monkeys discriminating rimonabant, AM-2201 (0.1 and 0.32 mg/kg), JWH-122 (0.32 and 1 mg/kg), JWH-250 (1 and 3.2 mg/kg), and CP-47,497 (0.32, 1, and 3.2 mg/kg) produced not only rate-decreasing effects that were reversed by rimonabant, but also dose-dependent, rightward shifts in the rimonabant discrimination dose-effect function. These results show striking similarity in the CB1 receptor mechanism mediating the subjective effects of AM-2201, JWH-122, JWH-250, and CP-47,497. For products containing AM-2201 and JWH-122, a short duration of action could lead to more frequent use; moreover, inattention to differences in potency among synthetic cannabinoids could underlie unexpected toxicity. Rapid reversal of effects by intravenous rimonabant has potential value in emergency situations.


Assuntos
Antagonistas de Receptores de Canabinoides/metabolismo , Canabinoides/metabolismo , Cicloexanóis/metabolismo , Indóis/metabolismo , Naftalenos/metabolismo , Piperidinas/metabolismo , Pirazóis/metabolismo , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Cicloexanóis/farmacologia , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia , Relação Dose-Resposta a Droga , Feminino , Indóis/farmacologia , Macaca mulatta , Masculino , Naftalenos/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto
8.
IUBMB Life ; 69(11): 834-840, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28976704

RESUMO

The endocannabinoid system is a unique neuromodulatory system that affects a wide range of biological processes and maintains the homeostasis in all mammal body systems. In recent years, several pharmacological tools to target endocannabinoid neurotransmission have been developed, including direct and indirect cannabinoid agonists and cannabinoid antagonists. Due to their hydrophobic nature, cannabinoid agonists and antagonists need to bind specific transporters to allow their distribution in body fluids. Human serum albumin (HSA), the most abundant plasma protein, is a key determinant of drug pharmacokinetics. As HSA binds both the endocannabinoid anandamide and the active ingredient of Cannabis sativa, Δ-9-tetrahydrocannabinol, we hypothesize that HSA can be the most important carrier of cannabinoid drugs. In silico docking observations strongly indicate that HSA avidly binds the indirect cannabinoid agonists URB597, AM5206, JZL184, JZL195, and AM404, the direct cannabinoid agonists WIN55,212-2 and CP55,940, and the prototypical cannabinoid antagonist/inverse agonist SR141716. Values of the free energy for cannabinoid drugs binding to HSA range between -5.4 kcal mol-1 and -10.9 kcal mol-1 . Accounting for the HSA concentration in vivo (∼ 7.5 × 10-4 M), values of the free energy here determined suggest that the formation of the HSA:cannabinoid drug complexes may occur in vivo. Therefore, HSA appears to be an important determinant for cannabinoid efficacy and may guide the choice of the drug dose regimen to optimize drug efficacy and to avoid drug-related toxicity. © 2017 IUBMB Life, 69(11):834-840, 2017.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Proteínas de Transporte/metabolismo , Endocanabinoides/metabolismo , Albumina Sérica Humana/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Agonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/química , Proteínas de Transporte/química , Endocanabinoides/química , Humanos , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Albumina Sérica Humana/química , Especificidade por Substrato , Transmissão Sináptica/fisiologia , Termodinâmica
9.
J Med Virol ; 88(1): 1-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26059175

RESUMO

Cannabinoids, the active ingredient in marijuana, and their derivatives have received remarkable attention in the last two decades because they can affect tumor growth and metastasis. There is a large body of evidence from in vivo and in vitro models showing that cannabinoids and their receptors influence the immune system, viral pathogenesis, and viral replication. The present study reviews current insights into the role of cannabinoids and their receptors on viral infections. The results reported here indicate that cannabinoids and their receptors have different sequels for viral infection. Although activation or inhibition of cannabinoid receptors in the majority of viral infections are proper targets for development of safe and effective treatments, caution is required before using pharmaceutical cannabinoids as a treatment agent for patients with viral infections.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Canabinoides/metabolismo , Fatores Imunológicos/metabolismo , Viroses/imunologia , Humanos
10.
Pharmacol Res ; 110: 173-180, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27117667

RESUMO

2-Arachidonoylglycerol (2-AG) is the most abundant endogenous cannabinoid in the brain and an agonist at two cannabinoid receptors (CB1 and CB2). The synthesis, degradation and signaling of 2-AG have been investigated in detail but its relationship to other endogenous monoacylglycerols has not been fully explored. Three congeners that have been isolated from the CNS are 2-linoleoylglycerol (2-LG), 2-oleoylglycerol (2-OG), and 2-palmitoylglycerol (2-PG). These lipids do not orthosterically bind to cannabinoid receptors but are reported to potentiate the activity of 2-AG, possibly through inhibition of 2-AG degradation. This phenomenon has been dubbed the 'entourage effect' and has been proposed to regulate synaptic activity of 2-AG. To clarify the activity of these congeners of 2-AG we tested them in neuronal and cell-based signaling assays. The signaling profile for these compounds is inconsistent with an entourage effect. None of the compounds inhibited neurotransmission via CB1 in autaptic neurons. Interestingly, each failed to potentiate 2-AG-mediated depolarization-induced suppression of excitation (DSE), behaving instead as antagonists. Examining other signaling pathways we found that 2-OG interferes with agonist-induced CB1 internalization while 2-PG modestly internalizes CB1 receptors. However in tests of pERK, cAMP and arrestin recruitment, none of the acylglycerols altered CB1 signaling. Our results suggest 1) that these compounds do not serve as entourage compounds under the conditions examined, and 2) that they may instead serve as functional antagonists. Our results suggest that the relationship between 2-AG and its congeners is more nuanced than previously appreciated.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Arrestina/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicerídeos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Fatores de Tempo , Transfecção
11.
Br Poult Sci ; 56(4): 443-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053311

RESUMO

The aim of the current study was to investigate the interaction of the nitric oxide and cannabinoidergic systems on feeding behaviour in neonatal chicken. A total of 6 experiments were designed to evaluate the interaction between cannabinoidergic and nitrergic systems on food intake in 3-h food-deprived (FD3) neonatal chickens. In Experiment 1, chickens received intracerebroventricular (ICV) injections of saline, 2-arachidonoylglycerol (2-AG) (a CB1 receptor agonist, 2 µg), l-arginine (nitric oxide precursor, 200 nmol) and co-administration of 2-AG + l-arginine. In Experiment 2, ICV injection of saline, 2-AG (2 µg), l-NAME (a nitric oxide synthesis inhibitor, 100 nmol) and their combination (2-AG + l-NAME) were applied to the birds. In Experiment 3, injections were saline, CB65 (a CB2 receptor agonist, 1.25 µg), l-arginine (200 nmol) and CB65 + l-arginine. In Experiment 4, birds received ICV injection of saline, CB65 (1.25 µg), l-NAME (100 nmol) and CB65 + l-NAME. In Experiment 5, chickens were ICV injected with saline, l-arginine (800 nmol), SR141716A (a selective CB1 receptor antagonist, 6.25 µg) and l-arginine + SR141716A. In Experiment 6, birds were injected with saline, l-arginine (800 nmol), AM630 (a selective CB2 receptor antagonist, 5 µg) and l-arginine + AM630. Cumulative food intake was recorded until 2-h post injection. ICV injection of CB1 and CB2 receptor agonists increased food intake. Co-injection of 2-AG + l-NAME increased the hyperphagic effects of CB1 receptors. CB2 receptor-induced food intake was not affected by co-administration of CB65 + l-NAME. l-Arginine decreased food intake and this effect was amplified by co-injection of l-arginine + SR141716A. However; CB2 receptor antagonists had no effect on l-arginine-induced hypophagia. The results suggest that there is an interaction between endogenous nitric oxide and the cannabinoidergic system on feeding behaviour which is mediated via CB1 receptors in the neonatal chicken.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Galinhas/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Privação de Alimentos , Infusões Intraventriculares , Óxido Nítrico/antagonistas & inibidores
12.
Biochem Biophys Res Commun ; 452(3): 334-9, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25148941

RESUMO

We performed molecular modeling and docking to predict a putative binding pocket and associated ligand-receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor.


Assuntos
Canfanos/química , Agonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/química , Cicloexanóis/química , Leucina/química , Pirazóis/química , Receptor CB2 de Canabinoide/química , Valina/química , Animais , Sítios de Ligação , Células CHO , Canfanos/metabolismo , Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Cricetulus , AMP Cíclico/química , AMP Cíclico/metabolismo , Cicloexanóis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Leucina/genética , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Pirazóis/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Valina/genética
13.
Chem Res Toxicol ; 26(1): 124-35, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23234359

RESUMO

The cannabinoid type 1 receptor (CB1r) antagonist rimonabant was approved in 2006 for the treatment of obesity but was withdrawn in 2008 due to serious drug-related psychiatric disorders. In vitro metabolism studies with rimonabant have revealed high levels of reactive metabolite formation, which resulted in irreversible time-dependent P450 3A4 inhibition and in covalent binding to microsomal proteins. In the present study, an in vitro approach has been used to explore whether metabolic bioactivation of rimonabant might result in cell toxicity. A panel of SV40-T-antigen-immortalized human liver derived (THLE) cells that had been transfected with vectors encoding various human cytochrome P450 enzymes (THLE-1A2, 2C9, 2C19, 2D6, and 3A4) or with an empty vector (THLE-Null) were exposed to rimonabant. Cell toxicity and covalent binding to cellular proteins were evaluated, as was metabolite formation. Rimonabant exhibited markedly potentiated dose and time dependent cytotoxicity to THLE-3A4 cells, compared to that of all other THLE cell lines. This was accompanied by high levels of covalent binding of [(14)C]-rimonabant to THLE-3A4 cell proteins (1433 pmol drug equivalents/mg protein) and the formation of several metabolites that were not generated by THLE-Null cells. These included N-aminopiperidine (NAP) and an iminium ion species. However, no toxicity was observed when THLE cells were incubated with NAP. Glutathione depletion did not alter the observed potent cell cytotoxicity of rimonabant to THLE-3A4 cells. Preincubation of THLE-3A4 cells with the cytochrome P450 3A4 inhibitor ritonavir blocked the selective toxicity of rimonabant to these cells. In addition, ritonavir pretreatment blocked the metabolism of the compound in the cells and thereby significantly decreased the covalent binding of [(14)C]-rimonabant to THLE-3A4 cell proteins. We conclude that the potent toxicity of rimonabant in THLE-3A4 cells occurs by a mechanistic sequence, which is initiated by cytochrome P450 3A4 mediated formation of a highly cytotoxic reactive iminium ion metabolite that binds covalently to cellular proteins.


Assuntos
Antagonistas de Receptores de Canabinoides/química , Iminas/química , Piperidinas/química , Pirazóis/química , Antagonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/toxicidade , Radioisótopos de Carbono/química , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Humanos , Íons/química , Metaboloma/efeitos dos fármacos , Piperidinas/metabolismo , Piperidinas/farmacologia , Piperidinas/toxicidade , Cianeto de Potássio/química , Cianeto de Potássio/farmacologia , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Pirazóis/metabolismo , Pirazóis/toxicidade , Rimonabanto , Ritonavir/química , Ritonavir/farmacologia
14.
Mol Pharm ; 9(5): 1351-60, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22428727

RESUMO

Although the CB1 receptor antagonist/inverse agonist rimonabant has positive effects on weight loss and cardiometabolic risk factors, neuropsychiatric side effects have prompted researchers to develop peripherally acting derivatives. Here, we investigated for a series of 3,4-diarylpyrazoline CB1 receptor antagonists if transport by the brain efflux transporter P-gp could be used as a selection criterion in the development of such drugs. All 3,4-diarylpyrazolines and rimonabant inhibited P-gp transport activity in membrane vesicles isolated from HEK293 cells overexpressing the transporter, but only the 1,1-dioxo-thiomorpholino analogue 23 exhibited a reduced accumulation (-38 ± 2%) in these cells, which could be completely reversed by the P-gp/BCRP inhibitor elacridar. In addition, 23 appeared to be a BCRP substrate, whereas rimonabant was not. In rats, the in vivo brain/plasma concentration ratio of 23 was significantly lower than for rimonabant (0.4 ± 0.1 vs 6.2 ± 1.6, p < 0.001). Coadministration of elacridar resulted in an 11-fold increase of the brain/plasma ratio for 23 (p < 0.01) and only 1.4-fold for rimonabant (p < 0.05), confirming the involvement of P-gp and possibly BCRP in limiting the brain entrance of 23 in vivo. In conclusion, these data support the conception that efflux via transporters such as P-gp and BCRP can limit the brain penetration of CB1 receptor antagonists, and that this property could be used in the development of peripheral antagonists.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica , Western Blotting , Antagonistas de Receptores de Canabinoides/metabolismo , Linhagem Celular , Humanos , Cinética , Masculino , Proteínas de Neoplasias/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Quinidina/farmacologia , Ratos , Ratos Wistar , Rimonabanto , Espectrometria de Massas em Tandem , Tetra-Hidroisoquinolinas/farmacologia
15.
J Med Chem ; 65(3): 2374-2387, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35084860

RESUMO

In the present report, we describe the synthesis and structure-activity relationships of novel "four-arm" dihydropyrazoline compounds designed as peripherally restricted antagonists of cannabinoid-1 receptor (CB1R). A series of racemic 3,4-diarylpyrazolines were synthesized and evaluated initially in CB1 receptor binding assays. The novel compounds, designed to limit brain penetrance and decreased lipophilicity, showed high affinity for CB1R and potent in vitro CB1R antagonist activities. Promising compounds with potent CB1R activity were evaluated in tissue distribution studies. Compounds 6a, 6f, and 7c showed limited brain penetrance attesting to its peripheral restriction. The 4S-enantiomer of these compounds further showed a stereoselective affinity for the CB1 receptor and behaved as inverse agonists. In vivo studies on food intake and body weight reduction in diet-induced obese (DIO) mice showed that these compounds could serve as potential leads for the development of selective CB1R antagonists with improved potency and peripheral restriction.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Obesidade/tratamento farmacológico , Pirazóis/uso terapêutico , Receptor CB1 de Canabinoide/metabolismo , Animais , Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/metabolismo , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/metabolismo , Dieta Hiperlipídica , Agonismo Inverso de Drogas , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
16.
Artigo em Inglês | MEDLINE | ID: mdl-31442553

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease and its characteristic is the progressive degeneration of dopaminergic neurons within the substantia nigra (SN) of the midbrain. There is hardly any clinically proven efficient therapeutics for its cure in several recent preclinical advances proposed to treat PD. Recent studies have found that the endocannabinoid signaling system in particular the comprised two receptors, CB1 and CB2 receptors, has a significant regulatory function in basal ganglia and is involved in the pathogenesis of PD. Therefore, adding new insights into the biochemical interactions between cannabinoids and other signaling pathways may help develop new pharmacological strategies. Factors of the endocannabinoid system (ECS) are abundantly expressed in the neural circuits of basal ganglia, where they interact interactively with glutamatergic, γ-aminobutyric acid-ergic (GABAergic), and dopaminergic signaling systems. Although preclinical studies on PD are promising, the use of cannabinoids at the clinical level has not been thoroughly studied. In this review, we evaluated the available evidence and reviewed the involvement of ECS in etiologies, symptoms and treatments related to PD. Since CB1 and CB2 receptors are the two main receptors of endocannabinoids, we primarily put the focus on the therapeutic role of CB1 and CB2 receptors in PD. We will try to determine future research clues that will help understand the potential therapeutic benefits of the ECS in the treatment of PD, aiming to open up new strategies and ideas for the treatment of PD.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Moduladores de Receptores de Canabinoides/metabolismo , Moduladores de Receptores de Canabinoides/uso terapêutico , Canabinoides/metabolismo , Canabinoides/uso terapêutico , Capsaicina/análogos & derivados , Capsaicina/metabolismo , Capsaicina/uso terapêutico , Endocanabinoides/metabolismo , Endocanabinoides/uso terapêutico , Humanos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores
17.
Pharmacol Res Perspect ; 8(5): e00663, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32965798

RESUMO

The antiallodynic effect of PhAR-DBH-Me was evaluated on two models of neuropathic pain, and the potential roles of CB1, CB2, and TRPV1 receptors as molecular targets of PhAR-DBH-Me were studied. Female Wistar rats were submitted to L5/L6 spinal nerve ligation (SNL) or repeated doses of cisplatin (0.1 mg/kg, i.p.) to induce experimental neuropathy. Then, tactile allodynia was determined, and animals were treated with logarithmic doses of PhAR-DBH-Me (3.2-100 mg/kg, i.p.). To evaluate the mechanism of action of PhAR-DBH-Me, in silico studies using crystallized structures of CB1, CB2, and TRPV1 receptors were performed. To corroborate the computational insights, animals were intraperitoneally administrated with antagonists for CB1 (AM-251, 3 mg/kg), CB2 (AM-630, 1 mg/kg), and TRPV1 receptors (capsazepine, 3 mg/kg), 15 min before to PhAR-DBH-Me (100 mg/kg) administration. Vagal stimulation evoked on striated muscle contraction in esophagus, was used to elicited pharmacological response of PhAR-DBH-ME on nervous tissue. Systemic administration of PhAR-DBH-Me reduced the SNL- and cisplatin-induced allodynia. Docking studies suggested that PhAR-DBH-Me acts as an agonist for CB1, CB2, and TRPV1 receptors, with similar affinity to the endogenous ligand anandamide. Moreover antiallodynic effect of PhAR-DBH-Me was partially prevented by administration of AM-251 and AM-630, and completely prevented by capsazepine. Finally, PhAR-DBH-Me decreased the vagally evoked electrical response in esophagus rat. Taken together, results indicate that PhAR-DBH-Me induces an antiallodynic effect through partial activation of CB1 and CB2 receptors, as well as desensitization of TRPV1 receptors. Data also shed light on the novel vanilloid nature of the synthetic compound PhAR-DBH-Me.


Assuntos
Compostos Azabicíclicos/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Hiperalgesia/induzido quimicamente , Ácidos Oleicos/farmacologia , Canais de Cátion TRPV/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Ácidos Araquidônicos/metabolismo , Compostos Azabicíclicos/administração & dosagem , Antagonistas de Receptores de Canabinoides/metabolismo , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Endocanabinoides/metabolismo , Feminino , Hiperalgesia/tratamento farmacológico , Injeções Intraperitoneais , Ligadura/métodos , Modelos Animais , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Ácidos Oleicos/administração & dosagem , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Wistar , Nervos Espinhais/efeitos dos fármacos , Nervos Espinhais/cirurgia , Canais de Cátion TRPV/antagonistas & inibidores , Estimulação do Nervo Vago/métodos
18.
J Med Chem ; 62(13): 6330-6345, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185168

RESUMO

Peripherally restricted CB1 receptor antagonists may be useful in treating metabolic syndrome, diabetes, liver diseases, and gastrointestinal disorders. Clinical development of the centrally acting CB1 inverse agonist otenabant (1) was halted due to its potential of producing adverse effects. SAR studies of 1 are reported herein with the objective of producing peripherally restricted analogues. Crystal structures of hCB1 and docking studies with 1 indicate that the piperidine group could be functionalized at the 4-position to access a binding pocket that can accommodate both polar and nonpolar groups. The piperidine is studied as a linker, functionalized with alkyl, heteroalkyl, aryl, and heteroaryl groups using a urea connector. Orally bioavailable and peripherally selective compounds have been produced that are potent inverse agonists of hCB1 with exceptional selectivity for hCB1 over hCB2. Compound 38 blocked alcohol-induced liver steatosis in mice and has good ADME properties for further development.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Piperidinas/farmacologia , Purinas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Animais , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Agonismo Inverso de Drogas , Fígado Gorduroso/patologia , Fígado Gorduroso/prevenção & controle , Feminino , Humanos , Fígado/patologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/metabolismo , Purinas/síntese química , Purinas/metabolismo , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
19.
Drug Alcohol Depend ; 194: 20-27, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391834

RESUMO

BACKGROUND: The recent NIH mandate to consider sex as a biological variable in preclinical research has focused attention on delineation of sex differences in behavior. To investigate mechanisms underlying sex differences in Δ9-tetrahydrocannabinol (THC) effects, we examined the effects of sex and gonadal hormones on CB1 receptors in cerebellum, hippocampus, prefrontal cortex, and striatum. METHODS: Adult Sprague-Dawley rats underwent gonadectomy (GDX) or sham-GDX. Half of the GDX females and males received estradiol or testosterone replacement (GDX+H), respectively. All rats were injected with vehicle or 30 mg/kg THC twice daily for 1 week before brain collection. CP55,940-stimulated [35S]GTPγS and [3H]SR141716A saturation binding assays were performed. RESULTS: With exception of enhanced receptor activation in the hippocampi of female rats compared to males, vehicle-treated rats exhibited minimal sex differences in CB1 receptor densities or G-protein coupling. Repeated treatment with THC resulted in pronounced CB1 receptor desensitization and downregulation in both sexes in all brain regions with a greater magnitude of change in females. CONCLUSIONS: These results suggest that sex differences in the density and G-protein coupling of brain CB1 receptors may play a limited role in sex differences in acute THC effects not mediated by the hippocampus. In contrast, sex differences after repeated THC were common, with females (intact, GDX, and GDX+H) showing greater downregulation or desensitization in all four brain regions compared to the respective male groups. This result is consistent with a finding that women tend to progress to tolerance and dependence quicker than men after initiation of cannabis use.


Assuntos
Encéfalo/metabolismo , Dronabinol/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Caracteres Sexuais , Animais , Encéfalo/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Dronabinol/farmacologia , Tolerância a Medicamentos/fisiologia , Estradiol/metabolismo , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Rimonabanto/metabolismo , Rimonabanto/farmacologia , Testosterona/metabolismo
20.
Biochem Pharmacol ; 151: 166-179, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29102677

RESUMO

While equilibrium binding affinities and in vitro functional antagonism of CB1 receptor antagonists have been studied in detail, little is known on the kinetics of their receptor interaction. In this study, we therefore conducted kinetic assays for nine 1-(4,5-diarylthiophene-2-carbonyl)-4-phenylpiperidine-4-carboxamide derivatives and included the CB1 antagonist rimonabant as a comparison. For this we newly developed a dual-point competition association assay with [3H]CP55940 as the radioligand. This assay yielded Kinetic Rate Index (KRI) values from which structure-kinetics relationships (SKR) of hCB1 receptor antagonists could be established. The fast dissociating antagonist 6 had a similar receptor residence time (RT) as rimonabant, i.e. 19 and 14 min, respectively, while the slowest dissociating antagonist (9) had a very long RT of 2222 min, i.e. pseudo-irreversible dissociation kinetics. In functional assays, 9 displayed insurmountable antagonism, while the effects of the shortest RT antagonist 6 and rimonabant were surmountable. Taken together, this study shows that hCB1 receptor antagonists can have very divergent RTs, which are not correlated to their equilibrium affinities. Furthermore, their RTs appear to define their mode of functional antagonism, i.e. surmountable vs. insurmountable. Finally, based on the recently resolved hCB1 receptor crystal structure, we propose that the differences in RT can be explained by a different binding mode of antagonist 9 from short RT antagonists that is able to displace unfavorable water molecules. Taken together, these findings are of importance for future design and evaluation of potent and safe hCB1 receptor antagonists.


Assuntos
Antagonistas de Receptores de Canabinoides , Receptor CB1 de Canabinoide/metabolismo , Animais , Ligação Competitiva , Células CHO , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/metabolismo , Cricetulus , Cicloexanóis/metabolismo , Cinética , Ligantes , Ligação Proteica , Ensaio Radioligante , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA