Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179.569
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 153-178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941602

RESUMO

The intestine is the largest peripheral lymphoid organ in animals, including humans, and interacts with a vast array of microorganisms called the gut microbiota. Comprehending the symbiotic relationship between the gut microbiota and our immune system is essential not only for the field of immunology but also for understanding the pathogenesis of various systemic diseases, including cancer, cardiometabolic disorders, and extraintestinal autoimmune conditions. Whereas microbe-derived antigens are crucial for activating the intestinal immune system, particularly T and B cells, as environmental cues, microbes and their metabolites play a critical role in directing the differentiation of these immune cells. Microbial metabolites are regarded as messengers from the gut microbiota, since bacteria have the ability to produce unique molecules that humans cannot, and many immune cells in the intestine express receptors for these molecules. This review highlights the distinct relationships between microbial metabolites and the differentiation and function of the immune system.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Microbioma Gastrointestinal/imunologia , Diferenciação Celular , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Bactérias/imunologia , Bactérias/metabolismo
2.
Annu Rev Biochem ; 93(1): 139-161, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38598855

RESUMO

CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated nuclease) defense systems have been naturally coopted for guide RNA-directed transposition on multiple occasions. In all cases, cooption occurred with diverse elements related to the bacterial transposon Tn7. Tn7 tightly controls transposition; the transposase is activated only when special targets are recognized by dedicated target-site selection proteins. Tn7 and the Tn7-like elements that coopted CRISPR-Cas systems evolved complementary targeting pathways: one that recognizes a highly conserved site in the chromosome and a second pathway that targets mobile plasmids capable of cell-to-cell transfer. Tn7 and Tn7-like elements deliver a single integration into the site they recognize and also control the orientation of the integration event, providing future potential for use as programmable gene-integration tools. Early work has shown that guide RNA-directed transposition systems can be adapted to diverse hosts, even within microbial communities, suggesting great potential for engineering these systems as powerful gene-editing tools.


Assuntos
Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , RNA Guia de Sistemas CRISPR-Cas , Transposases , Elementos de DNA Transponíveis/genética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Transposases/metabolismo , Transposases/genética , Edição de Genes/métodos , Bactérias/genética , Plasmídeos/metabolismo , Plasmídeos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
3.
Cell ; 187(2): 228-234, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242080

RESUMO

This personal story recounts the accidental observation, the struggles, the breakthroughs, and the collaborative spirit of a few individuals that led to the discovery that bacterial cells expend energy to effectively fluidize their otherwise "glass-like" cytoplasm and promote the dispersal of large cytoplasmic components. This adventure, which led us into an uncharted world at the intersection of cell biology and condensed matter physics about ten years ago, forever transformed the way I view cells and conduct research.


Assuntos
Bactérias , Citoplasma , Humanos , Citosol , Bactérias/citologia
4.
Cell ; 187(19): 5151-5170, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303684

RESUMO

Microbes were the only form of life on Earth for most of its history, and they still account for the vast majority of life's diversity. They convert rocks to soil, produce much of the oxygen we breathe, remediate our sewage, and sustain agriculture. Microbes are vital to planetary health as they maintain biogeochemical cycles that produce and consume major greenhouse gases and support large food webs. Modern microbiologists analyze nucleic acids, proteins, and metabolites; leverage sophisticated genetic tools, software, and bioinformatic algorithms; and process and integrate complex and heterogeneous datasets so that microbial systems may be harnessed to address contemporary challenges in health, the environment, and basic science. Here, we consider an inevitably incomplete list of emergent themes in our discipline and highlight those that we recognize as the archetypes of its modern era that aim to address the most pressing problems of the 21st century.


Assuntos
Microbiologia , Microbiologia/tendências , Biologia Computacional/métodos , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Humanos
5.
Cell ; 187(19): 5119-5120, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303680

RESUMO

Life as we know it began with microbes. Microbes sustain life on Earth, and every now and then, a microbe emerges that threatens the survival of an entire species. The dangers and benefits of microbial life are both enormous, as is their potential to help us live long, healthy, sustainable lives. Microbiology at Cell celebrates 50 years, and we're proud to showcase the marvelous and yet mysterious microbial world in our anniversary focus issue.


Assuntos
Microbiologia , Microbiologia/tendências , Humanos , Bactérias/metabolismo , Bactérias/genética , Microbiota
6.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428395

RESUMO

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Assuntos
Bactérias , Trato Gastrointestinal , Metagenoma , Plasmídeos , Humanos , Bactérias/genética , Bacteroidetes/genética , Fezes/microbiologia , Plasmídeos/genética
7.
Cell ; 187(12): 2905-2906, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848675

RESUMO

Microbial communities perform many important functions, such as carbon sequestration, decomposition, pathogen resistance, etc., but quantitatively predicting functions of new communities remains a major challenge. In this issue of Cell, Diaz-Colunga et al. report a new simple statistical regularity that enables such predictions.


Assuntos
Microbiologia Ambiental , Microbiota , Bactérias/metabolismo , Bactérias/genética , Microbiota/fisiologia , Modelos Biológicos
8.
Cell ; 187(4): 999-1010.e15, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325366

RESUMO

Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.


Assuntos
Inteligência Artificial , Proteínas , Proteoma , Humanos , Proteínas/química , Proteínas/genética , Archaea/química , Archaea/genética , Eucariotos/química , Eucariotos/genética , Bactérias/química , Bactérias/genética
9.
Cell ; 187(20): 5775-5795.e15, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39214080

RESUMO

Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Humanos , Metagenoma/genética , Microbioma Gastrointestinal/genética , Microbiota/genética , Microbiologia de Alimentos , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação
10.
Cell ; 187(20): 5530-5539.e8, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39197447

RESUMO

Animal and bacterial cells sense and defend against viral infections using evolutionarily conserved antiviral signaling pathways. Here, we show that viruses overcome host signaling using mechanisms of immune evasion that are directly shared across the eukaryotic and prokaryotic kingdoms of life. Structures of animal poxvirus proteins that inhibit host cGAS-STING signaling demonstrate architectural and catalytic active-site homology shared with bacteriophage Acb1 proteins, which inactivate CBASS anti-phage defense. In bacteria, phage Acb1 proteins are viral enzymes that degrade host cyclic nucleotide immune signals. Structural comparisons of poxvirus protein-2'3'-cGAMP and phage Acb1-3'3'-cGAMP complexes reveal a universal mechanism of host nucleotide immune signal degradation and explain kingdom-specific additions that enable viral adaptation. Chimeric bacteriophages confirm that animal poxvirus proteins are sufficient to evade immune signaling in bacteria. Our findings identify a mechanism of immune evasion conserved between animal and bacterial viruses and define shared rules that explain host-virus interactions across multiple kingdoms of life.


Assuntos
Evasão da Resposta Imune , Proteínas Virais , Animais , Proteínas Virais/metabolismo , Proteínas Virais/química , Humanos , Bacteriófagos/imunologia , Transdução de Sinais , Poxviridae/imunologia , Poxviridae/genética , Interações Hospedeiro-Patógeno/imunologia , Bactérias/imunologia , Bactérias/metabolismo
11.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569543

RESUMO

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Assuntos
Bactérias , Doenças Cardiovasculares , Colesterol , Microbioma Gastrointestinal , Humanos , Bactérias/metabolismo , Doenças Cardiovasculares/metabolismo , Colesterol/análise , Colesterol/sangue , Colesterol/metabolismo , Fezes/química , Estudos Longitudinais , Metaboloma , Metabolômica , RNA Ribossômico 16S/metabolismo
12.
Cell ; 187(19): 5195-5216, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303686

RESUMO

Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs. More importantly, the ubiquitous and global role of microbes means that they present new opportunities for synergistically accelerating progress toward multiple sustainability goals. By effectively managing microbial health, we can achieve solutions that address multiple sustainability targets ranging from climate and human health to food and energy production. Emerging international policy frameworks should reflect the vital importance of microorganisms in achieving a sustainable future.


Assuntos
Desenvolvimento Sustentável , Humanos , Nações Unidas , Objetivos , Bactérias/metabolismo , Saúde Global , Fungos/metabolismo
13.
Cell ; 187(12): 2903-2904, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848674

RESUMO

Gut microbes are known to impact host physiology in several ways. However, key molecular players in host-commensal interactions remain to be uncovered. In this issue of Cell, McCurry et al. reveal that gut bacteria perform 21-dehydroxylation to convert abundant biliary corticoids to neurosteroids using readily available H2 in their environment.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Bactérias/metabolismo , Neurotransmissores/metabolismo
14.
Cell ; 187(14): 3761-3778.e16, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843834

RESUMO

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.


Assuntos
Peptídeos Antimicrobianos , Aprendizado de Máquina , Microbiota , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/genética , Humanos , Animais , Antibacterianos/farmacologia , Camundongos , Metagenoma , Bactérias/efeitos dos fármacos , Bactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacos
15.
Cell ; 187(9): 2324-2335.e19, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38599211

RESUMO

Microbial communities are resident to multiple niches of the human body and are important modulators of the host immune system and responses to anticancer therapies. Recent studies have shown that complex microbial communities are present within primary tumors. To investigate the presence and relevance of the microbiome in metastases, we integrated mapping and assembly-based metagenomics, genomics, transcriptomics, and clinical data of 4,160 metastatic tumor biopsies. We identified organ-specific tropisms of microbes, enrichments of anaerobic bacteria in hypoxic tumors, associations between microbial diversity and tumor-infiltrating neutrophils, and the association of Fusobacterium with resistance to immune checkpoint blockade (ICB) in lung cancer. Furthermore, longitudinal tumor sampling revealed temporal evolution of the microbial communities and identified bacteria depleted upon ICB. Together, we generated a pan-cancer resource of the metastatic tumor microbiome that may contribute to advancing treatment strategies.


Assuntos
Microbiota , Metástase Neoplásica , Neoplasias , Humanos , Neoplasias/microbiologia , Neoplasias/patologia , Metagenômica/métodos , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neutrófilos/imunologia , Microambiente Tumoral , Bactérias/genética , Bactérias/classificação
16.
Cell ; 187(3): 750-763.e20, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242132

RESUMO

Breastfeeding offers demonstrable benefits to newborns and infants by providing nourishment and immune protection and by shaping the gut commensal microbiota. Although it has been appreciated for decades that breast milk contains complement components, the physiological relevance of complement in breast milk remains undefined. Here, we demonstrate that weanling mice fostered by complement-deficient dams rapidly succumb when exposed to murine pathogen Citrobacter rodentium (CR), whereas pups fostered on complement-containing milk from wild-type dams can tolerate CR challenge. The complement components in breast milk were shown to directly lyse specific members of gram-positive gut commensal microbiota via a C1-dependent, antibody-independent mechanism, resulting in the deposition of the membrane attack complex and subsequent bacterial lysis. By selectively eliminating members of the commensal gut community, complement components from breast milk shape neonate and infant gut microbial composition to be protective against environmental pathogens such as CR.


Assuntos
Proteínas do Sistema Complemento , Microbioma Gastrointestinal , Leite , Animais , Feminino , Humanos , Lactente , Camundongos , Bactérias , Aleitamento Materno , Citrobacter rodentium , Proteínas do Sistema Complemento/análise , Fatores Imunológicos , Saúde do Lactente , Leite Humano , Leite/química , Infecções por Enterobacteriaceae/imunologia
17.
Cell ; 187(19): 5453-5467.e15, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39163860

RESUMO

Drug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally screened 444,054 previously reported putative small protein families from 1,773 human metagenomes for antimicrobial properties, identifying 323 candidates encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity in vitro, with 70.5% displaying antimicrobial activity. As these compounds were different compared with previously reported antimicrobial peptides, we termed them smORF-encoded peptides (SEPs). SEPs killed bacteria by targeting their membrane, synergizing with each other, and modulating gut commensals, indicating a potential role in reconfiguring microbiome communities in addition to counteracting pathogens. The lead candidates were anti-infective in both murine skin abscess and deep thigh infection models. Notably, prevotellin-2 from Prevotella copri presented activity comparable to the commonly used antibiotic polymyxin B. Our report supports the existence of hundreds of antimicrobials in the human microbiome amenable to clinical translation.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Microbiota , Humanos , Animais , Camundongos , Antibacterianos/farmacologia , Microbiota/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Metagenoma , Feminino , Fases de Leitura Aberta , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Prevotella/efeitos dos fármacos
18.
Cell ; 186(1): 17-31, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608652

RESUMO

Increasing antimicrobial resistance rates have revitalized bacteriophage (phage) research, the natural predators of bacteria discovered over 100 years ago. In order to use phages therapeutically, they should (1) preferably be lytic, (2) kill the bacterial host efficiently, and (3) be fully characterized to exclude side effects. Developing therapeutic phages takes a coordinated effort of multiple stakeholders. Herein, we review the state of the art in phage therapy, covering biological mechanisms, clinical applications, remaining challenges, and future directions involving naturally occurring and genetically modified or synthetic phages.


Assuntos
Bacteriófagos , Terapia por Fagos , Bactérias
19.
Cell ; 186(9): 1863-1876.e16, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37030292

RESUMO

Over the past few years, numerous anti-phage defense systems have been discovered in bacteria. Although the mechanism of defense for some of these systems is understood, a major unanswered question is how these systems sense phage infection. To systematically address this question, we isolated 177 phage mutants that escape 15 different defense systems. In many cases, these escaper phages were mutated in the gene sensed by the defense system, enabling us to map the phage determinants that confer sensitivity to bacterial immunity. Our data identify specificity determinants of diverse retron systems and reveal phage-encoded triggers for multiple abortive infection systems. We find general themes in phage sensing and demonstrate that mechanistically diverse systems have converged to sense either the core replication machinery of the phage, phage structural components, or host takeover mechanisms. Combining our data with previous findings, we formulate key principles on how bacterial immune systems sense phage invaders.


Assuntos
Bactérias , Bacteriófagos , Bactérias/genética , Bactérias/virologia , Bacteriófagos/genética , Sistemas CRISPR-Cas , Proteínas Virais/metabolismo , Mutação , Fenômenos Fisiológicos Bacterianos
20.
Cell ; 186(4): 864-876.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36750095

RESUMO

A fundamental strategy of eukaryotic antiviral immunity involves the cGAS enzyme, which synthesizes 2',3'-cGAMP and activates the effector STING. Diverse bacteria contain cGAS-like enzymes that produce cyclic oligonucleotides and induce anti-phage activity, known as CBASS. However, this activity has only been demonstrated through heterologous expression. Whether bacteria harboring CBASS antagonize and co-evolve with phages is unknown. Here, we identified an endogenous cGAS-like enzyme in Pseudomonas aeruginosa that generates 3',3'-cGAMP during phage infection, signals to a phospholipase effector, and limits phage replication. In response, phages express an anti-CBASS protein ("Acb2") that forms a hexamer with three 3',3'-cGAMP molecules and reduces phospholipase activity. Acb2 also binds to molecules produced by other bacterial cGAS-like enzymes (3',3'-cUU/UA/UG/AA) and mammalian cGAS (2',3'-cGAMP), suggesting broad inhibition of cGAS-based immunity. Upon Acb2 deletion, CBASS blocks lytic phage replication and lysogenic induction, but rare phages evade CBASS through major capsid gene mutations. Altogether, we demonstrate endogenous CBASS anti-phage function and strategies of CBASS inhibition and evasion.


Assuntos
Bactérias , Bacteriófagos , Animais , Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/fisiologia , Imunidade , Nucleotidiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA