Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.211
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Lasers Med Sci ; 39(1): 65, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368311

RESUMO

To investigate the effects of photodynamic therapy (PDT) mediated by hematoporphyrin derivatives (HPD) on the proliferation of small cell lung cancer H446 cells and bronchial epithelial BEAS-2B cells. H446 cells and BEAS-2B cells were cultured in vitro with different concentrations of HPD(0, 5, 10, 12, 15, 20 µg/mL) for 4 h, and then irradiated with 630 nm laser with different energy densities (0, 25, 50, 75, 100 mW/cm2). Cell viability of H446 cells and BEAS-2B cells were detected by CCK8 assay. The cell apoptosis was observed with Annexin V-FTTC/PI double staining and Hoechst 33258. The RT-PCR examination was applied to detect the transcriptional changes of the mRNA of Bax、Bcl-2, and Caspase-9. The results of CCK8 showed that when the HPD was 15 µg/mL and the laser power density reached 50 mW/cm2, the cell viability was significantly decreased compared with the black control group. Hoechst 33258 staining showed that with the increase of HPD concentration, the cell density was reduced, and apoptotic cells increased. Flow cytometry assay revealed that the apoptotic rates of the HPD-PDT group of H446 cells and BEAS-2B cells were significantly different from those of the blank control group. The RT-PCR examination showed that the expression levels of Bax and Caspase-9 mRNA in the HPD-PDT group were up-regulated, while the expression levels of Bcl-2 mRNA were down-regulated significantly. HPD-PDT can inhibit H446 cells and BEAS-2B cells growth. The mechanism may be related to up-regulating the expression levels of Bax and Caspase-9 mRNA and down-regulating the expression levels of Bcl-2 mRNA.


Assuntos
Neoplasias Pulmonares , Fotoquimioterapia , Carcinoma de Pequenas Células do Pulmão , Humanos , Derivado da Hematoporfirina/farmacologia , Caspase 9/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Bisbenzimidazol/farmacologia , Fotoquimioterapia/métodos , Células Epiteliais/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética
2.
Biol Pharm Bull ; 45(7): 863-871, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35491088

RESUMO

Saikosaponin A (SSA)-a natural compound extracted from Radix bupleuri-possesses antitumor properties in several types of carcinomas. However, the role of SSA on bladder cancer and the mechanisms remain unclear. In this study, we have described the effect of SSA on human bladder cancer cell lines T24 and 5637 in the context of the regulation of mitochondrial pathways of apoptosis. In vitro, the Cell Counting Kit-8 (CCK-8) assay and cell wound healing assays were used to determine the proliferative effect of SSA treatment. Flow cytometry and Western blotting were performed to evaluate the apoptosis and related mechanisms. To further confirm that apoptosis is mediated through Caspase activation, Hoechst 33258 fluorescence staining assay was done after cells were treated with SSA and caspase inhibitor-Z-VAD-FMK. In vivo, an orthotopic xenograft mice model was adopted to evaluate the effect of SSA. The tumors were analyzed by hematoxylin-eosin (H&E) staining, immunohistochemical analysis, and Western blotting. In vitro, the results with CCK-8 assay showed obvious SSA-induced suppression in cell growth in a dose- and time-dependent manner. Flow cytometry analysis, Hoechst 33258 fluorescence staining assay and the assessment of the changes in the B-cell lymphoma 2 (Bcl-2) family protein expression level revealed that SSA could significantly induce cell apoptosis, which was associated with apoptosis via the mitochondrial pathways. In vivo, the results revealed a reduction in cell proliferation. In conclusion, our data suggest that SSA inhibits the growth of bladder cancer cells by activating the mitochondrial apoptosis pathway and inducing cell apoptosis.


Assuntos
Carcinoma , Neoplasias da Bexiga Urinária , Animais , Apoptose , Bisbenzimidazol/farmacologia , Caspases , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Ácido Oleanólico/análogos & derivados , Saponinas , Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico
3.
J Gen Virol ; 102(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34882533

RESUMO

The shortcomings of current anti-human cytomegalovirus (HCMV) drugs has stimulated a search for anti-HCMV compounds with novel targets. We screened collections of bioactive compounds and identified a range of compounds with the potential to inhibit HCMV replication. Of these compounds, we selected bisbenzimide compound RO-90-7501 for further study. We generated analogues of RO-90-7501 and found that one compound, MRT00210423, had increased anti-HCMV activity compared to RO-90-7501. Using a combination of compound analogues, microscopy and biochemical assays we found RO-90-7501 and MRT00210423 interacted with DNA. In single molecule microscopy experiments we found RO-90-7501, but not MRT00210423, was able to compact DNA, suggesting that compaction of DNA was non-obligatory for anti-HCMV effects. Using bioinformatics analysis, we found that there were many putative bisbenzimide binding sites in the HCMV DNA genome. However, using western blotting, quantitative PCR and electron microscopy, we found that at a concentration able to inhibit HCMV replication our compounds had little or no effect on production of certain HCMV proteins or DNA synthesis, but did have a notable inhibitory effect on HCMV capsid production. We reasoned that these effects may have involved binding of our compounds to the HCMV genome and/or host cell chromatin. Therefore, our data expand our understanding of compounds with anti-HCMV activity and suggest targeting of DNA with bisbenzimide compounds may be a useful anti-HCMV strategy.


Assuntos
Antivirais/farmacologia , Bisbenzimidazol/farmacologia , Citomegalovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/química , Sítios de Ligação , Bisbenzimidazol/química , Capsídeo/metabolismo , Linhagem Celular , Citomegalovirus/fisiologia , DNA/biossíntese , DNA/química , Replicação do DNA/efeitos dos fármacos , Humanos , Estrutura Molecular , Carga Viral/efeitos dos fármacos
4.
Phys Chem Chem Phys ; 24(1): 112-121, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889929

RESUMO

The versatility of DNA minor groove binding bibenzimidazoles extends to applications in cancer therapy, beyond their typical use as DNA stains. In the context of UVA phototherapy, a series of halogenated analogues designated ortho-, meta-, and para-iodoHoechst have been investigated. Phototoxicity involves dehalogenation of the ligands following exposure to UVA light, resulting in the formation of a carbon-centred radical. While the cytotoxic mechanisms have been well established, the nature and severity of DNA damage induced by the ortho-, meta-, and para-iodoHoechst isomers requires clarification. Our aims were to measure and compare the binding constants of iodoHoechst analogues, and to determine the proximity of the carbon-centred radicals formed following photodehalogenation to the C1', C4', and C5' DNA carbons. We performed molecular docking studies, as well as classical molecular dynamics simulations to investigate the interactions of Hoechst ligands with DNA including a well-defined B-DNA dodecamer containing the high affinity AATT minor groove binding site. Docking highlighted the binding of Hoechst analogues to AATT regions in oligonucleotides, nucleosomes, and origami DNA helical bundles. Further, MD simulations demonstrated the stability of Hoechst ligands in the AATT-containing minor groove over microsecond trajectories. Our findings reiterate that the efficiency of dehalogenation per se, rather than the proximity of the carbon-centred radicals to the DNA backbone, is responsible for the extreme phototoxicity of the ortho- isomer compared to the meta- and para-iodoHoechst isomers. More generally, our analyses are in line with the potential utility of ortho-iodoHoechst in DNA-targeted phototherapy, particularly if combined with a cell-specific delivery system.


Assuntos
Bisbenzimidazol/química , DNA/química , Simulação de Acoplamento Molecular , Sítios de Ligação
5.
Phys Chem Chem Phys ; 23(28): 15352-15363, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34254612

RESUMO

Changes in the structural dynamics of double stranded (ds)DNA upon ligand binding have been linked to the mechanism of allostery without conformational change, but direct experimental evidence remains elusive. To address this, a combination of steady state infrared (IR) absorption spectroscopy and ultrafast temperature jump IR absorption measurements has been used to quantify the extent of fast (∼100 ns) fluctuations in (ds)DNA·Hoechst 33258 complexes at a range of temperatures. Exploiting the direct link between vibrational band intensities and base stacking shows that the absolute magnitude of the change in absorbance caused by fast structural fluctuations following the temperature jump is only weakly dependent on the starting temperature of the sample. The observed fast dynamics are some two orders of magnitude faster than strand separation and associated with all points along the 10-base pair duplex d(GCATATATCC). Binding the Hoechst 33258 ligand causes a small but consistent reduction in the extent of these fast fluctuations of base pairs located outside of the ligand binding region. These observations point to a ligand-induced reduction in the flexibility of the dsDNA near the binding site, consistent with an estimated allosteric propagation length of 15 Å, about 5 base pairs, which agrees well with both molecular simulation and coarse-grained statistical mechanics models of allostery leading to cooperative ligand binding.


Assuntos
DNA/química , Sítio Alostérico , Pareamento de Bases , Sequência de Bases , Bisbenzimidazol/química , Cinética , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , Espectrofotometria Infravermelho , Temperatura
6.
Bioorg Med Chem ; 28(7): 115378, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32089391

RESUMO

A set of AT-specific fluorescent dimeric bisbenzimidazoles DBPA(n) with linkers of different lengths bound to DNA in the minor groove were synthesized and their genetic, virological, and biochemical studies were performed. The DBPA(n) were shown to be effective inhibitors of the histon-like protein H-NS, a regulator of the DNA transcription factor, as well as of the Aliivibrio logei Quorum Sensing regulatory system in E. coli cells. Their antiviral activity was tested in model cell lines infected with herpes simplex virus type I. Also, it was found that DBPA(n) could inhibit catalytic activities of HIV-1 integrase at low micromolar concentrations. All of the dimeric bisbenzimidazoles DBPA(n) manifested fluorescent properties, were well soluble in water, nontoxic up to concentrations of 200 µM, and could penetrate into nuclei followed by binding to DNA.


Assuntos
Bisbenzimidazol/química , Bisbenzimidazol/farmacologia , DNA/química , Aliivibrio/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sequência de Bases , DNA/genética , Desenho de Fármacos , Escherichia coli/metabolismo , Corantes Fluorescentes , Integrase de HIV , Inibidores de Integrase de HIV/farmacologia , Ligantes , Estrutura Molecular , Pirróis , Percepção de Quorum/fisiologia , Relação Estrutura-Atividade
7.
Chromosoma ; 127(2): 235-245, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29234867

RESUMO

The fluorescent dye 4'-6-Diamidino-2-phenylindole (DAPI) is frequently used in fluorescence microscopy as a chromosome and nuclear stain because of its high specificity for DNA. Normally, DAPI bound to DNA is maximally excited by ultraviolet (UV) light at 358 nm, and emits maximally in the blue range, at 461 nm. Hoechst dyes 33258 and 33342 have similar excitation and emission spectra and are also used to stain nuclei and chromosomes. It has been reported that exposure to UV can convert DAPI and Hoechst dyes to forms that are excited by blue light and emit green fluorescence, potentially confusing the interpretation of experiments that use more than one fluorochrome. The work reported here shows that these dyes can also be converted to forms that are excited by green light and emit red fluorescence. This was observed both in whole tissues and in mitotic chromosome spreads, and could be seen with less than 10-s exposure to UV. In most cases, the red form of fluorescence was more intense than the green form. Therefore, appropriate care should be exercised when examining tissues, capturing images, or interpreting images in experiments that use these dyes in combination with other fluorochromes.


Assuntos
Artefatos , Benzimidazóis/química , Bisbenzimidazol/química , Cromossomos de Insetos/ultraestrutura , Corantes Fluorescentes/química , Indóis/química , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Cromossomos de Insetos/química , DNA/química , DNA/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Larva/citologia , Larva/metabolismo , Masculino , Metáfase , Microscopia de Fluorescência/normas , Fotodegradação , Testículo/citologia , Testículo/metabolismo , Raios Ultravioleta
8.
Anal Biochem ; 576: 5-8, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30958999

RESUMO

Detection of small amounts of RNA in various biological samples is an important applied task. Using fluorescence spectroscopy, the hydrolysis by binase of rRNA and tRNA, stained with Hoechst 33258, in aqueous solutions was investigated. The binding constant of Hoechst with rRNA is 106 M-1. Specific hydrolysis of rRNA and tRNA by binase during 1-2 min at room temperature leads to a multiple decrease in fluorescence of the dye. This rapid hydrolysis goes to large polynucleotide fragments, but not to short oligonucleotides. The binding constant of binase with rRNA is about of 2.5 × 106 M-1, which is several dozen times higher than with oligonucleotides. The susceptibility to binase attack depends on the secondary structure of RNA, determined by non-canonical ribonucleotides. The developed highly sensitive fluorescent method can be used for the rapid selective detection of trace amounts of rRNA or tRNA, as well as for studying the physicochemical properties of these RNAs. Using the proposed method, one can confidently detect RNA from 10-7 M.


Assuntos
Bisbenzimidazol/química , Endorribonucleases/química , Corantes Fluorescentes/química , RNA/análise , Limite de Detecção , Espectrometria de Fluorescência
9.
Org Biomol Chem ; 17(6): 1558-1571, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30694281

RESUMO

Anion transporters have attracted substantial interest due to their ability to induce cell apoptosis by disrupting cellular anion homeostasis. In this paper we describe the synthesis, anion recognition, transmembrane anion transport and cell apoptosis-inducing activity of a series of fluorinated 1,3-bis(benzimidazol-2-yl)benzene derivatives. These compounds were synthesized from the condensation of 1,3-benzenedialdehyde or 5-fluoro-1,3-benzenedialdehyde with the corresponding 1,2-benzenediamines and fully characterized. They are able to form stable complexes with chloride anions, and exhibit potent liposomal and in vitro anionophoric activity. Their anion transport efficiency may be ameliorated by the total number of fluorine atoms, and the enhanced anionophoric activity was a likely consequence of the increased lipophilicity induced by fluorination. Most of these fluorinated bisbenzimidazoles exhibit potent cytotoxicity toward the selected cancer cells. Mechanistic investigations suggest that these compounds are able to trigger cell apoptosis probably by disrupting the homeostasis of chloride anions.


Assuntos
Apoptose/efeitos dos fármacos , Bisbenzimidazol/química , Bisbenzimidazol/farmacologia , Cloretos/química , Desenho de Fármacos , Halogenação , Linhagem Celular Tumoral , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Relação Estrutura-Atividade
10.
Bioorg Med Chem ; 27(5): 708-720, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30679134

RESUMO

A series of new pyrazole linked benzothiazole-ß-naphthol derivatives were designed and synthesized using a simple, efficient and ecofriendly route under catalyst-free conditions in good to excellent yields. These derivatives were evaluated for their cytotoxicity on selected human cancer cell lines. Among those, the derivatives 4j, 4k and 4l exhibited considerable cytotoxicity with IC50 values ranging between 4.63 and 5.54 µM against human cervical cancer cells (HeLa). Structure activity relationship was elucidated by varying different substituents on benzothiazoles and pyrazoles. Further, flow cytometric analysis revealed that these derivatives induced cell cycle arrest in G2/M phase and spectroscopic studies such as UV-visible, fluorescence and circular dichroism studies showed that these derivatives exhibited good DNA binding affinity. Additionally, these derivatives can effectively inhibit the topoisomerase I activity. Viscosity studies and molecular docking studies demonstrated that the derivatives bind with the minor groove of the DNA.


Assuntos
Benzotiazóis/farmacologia , Naftóis/farmacologia , Pirazóis/farmacologia , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/metabolismo , Bisbenzimidazol/farmacologia , Linhagem Celular Tumoral , DNA/química , DNA/metabolismo , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Naftóis/síntese química , Naftóis/metabolismo , Pirazóis/síntese química , Pirazóis/metabolismo , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/metabolismo , Viscosidade
11.
J Fluoresc ; 29(2): 479-484, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30811018

RESUMO

The DNA hydrolysis by deoxyribonuclease (DNAse I) in aqueous solution was studied, using fluorescence spectroscopy and high-sensitive light-scattering detection. Specific hydrolysis of high-polymer DNA or fragmented DNA by the enzyme led to a strong decrease in the fluorescence of the Hoechst dye. The hydrolysis of mitochondrial DNA was accompanied by a decrease in the fluorescence of the dye only in 1.6 times. Hydrolysis within minutes and even hours led to appearance of large polynucleotide fragments, but not to short oligonucleotides, that was confirmed using polarized fluorescence and highly sensitive measurement of light-scattering. At the moment of the time of formation of a complex between DNA and DNAse I, a strong light-scattering occurred, which then dropped sharply during hydrolysis of high-molecular DNA, and slowly decreased during hydrolysis of fragmented DNA. The proposed methods can be applied for selective detection of trace amounts of various types of DNA, as well as for studying their physic-chemical properties.


Assuntos
Técnicas Biossensoriais/métodos , Bisbenzimidazol/química , DNA/análise , Desoxirribonuclease I/metabolismo , Luz , Limite de Detecção , Espalhamento de Radiação , Animais , Bovinos , DNA/química , Espectrometria de Fluorescência
12.
Phys Chem Chem Phys ; 21(30): 16848-16858, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31322152

RESUMO

A key utility of fluorophores lies in sensing applications: the detection of changes to emission caused by differences in their microenvironment. The rational design of fluorescent sensors remains a significant challenge because of the complexity of factors which control molecular deactivation pathways. Here, in an effort to define the structural criteria underlying the fluorescence turn-on response of Hoechst 33258 (H33258) upon binding to the DNA minor groove, we examine this sensor's intrinsic properties in minimalist microenvironments. We first characterised the intrinsic photophysics of gaseous mono- and di-protonated H33258 ions, then introduced intermolecular interactions by complexation with double-stranded (ds) DNA. Selected-ion laser-induced fluorescence (SILIF) and photodissociation of the gaseous monoprotomers indicate the presence of multiple populations with distinct fluorescence and dissociation properties. We assign one of these to a kinetically-trapped form which is protonated at the site favored in solution. The other form exhibits a more intense emission band which is shifted by more than 6000 cm-1 to the red of the first form. Quantum chemical calculations reveal that this second population is likely a newly-identified protomer, which is considerably more stable in the gas phase than conformations with the solution protonation site. Two routes that increase the fluorescence of H33258 in solution - formation of the diprotomer and complexation with dsDNA - do not produce an increase in fluorescence in the gas phase. However, two other outcomes parallel behaviour. First, the similarity of action spectra of the gaseous dsDNA-H33258 complex and the unbound diprotomer suggest that the dye may be diprotomeric when in complex with gaseous dsDNA. Second, the photodissociation power dependence measurements indicate the presence of at least two distinct populations of both H33258 in complex with dsDNA and in its unbound diprotomeric form. Overall, the results reported here reveal unexplored aspects of the potential energy landscape of H33258, including a new, stable, highly-fluorescent form that may be useful to consider in sensing applications. Moreover, the results reinforce how structure, deactivation pathways and other photophysical properties are intertwined for this DNA-binding dye, which may offer strategies for improved control of DNA-targeting drugs and sensors.


Assuntos
Bisbenzimidazol/química , DNA/química , Cor , Fluorescência
13.
Chembiochem ; 19(9): 956-962, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29468796

RESUMO

Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here we report the design of a new oxygen-sensing probe for use in the cell nucleus. We prepared "Ru-Hoechsts", each consisting of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows strong DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and showed oxygen-dependent signals that could be monitored. Of the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and the Hoechst unit were linked through a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are probes with high potential for visualizing oxygen fluctuations in the nucleus.


Assuntos
Bisbenzimidazol/química , Núcleo Celular/química , Complexos de Coordenação/química , Substâncias Luminescentes/química , Oxigênio/análise , Rutênio/química , Células A549 , Corantes Fluorescentes/química , Humanos , Medições Luminescentes/métodos , Imagem Óptica/métodos
14.
J Virol ; 91(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28659488

RESUMO

Virus infection of humans and livestock can be devastating for individuals and populations, sometimes resulting in large economic and societal impact. Prevention of virus disease by vaccination or antiviral agents is difficult to achieve. A notable exception was the eradication of human smallpox by vaccination over 30 years ago. Today, humans and animals remain susceptible to poxvirus infections, including zoonotic poxvirus transmission. Here we identified a small molecule, bisbenzimide (bisbenzimidazole), and its derivatives as potent agents against prototypic poxvirus infection in cell culture. We show that bisbenzimide derivatives, which preferentially bind the minor groove of double-stranded DNA, inhibit vaccinia virus infection by blocking viral DNA replication and abrogating postreplicative intermediate and late gene transcription. The bisbenzimide derivatives are potent against vaccinia virus and other poxviruses but ineffective against a range of other DNA and RNA viruses. The bisbenzimide derivatives are the first inhibitors of their class, which appear to directly target the viral genome without affecting cell viability.IMPORTANCE Smallpox was one of the most devastating diseases in human history until it was eradicated by a worldwide vaccination campaign. Due to discontinuation of routine vaccination more than 30 years ago, the majority of today's human population remains susceptible to infection with poxviruses. Here we present a family of bisbenzimide (bisbenzimidazole) derivatives, known as Hoechst nuclear stains, with high potency against poxvirus infection. Results from a variety of assays used to dissect the poxvirus life cycle demonstrate that bisbenzimides inhibit viral gene expression and genome replication. These findings can lead to the development of novel antiviral drugs that target viral genomes and block viral replication.


Assuntos
Antivirais/farmacologia , Bisbenzimidazol/farmacologia , Replicação do DNA/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Corantes Fluorescentes , Humanos
15.
Bioorg Med Chem ; 26(1): 37-40, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29170027

RESUMO

Given that our knowledge of DNA repair is limited because of the complexity of the DNA system, a technique called UVA micro-irradiation has been developed that can be used to visualize the recruitment of DNA repair proteins at double-strand break (DSB) sites. Interestingly, Hoechst 33258 was used under micro-irradiation to sensitize 5-bromouracil (BrU)-labelled DNA, causing efficient DSBs. However, the molecular basis of DSB formation under UVA micro-irradiation remains unknown. Herein, we investigated the mechanism of DSB formation under UVA micro-irradiation conditions. Our results suggest that the generation of a uracil-5-yl radical through electron transfer from Hoechst 33258 to BrU caused DNA cleavage preferentially at self-complementary 5'-AABrUBrU-3' sequences to induce DSB. We also investigated the DNA cleavage in the context of the nucleosome to gain a better understanding of UVA micro-irradiation in a cell-like model. We found that DNA cleavage occurred in both core and linker DNA regions although its efficiency reduced in core DNA.


Assuntos
Bisbenzimidazol/farmacologia , Bromouracila/química , DNA/efeitos dos fármacos , Raios Ultravioleta , Bisbenzimidazol/química , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Clivagem do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Radicais Livres/química , Estrutura Molecular , Relação Estrutura-Atividade
16.
Dig Dis Sci ; 63(1): 126-134, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197940

RESUMO

BACKGROUND: Thymoquinone (TQ) is the major constituent of Nigella sativa seed and has shown biological activity in various human carcinomas. However, few studies have reported its effect on esophageal carcinoma (EC). AIMS: To explore the chemosensitive effect and mechanism of TQ in augmentation of cisplatin (DDP)-induced apoptosis of EC, both in vitro and in vivo. METHODS: The viability and apoptosis of esophageal carcinoma cells were detected by the Cell Counting Kit-8 assay, flow cytometry, and Hoechst 33258 staining. The expression levels of JAK2, p-JAK2, STAT3, p-STAT3, Bax, Bcl-2, Cyclin D1, Survivin, and caspase-3, 7, 9 were evaluated by western blot analysis. The histological changes were examined by TUNEL technique and immunohistochemical analysis. RESULTS: TQ enhanced the proapoptotic effect of DDP in human esophageal carcinoma cell line Eca-109, while blocking the activation of JAK2/STAT3 signaling pathway. The apoptosis of esophageal carcinoma cells was induced via blocking the activation of JAK2/STAT3 by using a molecular inhibitor (WP1066). Consistent with the in vivo and in vitro results, TQ increased cellular apoptosis and enriched the chemosensitivity of DDP. CONCLUSIONS: TQ along with DDP may regulate the progression of EC and has potential to be a chemotherapeutic agent in EC.


Assuntos
Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Cisplatino/farmacologia , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Benzoquinonas/administração & dosagem , Benzoquinonas/farmacocinética , Bisbenzimidazol , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos
17.
Biochemistry ; 56(49): 6434-6447, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29131946

RESUMO

Small molecules that modulate biological functions are targets of modern day drug discovery efforts. In a common platform fragment-based drug discovery, two fragments that bind to adjacent sites on a target are identified and are then linked together using different linkers to identify the linkage for optimum activity. What are not known from these studies are the effects these linkers, which typically contain C, H, and O atoms, have on the properties of the individual fragment. Herein, we investigate such effects in a bisbenzimidazole fragment whose derivatives have a wide range of therapeutic applications in nucleic acid recognition, sensing, and photodynamic therapy and as cellular probes. We report a dramatic effect of linker length and composition of alkynyl (clickable) Hoechst 33258 derivatives in target binding and cell uptake. We show that the binding of Hoechst 33258-modeled bisbenzimidazoles (1-9) that contain linkers of varying lengths (3-21 atoms) display length- and composition-dependent variation in B-DNA stabilization using a variety of spectroscopic methods. For a dodecamer DNA duplex, the thermal stabilization varied from 0.3 to 9.0 °C as the linker length increased from 3 to 21 atoms, respectively. Compounds with linker lengths of ≤11 atoms (such as compounds 1 and 5) are localized in the nucleus, while compounds with long linkers (such as compounds 8 and 9) are distributed in the extranuclear space, as well, with possible interactions with extranuclear targets. These findings provide insights into future drug design by revealing how linkers can influence the biophysical and cellular properties of individual drug fragments.


Assuntos
Bisbenzimidazol/química , DNA de Forma B/química , Sítios de Ligação , Cinética , Estrutura Molecular , Espectrometria de Fluorescência
18.
Molecules ; 22(9)2017 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-28926955

RESUMO

The vacuolar (H⁺)-ATPases (V-ATPases) are a family of ATP-driven proton pumps and they have been associated with cancer invasion, metastasis, and drug resistance. Despite the clear involvement of V-ATPases in cancer, the therapeutic use of V-ATPase-targeting small molecules has not reached human clinical trials to date. Thus, V-ATPases are emerging as important targets for the identification of potential novel therapeutic agents. We identified a bisbenzimidazole derivative (V) as an initial hit from a similarity search using four known V-ATPase inhibitors (I-IV). Based on the initial hit (V), we designed and synthesized a focused set of novel bisbenzimidazole analogs (2a-e). All newly prepared compounds have been screened for selected human breast cancer (MDA-MB-468, MDA-MB-231, and MCF7) and ovarian cancer (A2780, Cis-A2780, and PA-1) cell lines, along with the normal breast epithelial cell line, MCF10A. The bisbenzimidazole derivative (2e) is active against all cell lines tested. Remarkably, it demonstrated high cytotoxicity against the triple-negative breast cancer (TNBC) cell line, MDA-MB-468 (IC50 = 0.04 ± 0.02 µM). Additionally, it has been shown to inhibit the V-ATPase pump that is mainly responsible for acidification. To the best of our knowledge the bisbenzimidazole pharmacophore has been identified as the first V-ATPase inhibitor in its class. These results strongly suggest that the compound 2e could be further developed as a potential anticancer V-ATPase inhibitor for breast cancer treatment.


Assuntos
Antineoplásicos/química , Bisbenzimidazol/análogos & derivados , Bisbenzimidazol/química , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Antineoplásicos/farmacologia , Bisbenzimidazol/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
19.
Vopr Virusol ; 62(4): 162-168, 2017.
Artigo em Russo | MEDLINE | ID: mdl-29733165

RESUMO

Antiviral activity of new AТ-specific fluorescent symmetric dimeric bisbenzimidazoles of DBА(n) series was assessed in the cell models of infections caused by type 1 herpes simplex virus (HSV1) and human cytomegalovirus (CMV). In DBA(n) molecules bisbenzimidazole fragments are bound to an oligomethylene liner with varied number of methylene groups in the linker (n = 1, 3, 5, 7, 9, 11). In contrast to DB(n) dimeric bisbenzimidazoles, in DBA(n) series terminal fragments of macromolecules contain N-dimethylaminopropylcarboxamide groups instead of N-methylpiperazine groups. DBА(n) compounds better dissolve in water, pass across plasma and nuclear membrane, and stain DNA in living cells. DBA(1) and DBA(7) produced therapeutic effects in HSV1 infection; DBA(7) completely suppressed the infection. DBA(11) displayed in vitro therapeutic activity in HSV1 and CMV infections. In addition, DBA(7) and DBA(1) showed microbicidal activity. Thus, DBA(11), which is active against two viruses causing severe diseases with serious health consequences for immunodeficient individuals, should be further investigated. High antiviral activity of DBA(7) in all test models indicates that this compound is a promising active agent for innovative antiviral drugs.


Assuntos
Antivirais/farmacologia , Bisbenzimidazol/farmacologia , Citomegalovirus/efeitos dos fármacos , Simplexvirus/efeitos dos fármacos , Infecções por Citomegalovirus/tratamento farmacológico , Herpes Simples , Infecções por Herpesviridae , Humanos
20.
Langmuir ; 32(12): 2912-9, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26981922

RESUMO

The secretion and reversible assembly of an extracellular-like matrix by enzyme-active inorganic protocells (colloidosomes) is described. Addition of N-fluorenyl-methoxycarbonyl-tyrosine-(O)-phosphate to an aqueous suspension of alkaline phosphatase-containing colloidosomes results in molecular uptake and dephosphorylation to produce a time-dependent sequence of supramolecular hydrogel motifs (outer membrane wall, cytoskeletal-like interior and extra-protocellular matrix) that are integrated and remodelled within the microcapsule architecture and surrounding environment. Heat-induced disassembly of the extra-protocellular matrix followed by cooling produces colloidosomes with a densely packed hydrogel interior. These procedures are exploited for the fabrication of nested colloidosomes with spatially delineated regions of hydrogelation.


Assuntos
Fosfatase Alcalina/química , Células Artificiais/química , Hidrogéis/química , Tirosina/análogos & derivados , Animais , Bisbenzimidazol , Bovinos , Coloides , Corantes Fluorescentes , Transição de Fase , Temperatura , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA