Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 20(5): 311-324, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972921

RESUMO

Get3 in yeast or TRC40 in mammals is an ATPase that, in eukaryotes, is a central element of the GET or TRC pathway involved in the targeting of tail-anchored proteins. Get3 has also been shown to possess chaperone holdase activity. A bioinformatic assessment was performed across all domains of life on functionally important regions of Get3 including the TRC40-insert and the hydrophobic groove essential for tail-anchored protein binding. We find that such a hydrophobic groove is much more common in bacterial Get3 homologs than previously appreciated based on a directed comparison of bacterial ArsA and yeast Get3. Furthermore, our analysis shows that the region containing the TRC40-insert varies in length and methionine content to an unexpected extent within eukaryotes and also between different phylogenetic groups. In fact, since the TRC40-insert is present in all domains of life, we suggest that its presence does not automatically predict a tail-anchored protein targeting function. This opens up a new perspective on the function of organellar Get3 homologs in plants which feature the TRC40-insert but have not been demonstrated to function in tail-anchored protein targeting. Our analysis also highlights a large diversity of the ways Get3 homologs dimerize. Thus, based on the structural features of Get3 homologs, these proteins may have an unexplored functional diversity in all domains of life.


Assuntos
Adenosina Trifosfatases/química , ATPases Transportadoras de Arsenito/química , Evolução Molecular , Fatores de Troca do Nucleotídeo Guanina/química , Chaperonas Moleculares/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , ATPases Transportadoras de Arsenito/genética , ATPases Transportadoras de Arsenito/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Bombas de Íon/química , Bombas de Íon/genética , Bombas de Íon/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
2.
Nature ; 521(7550): 48-53, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25849775

RESUMO

Krokinobacter eikastus rhodopsin 2 (KR2) is the first light-driven Na(+) pump discovered, and is viewed as a potential next-generation optogenetics tool. Since the positively charged Schiff base proton, located within the ion-conducting pathway of all light-driven ion pumps, was thought to prohibit the transport of a non-proton cation, the discovery of KR2 raised the question of how it achieves Na(+) transport. Here we present crystal structures of KR2 under neutral and acidic conditions, which represent the resting and M-like intermediate states, respectively. Structural and spectroscopic analyses revealed the gating mechanism, whereby the flipping of Asp116 sequesters the Schiff base proton from the conducting pathway to facilitate Na(+) transport. Together with the structure-based engineering of the first light-driven K(+) pumps, electrophysiological assays in mammalian neurons and behavioural assays in a nematode, our studies reveal the molecular basis for light-driven non-proton cation pumps and thus provide a framework that may advance the development of next-generation optogenetics.


Assuntos
Flavobacteriaceae/química , Bombas de Íon/química , Bombas de Íon/efeitos da radiação , Luz , Rodopsina/química , Rodopsina/efeitos da radiação , Sódio/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Bombas de Íon/genética , Bombas de Íon/metabolismo , Transporte de Íons/genética , Transporte de Íons/efeitos da radiação , Modelos Biológicos , Modelos Moleculares , Mutagênese/genética , Optogenética , Potássio/metabolismo , Conformação Proteica , Engenharia de Proteínas , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Bases de Schiff , Relação Estrutura-Atividade
3.
Adv Exp Med Biol ; 1293: 89-126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33398809

RESUMO

Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.


Assuntos
Bombas de Íon/metabolismo , Bombas de Íon/efeitos da radiação , Luz , Optogenética/métodos , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efeitos da radiação , Bombas de Íon/genética , Transporte de Íons/efeitos da radiação , Rodopsinas Microbianas/genética
4.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804674

RESUMO

Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3--coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined "transport metabolon". While transport metabolons built with HCO3--coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.


Assuntos
Anidrases Carbônicas/metabolismo , Neoplasias/metabolismo , Prótons , Animais , Biomarcadores , Anidrases Carbônicas/genética , Suscetibilidade a Doenças , Descoberta de Drogas , Metabolismo Energético/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Bombas de Íon/genética , Bombas de Íon/metabolismo , Transporte de Íons/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/patologia
5.
Int J Mol Sci ; 20(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137773

RESUMO

Ion channels and transporters play essential roles in excitable cells including cardiac, skeletal and smooth muscle cells, neurons, and endocrine cells. In pancreatic beta-cells, for example, potassium KATP channels link the metabolic signals generated inside the cell to changes in the beta-cell membrane potential, and ultimately regulate insulin secretion. Mutations in the genes encoding some ion transporter and channel proteins lead to disorders of glucose homeostasis (hyperinsulinaemic hypoglycaemia and different forms of diabetes mellitus). Pancreatic KATP, Non-KATP, and some calcium channelopathies and MCT1 transporter defects can lead to various forms of hyperinsulinaemic hypoglycaemia (HH). Mutations in the genes encoding the pancreatic KATP channels can also lead to different types of diabetes (including neonatal diabetes mellitus (NDM) and Maturity Onset Diabetes of the Young, MODY), and defects in the solute carrier family 2 member 2 (SLC2A2) leads to diabetes mellitus as part of the Fanconi-Bickel syndrome. Variants or polymorphisms in some ion channel genes and transporters have been reported in association with type 2 diabetes mellitus.


Assuntos
Canalopatias/metabolismo , Transtornos do Metabolismo de Glucose/metabolismo , Canais Iônicos/metabolismo , Bombas de Íon/metabolismo , Animais , Canalopatias/genética , Transtornos do Metabolismo de Glucose/genética , Humanos , Canais Iônicos/genética , Bombas de Íon/genética
6.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925682

RESUMO

Aluminum (Al) toxicity is one of the major constraints to agricultural production in acid soils. Molecular mechanisms of coping with Al toxicity have now been investigated in a range of plant species. Two main mechanisms of Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the roots. This review focuses on the recent discovery of novel genes and mechanisms that confer Al tolerance in plants and summarizes our understanding of the physiological, genetic, and molecular basis for plant Al tolerance. We hope this review will provide a theoretical basis for the genetic improvement of Al tolerance in plants.


Assuntos
Alumínio/metabolismo , Alumínio/toxicidade , Raízes de Plantas/metabolismo , Plantas/metabolismo , Adaptação Fisiológica , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Bombas de Íon/genética , Bombas de Íon/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Micorrizas/genética , Micorrizas/metabolismo , Micorrizas/fisiologia , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas/genética
7.
Curr Opin Nephrol Hypertens ; 27(4): 305-313, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29847376

RESUMO

PURPOSE OF REVIEW: Uric acid homeostasis in the body is mediated by a number of SLC and ABC transporters in the kidney and intestine, including several multispecific 'drug' transporters (e.g., OAT1, OAT3, and ABCG2). Optimization of uric acid levels can be viewed as a 'systems biology' problem. Here, we consider uric acid transporters from a systems physiology perspective using the framework of the 'Remote Sensing and Signaling Hypothesis.' This hypothesis explains how SLC and ABC 'drug' and other transporters mediate interorgan and interorganismal communication (e.g., gut microbiome and host) via small molecules (e.g., metabolites, antioxidants signaling molecules) through transporters expressed in tissues lining body fluid compartments (e.g., blood, urine, cerebrospinal fluid). RECENT FINDINGS: The list of uric acid transporters includes: SLC2A9, ABCG2, URAT1 (SLC22A12), OAT1 (SLC22A6), OAT3 (SLC22A8), OAT4 (SLC22A11), OAT10 (SLC22A13), NPT1 (SLC17A1), NPT4 (SLC17A3), MRP2 (ABCC2), MRP4 (ABCC4). Normally, SLC2A9, - along with URAT1, OAT1 and OAT3, - appear to be the main transporters regulating renal urate handling, while ABCG2 appears to regulate intestinal transport. In chronic kidney disease (CKD), intestinal ABCG2 becomes much more important, suggesting remote organ communication between the injured kidney and the intestine. SUMMARY: The remote sensing and signaling hypothesis provides a useful systems-level framework for understanding the complex interplay of uric acid transporters expressed in different tissues involved in optimizing uric acid levels under normal and diseased (e.g., CKD, gut microflora dysbiosis) conditions.


Assuntos
Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ácido Úrico/metabolismo , Animais , Humanos , Mucosa Intestinal/metabolismo , Bombas de Íon/genética , Bombas de Íon/metabolismo , Rim/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Transdução de Sinais , Biologia de Sistemas
8.
Annu Rev Microbiol ; 67: 221-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23808339

RESUMO

In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Bombas de Íon/química , Bombas de Íon/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/genética , Bombas de Íon/genética , Modelos Moleculares , Periplasma/química , Periplasma/genética , Periplasma/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
9.
Phys Chem Chem Phys ; 20(5): 3165-3171, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28975940

RESUMO

Light-driven H+, Na+ and Cl- pumps have been found in eubacteria, which convert light energy into a transmembrane electrochemical potential. A recent mutation study revealed asymmetric functional conversion between the two pumps, where successful functional conversions are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Although this fact suggests that the essential structural mechanism of an ancestral function is retained even after gaining a new function, questions regarding the essential structural mechanism remain unanswered. Light-induced difference FTIR spectroscopy was used to monitor the presence of strongly hydrogen-bonded water molecules for all eubacterial H+, Na+ and Cl- pumps, including a functionally converted mutant. This fact suggests that the strongly hydrogen-bonded water molecules are maintained for these new functions during evolution, which could be the reason for successful functional conversion from Na+ to H+, and from Cl- to H+ pumps. This also explains the successful conversion of the Cl- to the H+ pump only for eubacteria, but not for archaea. It is concluded that water-containing hydrogen-bonding networks constitute one of the essential structural mechanisms in eubacterial light-driven ion pumps.


Assuntos
Proteínas de Bactérias/metabolismo , Bombas de Íon/metabolismo , Luz , Água/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cloretos/metabolismo , Temperatura Baixa , Cristalografia por Raios X , Ligação de Hidrogênio , Bombas de Íon/química , Bombas de Íon/genética , Transporte de Íons/efeitos da radiação , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Sódio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
10.
Int J Mol Sci ; 19(8)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096926

RESUMO

Although the signaling function of Na/K-ATPase has been studied for decades, the chasm between the pumping function and the signaling function of Na/K-ATPase is still an open issue. This article explores the relationship between ion pumping and signaling with attention to the amplification of oxidants through this signaling function. We specifically consider the Na/K-ATPase with respect to its signaling function as a superposition of different states described for its pumping function. We then examine how alterations in the relative amounts of these states could alter signaling through the Src-EGFR-ROS pathway. Using assumptions based on some experimental observations published by our laboratories and others, we develop some predictions regarding cellular oxidant stress.


Assuntos
Estresse Oxidativo/genética , Transdução de Sinais/genética , ATPase Trocadora de Sódio-Potássio/genética , Envelhecimento , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Bombas de Íon/química , Bombas de Íon/genética , Sistema de Sinalização das MAP Quinases/genética , Cadeias de Markov , Modelos Teóricos , Ouabaína/química , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Quinases da Família src/química , Quinases da Família src/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-28893793

RESUMO

Chemotherapy for tuberculosis (TB) is lengthy and could benefit from synergistic adjuvant therapeutics that enhance current and novel drug regimens. To identify genetic determinants of intrinsic antibiotic susceptibility in Mycobacterium tuberculosis, we applied a chemical genetic interaction (CGI) profiling approach. We screened a saturated transposon mutant library and identified mutants that exhibit altered fitness in the presence of partially inhibitory concentrations of rifampin, ethambutol, isoniazid, vancomycin, and meropenem, antibiotics with diverse mechanisms of action. This screen identified the M. tuberculosis cell envelope to be a major determinant of antibiotic susceptibility but did not yield mutants whose increase in susceptibility was due to transposon insertions in genes encoding efflux pumps. Intrinsic antibiotic resistance determinants affecting resistance to multiple antibiotics included the peptidoglycan-arabinogalactan ligase Lcp1, the mycolic acid synthase MmaA4, the protein translocase SecA2, the mannosyltransferase PimE, the cell envelope-associated protease CaeA/Hip1, and FecB, a putative iron dicitrate-binding protein. Characterization of a deletion mutant confirmed FecB to be involved in the intrinsic resistance to every antibiotic analyzed. In contrast to its predicted function, FecB was dispensable for growth in low-iron medium and instead functioned as a critical mediator of envelope integrity.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Parede Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/efeitos dos fármacos , Serina Proteases/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Etambutol/farmacologia , Galactanos/biossíntese , Perfilação da Expressão Gênica , Humanos , Bombas de Íon/deficiência , Bombas de Íon/genética , Isoniazida/farmacologia , Ligases/genética , Ligases/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Meropeném , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Peptidoglicano/biossíntese , Rifampina/farmacologia , Serina Proteases/metabolismo , Tienamicinas/farmacologia , Vancomicina/farmacologia
12.
PLoS Comput Biol ; 12(4): e1004828, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27105427

RESUMO

Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the 'conductance repertoire' being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations.


Assuntos
Cálcio/metabolismo , Modelos Biológicos , Miócitos de Músculo Liso/metabolismo , Miométrio/metabolismo , Potenciais de Ação , Fenômenos Biofísicos , Membrana Celular/metabolismo , Biologia Computacional , Simulação por Computador , Feminino , Perfilação da Expressão Gênica , Humanos , Ativação do Canal Iônico , Canais Iônicos/genética , Canais Iônicos/metabolismo , Bombas de Íon/genética , Bombas de Íon/metabolismo , Transporte de Íons , Cinética , Potenciais da Membrana , Miométrio/citologia , Técnicas de Patch-Clamp , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Biofouling ; 33(6): 481-493, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28587519

RESUMO

Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Polissacarídeos Bacterianos/biossíntese , Streptococcus mutans/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cárie Dentária/microbiologia , Bombas de Íon/genética , Microscopia Confocal , Mutação , Streptococcus mutans/genética , Streptococcus mutans/fisiologia
14.
Proc Natl Acad Sci U S A ; 111(18): 6732-7, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24706784

RESUMO

Light-activated, ion-pumping rhodopsins are broadly distributed among many different bacteria and archaea inhabiting the photic zone of aquatic environments. Bacterial proton- or sodium-translocating rhodopsins can convert light energy into a chemiosmotic force that can be converted into cellular biochemical energy, and thus represent a widespread alternative form of photoheterotrophy. Here we report that the genome of the marine flavobacterium Nonlabens marinus S1-08(T) encodes three different types of rhodopsins: Nonlabens marinus rhodopsin 1 (NM-R1), Nonlabens marinus rhodopsin 2 (NM-R2), and Nonlabens marinus rhodopsin 3 (NM-R3). Our functional analysis demonstrated that NM-R1 and NM-R2 are light-driven outward-translocating H(+) and Na(+) pumps, respectively. Functional analyses further revealed that the light-activated NM-R3 rhodopsin pumps Cl(-) ions into the cell, representing the first chloride-pumping rhodopsin uncovered in a marine bacterium. Phylogenetic analysis revealed that NM-R3 belongs to a distinct phylogenetic lineage quite distant from archaeal inward Cl(-)-pumping rhodopsins like halorhodopsin, suggesting that different types of chloride-pumping rhodopsins have evolved independently within marine bacterial lineages. Taken together, our data suggest that similar to haloarchaea, a considerable variety of rhodopsin types with different ion specificities have evolved in marine bacteria, with individual marine strains containing as many as three functionally different rhodopsins.


Assuntos
Cloretos/metabolismo , Flavobacteriaceae/metabolismo , Bombas de Íon/classificação , Rodopsina/metabolismo , Evolução Molecular , Flavobacteriaceae/genética , Flavobacteriaceae/efeitos da radiação , Genoma Bacteriano , Bombas de Íon/genética , Bombas de Íon/efeitos da radiação , Luz , Dados de Sequência Molecular , Filogenia , Rodopsina/genética
15.
Plant Cell Physiol ; 57(12): 2611-2619, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27986916

RESUMO

The major developmental significance of leaf senescence is the massive recycling of nutrients from senescing leaves to nascent organs, including seeds, to meet the requirement of their rapid development, so-called nutrient remobilization. The efficiency of nutrient remobilization is associated with the activity of diverse transporters. A large number of transporters are up-regulated during leaf senescence in Arabidopsis, many of which participate in regulating leaf senescence via different signaling pathways. Here, we report that a member of the cation/Ca2+ exchanger family, CCX1, is highly induced during leaf senescence in Arabidopsis. Although single mutation of CCX1 did not change the senescence phenotype, double mutation of CCX1 and CCX4 resulted in a subtle but significant stay-green phenotype during natural and dark-induced leaf senescence, suggesting that some members of the cation/Ca2+ exchanger family act redundantly in mediating leaf senescence. Consistently, overexpression of CCX1 accelerated leaf senescence. Moreover, the ccx1ccx4 double mutant was more tolerant to H2O2, whereas CCX1-overexpressing lines showed an elevated response to H2O2 treatment, presumably due to an overaccumulation of reactive oxygen species (ROS), indicating that CCX1 may promote leaf senescence via modulating ROS homeostasis. Notably, both ccx1-1 and ccx1ccx4 were sensitive to Ca2+ deprivation, implying that CCX1 may also be involved in modulating Ca2+ signaling and consequently affecting the initiation of leaf senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cálcio/metabolismo , Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Antiporters , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Canais de Cálcio , Senescência Celular , Escuridão , Expressão Gênica , Homeostase , Peróxido de Hidrogênio/metabolismo , Bombas de Íon/genética , Bombas de Íon/metabolismo , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo , Transdução de Sinais
17.
Genet Mol Res ; 15(3)2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27525850

RESUMO

The high-affinity K(+) transporter (HKT) family comprises a group of multifunctional cation transporters widely distributed in organisms ranging from Bacteria to Eukarya. In angiosperms, the HKT family consists primarily of nine types, whose evolutionary relationships are not fully understood. The available sequences from 31 plant species were used to perform a comprehensive evolutionary analysis, including an examination of selection pressure and estimating phylogenetic tree and gene duplication events. Our results show that a gene duplication in the HKT1;5/HKT1;4 cluster might have led to the divergence of the HKT1;5 and HKT1;4 subfamilies. Additionally, maximum likelihood analysis revealed that the HKT family has undergone a strong purifying selection. An analysis of the amino acids provided strong statistical evidence for a functional divergence between subfamilies 1 and 2. Our study was the first to provide evidence of this functional divergence between these two subfamilies. Analysis of co-evolution in HKT identified 25 co-evolved groups. These findings expanded our understanding of the evolutionary mechanisms driving functional diversification of HKT proteins.


Assuntos
Evolução Molecular , Bombas de Íon/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Potássio/metabolismo , Duplicação Gênica , Bombas de Íon/metabolismo , Magnoliopsida/classificação , Filogenia , Proteínas de Plantas/metabolismo , Seleção Genética
18.
Curr Issues Mol Biol ; 17: 23-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25347917

RESUMO

A large proportion of the recoding events mediated by RNA editing are in mRNAs that encode ion channels and transporters. The effects of these events on protein function have been characterized in only a few cases. In even fewer instances are the mechanistic underpinnings of these effects understood. This review focuses on how RNA editing affects protein function and higher order physiology. In mammals, particular attention is given to the GluA2, an ionotropic glutamate receptor subunit, and K(v) 1.1, a voltage-dependent K+ channel, because they are particularly well understood. In K(v) addition, work on cephalopod K+ channels and Na+/K+-ATPases has also provided important clues on the rules used by RNA editing to regulate excitability. Finally, we discuss some of the emerging targets for editing and how this process may be used to regulate nervous function in response to a variable environment.


Assuntos
Regulação da Expressão Gênica , Canais Iônicos/genética , Canais Iônicos/metabolismo , Edição de RNA , Animais , Humanos , Canais Iônicos/química , Bombas de Íon/química , Bombas de Íon/genética , Bombas de Íon/metabolismo , Receptores de Glutamato/química , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Transmissão Sináptica
19.
Mol Membr Biol ; 31(6): 177-82, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25222859

RESUMO

This mini-review addresses advances in understanding the transmembrane topologies of two unrelated, single-subunit bicarbonate transporters from cyanobacteria, namely BicA and SbtA. BicA is a Na(+)-dependent bicarbonate transporter that belongs to the SulP/SLC26 family that is widespread in both eukaryotes and prokaryotes. Topology mapping of BicA via the phoA/lacZ fusion reporter method identified 12 transmembrane helices with an unresolved hydrophobic region just beyond helix 8. Re-interpreting this data in the light of a recent topology study on rat prestin leads to a consensus topology of 14 transmembrane domains with a 7+7 inverted repeat structure. SbtA is also a Na(+)-dependent bicarbonate transporter, but of considerably higher affinity (Km 2-5 µM versus >100 µM for BicA). Whilst SbtA is widespread in cyanobacteria and a few bacteria, it appears to be absent from eukaryotes. Topology mapping of SbtA via the phoA/lacZ fusion reporter method identified 10 transmembrane helices. The topology consists of a 5+5 inverted repeat, with the two repeats separated by a large intracellular loop. The unusual location of the N and C-termini outside the cell raises the possibility that SbtA forms a novel fold, not so far identified by structural and topological studies on transport proteins.


Assuntos
Proteínas de Bactérias/química , Bicarbonatos/metabolismo , Cianobactérias/metabolismo , Bombas de Íon/química , Proteínas de Bactérias/genética , Cianobactérias/química , Cianobactérias/genética , Bombas de Íon/genética , Modelos Moleculares , Mapeamento de Peptídeos , Estrutura Secundária de Proteína
20.
BMC Genomics ; 15: 54, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24450656

RESUMO

BACKGROUND: Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial and community-acquired infections. A wide repertoire of virulence and antimicrobial resistance genes is present in K. pneumoniae genomes, which can constitute extra challenges in the treatment of infections caused by some strains. K. pneumoniae Kp13 is a multidrug-resistant strain responsible for causing a large nosocomial outbreak in a teaching hospital located in Southern Brazil. Kp13 produces K. pneumoniae carbapenemase (KPC-2) but is unrelated to isolates belonging to ST 258 and ST 11, the main clusters associated with the worldwide dissemination of KPC-producing K. pneumoniae. In this report, we perform a genomic comparison between Kp13 and each of the following three K. pneumoniae genomes: MGH 78578, NTUH-K2044 and 342. RESULTS: We have completely determined the genome of K. pneumoniae Kp13, which comprises one chromosome (5.3 Mbp) and six plasmids (0.43 Mbp). Several virulence and resistance determinants were identified in strain Kp13. Specifically, we detected genes coding for six beta-lactamases (SHV-12, OXA-9, TEM-1, CTX-M-2, SHV-110 and KPC-2), eight adhesin-related gene clusters, including regions coding for types 1 (fim) and 3 (mrk) fimbrial adhesins. The rmtG plasmidial 16S rRNA methyltransferase gene was also detected, as well as efflux pumps belonging to five different families. Mutations upstream the OmpK35 porin-encoding gene were evidenced, possibly affecting its expression. SNPs analysis relative to the compared strains revealed 141 mutations falling within CDSs related to drug resistance which could also influence the Kp13 lifestyle. Finally, the genetic apparatus for synthesis of the yersiniabactin siderophore was identified within a plasticity region. Chromosomal architectural analysis allowed for the detection of 13 regions of difference in Kp13 relative to the compared strains. CONCLUSIONS: Our results indicate that the plasticity occurring at many hierarchical levels (from whole genomic segments to individual nucleotide bases) may play a role on the lifestyle of K. pneumoniae Kp13 and underlie the importance of whole-genome sequencing to study bacterial pathogens. The general chromosomal structure was somewhat conserved among the compared bacteria, and recombination events with consequent gain/loss of genomic segments appears to be driving the evolution of these strains.


Assuntos
Genoma Bacteriano , Klebsiella pneumoniae/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bombas de Íon/genética , Bombas de Íon/metabolismo , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Plasmídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Polimixinas/farmacologia , Análise de Sequência de DNA , Virulência/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA