Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 50(4): 941-954, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995508

RESUMO

Arterial inflammation is a hallmark of atherosclerosis, and appropriate management of this inflammation represents a major unmet therapeutic need for cardiovascular disease patients. Here, we review the diverse contributions of immune cells to atherosclerosis, the mechanisms of immune cell activation in this context, and the cytokine circuits that underlie disease progression. We discuss the recent application of these insights in the form of immunotherapy to treat cardiovascular disease and highlight how studies on the cardiovascular co-morbidity that arises in autoimmunity might reveal additional roles for cytokines in atherosclerosis. Currently, data point to interleukin-1ß (IL-1ß), tumor necrosis factor (TNF), and IL-17 as cytokines that, at least in some settings, are effective targets to reduce cardiovascular disease progression.


Assuntos
Doenças Cardiovasculares/imunologia , Citocinas/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Cardiovasculares/tratamento farmacológico , Colesterol/metabolismo , Ensaios Clínicos como Assunto , Citocinas/antagonistas & inibidores , Citocinas/uso terapêutico , Progressão da Doença , Células Espumosas/imunologia , Células Espumosas/metabolismo , Microbioma Gastrointestinal , Humanos , Inflamassomos/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-1beta/antagonistas & inibidores , Camundongos Knockout , Modelos Imunológicos , Músculo Liso Vascular/imunologia , Fagócitos/imunologia , Fagócitos/metabolismo , Transdução de Sinais , Suínos , Pesquisa Translacional Biomédica
2.
Cell ; 151(1): 138-52, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021221

RESUMO

Inflammation and macrophage foam cells are characteristic features of atherosclerotic lesions, but the mechanisms linking cholesterol accumulation to inflammation and LXR-dependent response pathways are poorly understood. To investigate this relationship, we utilized lipidomic and transcriptomic methods to evaluate the effect of diet and LDL receptor genotype on macrophage foam cell formation within the peritoneal cavities of mice. Foam cell formation was associated with significant changes in hundreds of lipid species and unexpected suppression, rather than activation, of inflammatory gene expression. We provide evidence that regulated accumulation of desmosterol underlies many of the homeostatic responses, including activation of LXR target genes, inhibition of SREBP target genes, selective reprogramming of fatty acid metabolism, and suppression of inflammatory-response genes, observed in macrophage foam cells. These observations suggest that macrophage activation in atherosclerotic lesions results from extrinsic, proinflammatory signals generated within the artery wall that suppress homeostatic and anti-inflammatory functions of desmosterol.


Assuntos
Aterosclerose/imunologia , Colesterol/biossíntese , Desmosterol/metabolismo , Células Espumosas/metabolismo , Metabolismo dos Lipídeos , Transcriptoma , Animais , Aterosclerose/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Células Espumosas/imunologia , Técnicas de Silenciamento de Genes , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397063

RESUMO

Persistent immune activation is linked to an increased risk of cardiovascular disease (CVD) in people with HIV (PWH) on antiretroviral therapy (ART). The NLRP3 inflammasome may contribute to elevated CVD risk in PWH. This study utilized peripheral blood mononuclear cells (PBMCs) from 25 PWH and 25 HIV-negative controls, as well as HIV in vitro infections. Transcriptional changes were analyzed using RNAseq and pathway analysis. Our results showed that in vitro HIV infection of macrophages and PBMCs from PWH had increased foam cell formation and expression of the NLRP3 inflammasome components and downstream cytokines (caspase-1, IL-1ß, and IL-18), which was reduced with inhibition of NLRP3 activity using MCC950. Transcriptomic analysis revealed an increased expression of multiple genes involved in lipid metabolism, cholesterol storage, coronary microcirculation disorders, ischemic events, and monocyte/macrophage differentiation and function with HIV infection and oxLDL treatment. HIV infection and NLRP3 activation increased foam cell formation and expression of proinflammatory cytokines, providing insights into the mechanisms underlying HIV-associated atherogenesis. This study suggests that HIV itself may contribute to increased CVD risk in PWH. Understanding the involvement of the inflammasome pathway in HIV atherosclerosis can help identify potential therapeutic targets to mitigate cardiovascular risks in PWH.


Assuntos
Aterosclerose , Células Espumosas , Infecções por HIV , Humanos , Aterosclerose/imunologia , Citocinas , Células Espumosas/imunologia , Infecções por HIV/complicações , Infecções por HIV/imunologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
4.
Exp Cell Res ; 409(2): 112922, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780785

RESUMO

Atherosclerosis is generally accepted as a chronic inflammatory disease and is the most important pathological process underlying the cardiovascular diseases. MiR-22 exerts an important role in tumorgenesis, obesity and NAFLD development, as well as cardiovascular diseases. However, a certain role of miR-22 in the pathogenesis of atherosclerosis remains undetermined. Here, we showed that miR-22 exhibited a negative association with the deteriorated atherosclerotic plaque and showed significant downregulated expression in macrophages. Next, treatment of ApoE deficiency (ApoE-/-) mice with miR-22 inhibitors which were then subjected to high fat diet (HFD) for 12 weeks were performed to investigate the function of miR-22 on atherogenesis. The results exhibited that miR-22 inhibition dramatically promoted atherosclerotic plaques but attenuated plaque stabilization which were accompanied by decreased smooth muscle cell and collagen content, but increased macrophage infiltration and lipid accumulation. More importantly, the in vivo and in vitro experiments suggested that miR-22 inhibition accelerated inflammatory response and foam cell formation. Mechanistically, we demonstrated interferon regulator factor 5 (IRF5) was an important target of miR-22 and it was required for the regulation of inflammation mediated by miR-22 inhibition. Collectively, these evidences revealed that miR-22 inhibition promoted the atherosclerosis progression through activation of IRF5.


Assuntos
Aterosclerose/patologia , Células Espumosas/imunologia , Regulação da Expressão Gênica , Inflamação/patologia , Fatores Reguladores de Interferon/metabolismo , MicroRNAs/antagonistas & inibidores , Placa Aterosclerótica/patologia , Animais , Apoptose , Aterosclerose/etiologia , Aterosclerose/metabolismo , Proliferação de Células , Células Cultivadas , Dieta Hiperlipídica , Inflamação/etiologia , Inflamação/metabolismo , Fatores Reguladores de Interferon/genética , Camundongos , Camundongos Knockout para ApoE , MicroRNAs/genética , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo
5.
Biochem Biophys Res Commun ; 556: 65-71, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33839416

RESUMO

Ethyl gallate (EG) is a well-known constituent of medicinal plants, but its effects on atherosclerosis development are not clear. In the present study, the anti-atherosclerosis effects of EG and the underlying mechanisms were explored using macrophage cultures, zebrafish and apolipoprotein (apo) E deficient mice. Treatment of macrophages with EG (20 µM) enhanced cellular cholesterol efflux to HDL, and reduced net lipid accumulation in response to oxidized LDL. Secretion of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) from activated macrophages was also blunted by EG. Fluorescence imaging techniques revealed EG feeding of zebrafish reduced vascular lipid accumulation and inflammatory responses in vivo. Similar results were obtained in apoE-/- mice 6.5 months of age, where plaque lesions and monocyte infiltration into the artery wall were reduced by 70% and 42%, respectively, after just 6 weeks of injections with EG (20 mg/kg). HDL-cholesterol increased 2-fold, serum cholesterol efflux capacity increased by ∼30%, and the levels of MCP-1 and IL-6 were reduced with EG treatment of mice. These results suggest EG impedes early atherosclerosis development by reducing the lipid and macrophage-content of plaque. Underlying mechanisms appeared to involve HDL cholesterol efflux mechanisms and suppression of pro-inflammatory cytokine secretion.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Benzoatos/metabolismo , Ácido Gálico/análogos & derivados , Metabolismo dos Lipídeos/efeitos dos fármacos , Plantas Medicinais/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apolipoproteínas E/deficiência , Aterosclerose/patologia , Aterosclerose/prevenção & controle , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células Espumosas/citologia , Células Espumosas/efeitos dos fármacos , Células Espumosas/imunologia , Células Espumosas/metabolismo , Ácido Gálico/administração & dosagem , Ácido Gálico/metabolismo , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/prevenção & controle , Células RAW 264.7 , Regulação para Cima/efeitos dos fármacos , Peixe-Zebra/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 40(3): 597-610, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31996021

RESUMO

OBJECTIVE: By binding to its high-affinity receptor FcεR1, IgE activates mast cells, macrophages, and other inflammatory and vascular cells. Recent studies support an essential role of IgE in cardiometabolic diseases. Plasma IgE level is an independent predictor of human coronary heart disease. Yet, a direct role of IgE and its mechanisms in cardiometabolic diseases remain incompletely understood. Approach and Results: Using atherosclerosis prone Apoe-/- mice and IgE-deficient Ige-/- mice, we demonstrated that IgE deficiency reduced atherosclerosis lesion burden, lesion lipid deposition, smooth muscle cell and endothelial cell contents, chemokine MCP (monocyte chemoattractant protein)-1 expression and macrophage accumulation. IgE deficiency also reduced bodyweight gain and increased glucose and insulin sensitivities with significantly reduced plasma cholesterol, triglyceride, insulin, and inflammatory cytokines and chemokines, including IL (interleukin)-6, IFN (interferon)-γ, and MCP-1. From atherosclerotic lesions and peritoneal macrophages from Apoe-/-Ige-/- mice that consumed an atherogenic diet, we detected reduced expression of M1 macrophage markers (CD68, MCP-1, TNF [tumor necrosis factor]-α, IL-6, and iNOS [inducible nitric oxide synthase]) but increased expression of M2 macrophage markers (Arg [arginase]-1 and IL-10) and macrophage-sterol-responsive-network molecules (complement C3, lipoprotein lipase, LDLR [low-density lipoprotein receptor]-related protein 1, and TFR [transferrin]) that suppress macrophage foam cell formation. These IgE activities can be reproduced in bone marrow-derived macrophages from wild-type mice, but muted in cells from FcεR1-deficient mice, or blocked by anti-IgE antibody or complement C3 deficiency. CONCLUSIONS: IgE deficiency protects mice from diet-induced atherosclerosis, obesity, glucose tolerance, and insulin resistance by regulating macrophage polarization, macrophage-sterol-responsive-network gene expression, and foam cell formation.


Assuntos
Aorta/metabolismo , Aterosclerose/metabolismo , Células Espumosas/metabolismo , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Ativação de Macrófagos , Macrófagos Peritoneais/metabolismo , Obesidade/metabolismo , Animais , Aorta/imunologia , Aorta/patologia , Aterosclerose/imunologia , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Glicemia/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Células Espumosas/imunologia , Células Espumosas/patologia , Redes Reguladoras de Genes , Imunoglobulina E/deficiência , Imunoglobulina E/genética , Inflamação/imunologia , Inflamação/patologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Obesidade/imunologia , Obesidade/patologia , Obesidade/prevenção & controle , Fenótipo , Placa Aterosclerótica , Receptores de IgE/genética , Receptores de IgE/metabolismo , Transdução de Sinais , Esteróis/metabolismo
7.
Molecules ; 26(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401401

RESUMO

There is a high level of interest in identifying metabolites of endogenously produced or dietary compounds generated by the gastrointestinal (GI) tract microbiota, and determining the functions of these metabolites in health and disease. There is a wealth of compelling evidence that the microbiota is linked with many complex chronic inflammatory diseases, including atherosclerosis. Macrophages are key target immune cells in atherosclerosis. A hallmark of atherosclerosis is the accumulation of pro-inflammatory macrophages in coronary arteries that respond to pro-atherogenic stimuli and failure of digesting lipids that contribute to foam cell formation in atherosclerotic plaques. This review illustrates the role of tryptophan-derived microbiota metabolites as an aryl hydrocarbon receptor (AhR) ligand that has immunomodulatory properties. Also, microbiota-dependent trimethylamine-N-oxide (TMAO) metabolite production is associated with a deleterious effect that promotes atherosclerosis, and metabolite indoxyl sulfate has been shown to exacerbate atherosclerosis. Our objective in this review is to discuss the role of microbiota-derived metabolites in atherosclerosis, specifically the consequences of microbiota-induced effects of innate immunity in response to atherogenic stimuli, and how specific beneficial/detrimental metabolites impact the development of atherosclerosis by regulating chronic endotoxemic and lipotoxic inflammation.


Assuntos
Aterosclerose , Células Espumosas , Microbioma Gastrointestinal/imunologia , Indicã , Metilaminas , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/microbiologia , Aterosclerose/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Espumosas/imunologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Indicã/imunologia , Indicã/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Metilaminas/imunologia , Metilaminas/metabolismo , Receptores de Hidrocarboneto Arílico/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo
8.
Scand J Immunol ; 91(4): e12866, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31960452

RESUMO

Understanding mechanisms of cavitation in tuberculosis (TB) is the missing link that could advance the field towards better control of the infection. Descriptions of human TB suggest that postprimary TB begins as lipid pneumonia of foamy macrophages that undergoes caseating necrosis and fragmentation to produce cavities. This study aimed to investigate the various mycobacterial antigens accumulating in foamy macrophages and their relation to tissue destruction and necrosis. Pulmonary tissues from mice with slowly progressive TB were studied for histopathology, acid-fast bacilli (AFB) and presence of mycobacterial antigens. Digital quantification using Aperio ImageScope was done. Until week 12 postinfection, mice were healthy, and lesions were small with scarce AFB and mycobacterial antigens. Colony-forming units (CFUs) increased exponentially. At week 16-33, mice were sick, macrophages attained foamy appearance with an increase in antigens (P < .05), 1.5 log increase in CFUs and an approximately onefold increase in AFB. At week 37-41, mice started dying with a shift in morphology towards necrosis. A >20-fold increase in mycobacterial antigens was observed with only less than one log increase in CFUs and sevenfold increase in AFB. Secreted antigens were significantly (P < .05) higher compared to cell-wall antigens throughout infection. Focal areas of necrosis were associated with an approximately 40-fold increase in antigen MPT46, functionally active thioredoxin, and a significant increase in all secreted antigens. In conclusion, mycobacterial antigens accumulate in the foamy macrophages in TB lesions during slowly progressive murine pulmonary TB. Secreted antigens and MPT46 correlated with necrosis, thereby implying that they might trigger the formation of cavities.


Assuntos
Antígenos de Bactérias/imunologia , Células Espumosas/imunologia , Células Espumosas/microbiologia , Tuberculose Pulmonar/patologia , Animais , Células Espumosas/patologia , Camundongos , Mycobacterium tuberculosis , Necrose , Tuberculose Pulmonar/imunologia
9.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012706

RESUMO

Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL. It was found that most of the identified master regulators were related to the regulation of the inflammatory immune response, but not to lipid metabolism. A possible explanation for this unexpected result is a stimulation of the phagocytic activity of macrophages by modified LDL particle associates that have a relatively large size. In the current study, we investigated gene regulation in macrophages using transcriptome analysis to test the hypothesis that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. We identified genes that were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads (inert phagocytosis stimulators). Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. The obtained results indicated that pro-inflammatory response to phagocytosis stimulation precedes the accumulation of intracellular lipids and possibly contributes to the formation of foam cells. In this way, the currently recognized hypothesis that the accumulation of lipids triggers the pro-inflammatory response was not confirmed. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. Additionally, the knock-down effect of five master regulators, such as IL15, EIF2AK3, F2RL1, TSPYL2, and ANXA1, on intracellular lipid accumulation was tested. We knocked down these genes in primary macrophages derived from human monocytes. The addition of atherogenic naturally occurring LDL caused a significant accumulation of cholesterol in the control cells. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages. The knock-down of the ANXA1 gene caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. The results obtained allowed us to explain in which way the inflammatory response and the accumulation of cholesterol are related confirming our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response.


Assuntos
Células Espumosas/metabolismo , Células Espumosas/patologia , Lipoproteínas LDL/metabolismo , Fagocitose , Biomarcadores , Células Espumosas/imunologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imunidade Inata , Metabolismo dos Lipídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Oxirredução , Fagocitose/genética , Fagocitose/imunologia , Transdução de Sinais , Transcriptoma
10.
Blood ; 130(2): 167-175, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28512190

RESUMO

Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD) are rare histiocytic disorders induced by somatic mutation of MAPK pathway genes. BRAFV600E mutation is the most common mutation in both conditions and also occurs in the hematopoietic neoplasm hairy cell leukemia (HCL). It is not known if adult LCH or ECD arises from hematopoietic stem cells (HSCs), nor which potential blood borne precursors lead to the formation of histiocytic lesions. In this study, BRAFV600E allele-specific polymerase chain reaction was used to map the neoplastic clone in 20 adults with LCH, ECD, and HCL. BRAFV600E was tracked to classical monocytes, nonclassical monocytes, and CD1c+ myeloid dendritic cells (DCs) in the blood, and mutations were observed in HSCs and myeloid progenitors in the bone marrow of 4 patients. The pattern of involvement of peripheral blood myeloid cells was indistinguishable between LCH and ECD, although the histiocytic disorders were distinct to HCL. As reported in children, detection of BRAFV600E in peripheral blood of adults was a marker of active multisystem LCH. The healthy counterparts of myeloid cells affected by BRAF mutation had a range of differentiation potentials depending on exogenous signals. CD1c+ DCs acquired high langerin and CD1a with granulocyte-macrophage colony-stimulating factor and transforming growth factor ß alone, whereas CD14+ classical monocytes required additional notch ligation. Both classical and nonclassical monocytes, but not CD1c+ DCs, made foamy macrophages easily in vitro with macrophage colony-stimulating factor and human serum. These studies are consistent with a hematopoietic origin and >1 immediate cellular precursor in both LCH and ECD.


Assuntos
Células da Medula Óssea/patologia , Doença de Erdheim-Chester/diagnóstico , Células-Tronco Hematopoéticas/patologia , Histiocitose de Células de Langerhans/diagnóstico , Proteínas Proto-Oncogênicas B-raf/genética , Adulto , Alelos , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos CD1/genética , Antígenos CD1/imunologia , Células da Medula Óssea/imunologia , Diferenciação Celular , Células Dendríticas/imunologia , Células Dendríticas/patologia , Diagnóstico Diferencial , Doença de Erdheim-Chester/genética , Doença de Erdheim-Chester/imunologia , Doença de Erdheim-Chester/patologia , Feminino , Células Espumosas/imunologia , Células Espumosas/patologia , Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Células-Tronco Hematopoéticas/imunologia , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/imunologia , Histiocitose de Células de Langerhans/patologia , Humanos , Imunofenotipagem , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/imunologia , Masculino , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/imunologia , Monócitos/imunologia , Monócitos/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf/imunologia , Receptores Notch/genética , Receptores Notch/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
11.
J Immunol ; 198(1): 472-480, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27895181

RESUMO

In the atherosclerotic lesion, macrophages ingest high levels of damaged modified low-density lipoproteins (LDLs), generating macrophage foam cells. Foam cells undergo apoptosis and, if not efficiently cleared by efferocytosis, can undergo secondary necrosis, leading to plaque instability and rupture. As a component of the innate immune complement cascade, C1q recognizes and opsonizes modified forms of LDL, such as oxidized or acetylated LDL, and promotes ingestion by macrophages in vitro. C1q was shown to be protective in an atherosclerosis model in vivo. Therefore, this study aimed to investigate whether ingestion of modified LDL in the presence of C1q alters macrophage foam cell survival or function. In an unbiased transcriptome analysis, C1q was shown to modulate expression of clusters of genes involved in cell death and apoptosis pathways in human monocyte-derived macrophages ingesting modified LDL; this was validated by quantitative PCR in human and murine macrophages. C1q downregulated levels and activity of active caspase-3 and PARP-1 in human and mouse macrophages during ingestion of modified LDL. This led to a measurable increase in survival and decrease in cell death, as measured by alamarBlue and propidium iodide assays, respectively. C1q opsonization also increased phagocytosis and efferocytosis in macrophage foam cells. These data suggest that C1q promotes macrophage survival during ingestion of excess cholesterol, as well as improves foam cell efferocytic function. This may be important in slowing disease progression and provides insight into the protective role of C1q in early atherosclerosis.


Assuntos
Apoptose/imunologia , Complemento C1q/imunologia , Células Espumosas/imunologia , Animais , Aterosclerose/imunologia , Aterosclerose/patologia , Sobrevivência Celular/imunologia , Humanos , Camundongos , Reação em Cadeia da Polimerase
12.
J Immunol ; 199(6): 2149-2157, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28784845

RESUMO

Hypercholesterolemia is a key risk factor for atherosclerosis and leads to the uptake of native and oxidized low-density lipoprotein (oxLDL) by macrophages (Mϕs) and foam cell formation. Inflammatory processes accompany Mϕ foam cell formation in the artery wall, yet the relationship between Mϕ lipid loading and their response to inflammatory stimuli remains elusive. We investigated proinflammatory gene expression in thioglycollate-elicited peritoneal Mϕs, bone marrow-derived Mϕs and dendritic cells, and RAW264.7 cells. Loading with oxLDL did not induce peritoneal Mϕ apoptosis or modulate basal-level expression of proinflammatory genes. Upon stimulation of TLR4, the rapid induction of IFN-ß was inhibited in cells loaded with oxLDL, whereas the induction of other proinflammatory genes by TLR4 (LPS), TLR3 (polyriboinosinic-polyribocytidylic acid), TLR2 (Pam3CSK4), and TLR9 (CpG) remained comparable within the first 2 h. Subsequently, the expression of a subset of proinflammatory genes (e.g., IL-1ß, IL-6, CCL5) was reduced in oxLDL-loaded cells at the level of transcription. This phenomenon was partially dependent on NF erythroid 2-related factor 2 (NRF2) but not on nuclear liver X receptors α and ß (LXRα,ß), peroxisome proliferator-activated receptor-γ (PPARγ), and activating transcription factor 3 (ATF3). LPS-induced NF-κB reporter activity and intracellular signaling by NF-κB and MAPK pathways were comparable in oxLDL-loaded Mϕs, yet the binding of p65/RelA (the prototypic NF-κB family member) was reduced at IL-6 and CCL5 promoters. This study revealed that oxLDL loading of Mϕs negatively regulates transcription at late stages of TLR-induced proinflammatory gene expression and implicates epigenetic mechanisms such as histone deacetylase activity.


Assuntos
Aterosclerose/imunologia , Células Espumosas/imunologia , Hipercolesterolemia/imunologia , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos/imunologia , Receptor 4 Toll-Like/metabolismo , Animais , Diferenciação Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Tioglicolatos/imunologia , Ativação Transcricional
13.
J Biol Chem ; 292(35): 14391-14400, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28705936

RESUMO

Macrophage uptake of oxidized low-density lipoprotein (oxLDL) plays an important role in foam cell formation and the pathogenesis of atherosclerosis. We report here that lysophosphatidic acid (LPA) enhances lipopolysaccharide (LPS)-induced oxLDL uptake in macrophages. Our data revealed that both LPA and LPS highly induce the CD14 expression at messenger RNA and protein levels in macrophages. The role of CD14, one component of the LPS receptor cluster, in LPA-induced biological functions has been unknown. We took several steps to examine the role of CD14 in LPA signaling pathways. Knockdown of CD14 expression nearly completely blocked LPA/LPS-induced oxLDL uptake in macrophages, demonstrating for the first time that CD14 is a key mediator responsible for both LPA- and LPS-induced oxLDL uptake/foam cell formation. To determine the molecular mechanism mediating CD14 function, we demonstrated that both LPA and LPS significantly induce the expression of scavenger receptor class A type I (SR-AI), which has been implicated in lipid uptake process, and depletion of CD14 levels blocked LPA/LPS-induced SR-AI expression. We further showed that the SR-AI-specific antibody, which quenches SR-AI function, blocked LPA- and LPS-induced foam cell formation. Thus, SR-AI is the downstream mediator of CD14 in regulating LPA-, LPS-, and LPA/LPS-induced foam cell formation. Taken together, our results provide the first experimental evidence that CD14 is a novel connecting molecule linking both LPA and LPS pathways and is a key mediator responsible for LPA/LPS-induced foam cell formation. The LPA/LPS-CD14-SR-AI nexus might be the new convergent pathway, contributing to the worsening of atherosclerosis.


Assuntos
Células Espumosas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de Lipopolissacarídeos/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Receptores de Ácidos Lisofosfatídicos/agonistas , Receptores Depuradores Classe A/metabolismo , Absorção Fisiológica/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células Cultivadas , Células Espumosas/efeitos dos fármacos , Células Espumosas/imunologia , Células Espumosas/patologia , Humanos , Isoxazóis/farmacologia , Receptores de Lipopolissacarídeos/química , Receptores de Lipopolissacarídeos/genética , Lipopolissacarídeos/toxicidade , Lipoproteínas LDL/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Propionatos/farmacologia , Interferência de RNA , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores Depuradores Classe A/agonistas , Receptores Depuradores Classe A/antagonistas & inibidores , Receptores Depuradores Classe A/genética
14.
Biochem Biophys Res Commun ; 495(1): 382-387, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122594

RESUMO

The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively.


Assuntos
Colesterol/metabolismo , Células Espumosas/citologia , Células Espumosas/imunologia , Inflamassomos/imunologia , Lipoproteínas LDL/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Colesterol/imunologia , Humanos , Inflamassomos/antagonistas & inibidores , Macrófagos/citologia , Células THP-1
15.
Circ Res ; 118(4): 679-91, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892966

RESUMO

Elevated levels of cholesteryl ester (CE)-enriched apoB containing plasma lipoproteins lead to increased foam cell formation, the first step in the development of atherosclerosis. Unregulated uptake of low-density lipoprotein cholesterol by circulating monocytes and other peripheral blood cells takes place through scavenger receptors and over time causes disruption in cellular cholesterol homeostasis. As lipoproteins are taken up, their CE core is hydrolyzed by liposomal lipases to generate free cholesterol (FC). FC can be either re-esterified and stored as CE droplets or shuttled to the plasma membrane for ATP-binding cassette transporter A1-mediated efflux. Because cholesterol is an essential component of all cellular membranes, some FC may be incorporated into microdomains or lipid rafts. These platforms are essential for receptor signaling and transduction, requiring rapid assembly and disassembly. ATP-binding cassette transporter A1 plays a major role in regulating microdomain cholesterol and is most efficient when lipid-poor apolipoprotein AI (apoAI) packages raft cholesterol into soluble particles that are eventually catabolized by the liver. If FC is not effluxed from the cell, it becomes esterified, CE droplets accumulate and microdomain cholesterol content becomes poorly regulated. This dysregulation leads to prolonged activation of immune cell signaling pathways, resulting in receptor oversensitization. The availability of apoAI or other amphipathic α-helix-rich apoproteins relieves the burden of excess microdomain cholesterol in immune cells allowing a reduction in immune cell proliferation and infiltration, thereby stimulating regression of foam cells in the artery. Therefore, cellular balance between FC and CE is essential for proper immune cell function and prevents chronic immune cell overstimulation and proliferation.


Assuntos
Artérias/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Inflamação/metabolismo , Microdomínios da Membrana/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Artérias/imunologia , Artérias/patologia , Aterosclerose/imunologia , Aterosclerose/patologia , Colesterol/imunologia , Ésteres do Colesterol/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Esterificação , Células Espumosas/imunologia , Células Espumosas/patologia , Humanos , Hidrólise , Inflamação/imunologia , Inflamação/patologia , Ativação Linfocitária , Microdomínios da Membrana/imunologia , Microdomínios da Membrana/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
J Biochem Mol Toxicol ; 32(9): e22192, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29992715

RESUMO

High density lipoprotein (HDL)-macrophage interactions have the potential to modulate macrophage function in a beneficial way to prevent the development of lipid-loaded foam cell formation in atherosclerosis. Although HDL is atheroprotective, it can become dysfunctional in chronic inflammatory conditions and increase cardiovascular risk. Here, we examined the effect of dysfunctional-HDL from patients with coronary artery disease, on macrophage function in comparison to functional-HDL from controls. Exposure of macrophages to dysfunctional-HDL for 24 h resulted significant increase in cellular oxidative stress, cholesterol, and cytotoxicity. It also stimulated mitochondrial membrane depolarization, DNA damage, apoptosis, and cleavage of poly (ADP-ribose) polymerase, which are characteristics of proapoptotic pathways. In contrast, functional-HDL treatment maintained cholesterol homeostasis, essential membrane potential, DNA integrity, and cell survival. These results demonstrate that HDL from coronary artery disease (CAD) patient promotes proatherogenic effects that in turn trigger macrophage apoptosis, an important feature in atherogenesis and thereby providing new insight in our understanding of the atherogenic mechanisms.


Assuntos
Apoptose , Colesterol/metabolismo , Doença das Coronárias/metabolismo , Dano ao DNA , Células Espumosas/metabolismo , Macrófagos/metabolismo , Estresse Oxidativo , Absorção Fisiológica , Adulto , Transporte Biológico , Sobrevivência Celular , Células Cultivadas , Ensaio Cometa , Doença das Coronárias/sangue , Doença das Coronárias/imunologia , Doença das Coronárias/patologia , Meios de Cultura Livres de Soro , Feminino , Células Espumosas/imunologia , Células Espumosas/patologia , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise , Espécies Reativas de Oxigênio/metabolismo
17.
Curr Opin Hematol ; 24(3): 230-239, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28212189

RESUMO

PURPOSE OF REVIEW: Wnt signaling plays a crucial role during embryogenesis. In an adult, Wnt is mainly associated to cellular proliferation and differentiation mechanisms. Recent data suggest that Wnt signaling is involved in the pathophysiology of atherosclerosis. However, the roles of Wnt signaling pathways in the vessel wall are poorly understood. This review outlines recent discoveries in understanding the role of Wnt pathways in healthy and atherosclerotic vessels. RECENT FINDINGS: In the last years, the involvement of both canonical and noncanonical Wnt pathways in the development of atherosclerotic lesions has been recognized. Indeed, several Wnt pathway components have been shown to participate in the early, intermediate, and late stages of atherosclerosis development. Specifically, the role of the Wnt coreceptors low-density lipoprotein receptor-related protein 5 and low-density lipoprotein receptor-related protein 6 seems to be crucial for atherosclerotic plaque progression. SUMMARY: Many of the clinical trials developed in the last decade to reduce atherosclerosis and cardiovascular diseases have been futile or have failed possibly because of a poor understanding of new mechanisms that lead to diseases. The understanding of the signaling pathways involved in human atherosclerosis development should help in the development of future therapies.


Assuntos
Vasos Sanguíneos/metabolismo , Via de Sinalização Wnt , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores , Vasos Sanguíneos/patologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Proteínas de Transporte/metabolismo , Progressão da Doença , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Células Espumosas/imunologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Regulação da Expressão Gênica , Valvas Cardíacas/metabolismo , Valvas Cardíacas/patologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Ligantes , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Miócitos de Músculo Liso/metabolismo , Ligação Proteica , Transdução de Sinais , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
18.
Lab Invest ; 97(11): 1296-1305, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28759013

RESUMO

Papillary renal cell carcinoma (pRCC) is the second most common type of renal cell carcinoma. The only curative treatment available for pRCC is radical surgery. If the disease becomes widespread, neither chemo- nor radiotherapy will have therapeutic effect, hence further research on pRCC is of utmost importance. Histologically, pRCC is characterized by a papillary growth pattern with focal aggregation of macrophages of the foam cell phenotype. In other forms of cancer, a clear role for tumor-associated macrophages during cancer growth and progression has been shown. Although the presence of foamy macrophages is a histological hallmark of pRCC tumors, little is known regarding their role in pRCC biology. In order to study the interaction between pRCC tumor and myeloid cells, we established primary cultures from pRCC tissue. We show that human pRCC cells secrete the chemokines IL-8, CXCL16, and chemerin, and that these factors attract primary human monocytes in vitro. RNAseq data from The Cancer Genome Atlas confirmed a high expression of these factors in pRCC tissue. Conditioned medium from pRCC cultures induced a shift in human monocytes toward the M2 macrophage phenotype. In extended cultures, these macrophages became enlarged and loaded with lipids, adopting the foam cell morphology found in pRCC tissue. These results show for the first time that pRCC primary tumor cells secrete factors that attract and differentiate monocytes into anti-inflammatory tumor-associated macrophages with foam cell histology.


Assuntos
Carcinoma de Células Renais/metabolismo , Quimiocinas CXC/metabolismo , Quimiocinas/metabolismo , Células Espumosas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-8/metabolismo , Neoplasias Renais/metabolismo , Monócitos/metabolismo , Receptores Depuradores/metabolismo , Idoso , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Transdiferenciação Celular , Células Cultivadas , Quimiocina CXCL16 , Quimiotaxia de Leucócito , Técnicas de Cocultura , Meios de Cultivo Condicionados , Células Espumosas/imunologia , Células Espumosas/patologia , Humanos , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/patologia , Gradação de Tumores , Proteínas de Neoplasias/metabolismo , Nefrectomia , Carga Tumoral , Células Tumorais Cultivadas , Microambiente Tumoral
19.
Arterioscler Thromb Vasc Biol ; 36(2): 274-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26681753

RESUMO

OBJECTIVE: Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. APPROACH AND RESULTS: Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor-α-activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-κB-dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-α, interleukin-1ß, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)- and M-CSF (macrophage colony-stimulating factor)-differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)-activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. CONCLUSIONS: The findings identify C-terminal cleavage of apoA-I by human mast cell chymase as a novel mechanism leading to loss of its anti-inflammatory functions. When targeting inflamed protease-rich atherosclerotic lesions with apoA-I, infusions of protease-resistant apoA-I might be the appropriate approach.


Assuntos
Apolipoproteína A-I/metabolismo , Aterosclerose/enzimologia , Quimases/metabolismo , Células Endoteliais/metabolismo , Inflamação/enzimologia , Mastócitos/enzimologia , Apolipoproteína A-I/farmacologia , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Adesão Celular , Linhagem Celular Tumoral , Colesterol/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Espumosas/imunologia , Células Espumosas/metabolismo , Humanos , Inflamação/imunologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , NF-kappa B/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peptídeos/farmacologia , Estrutura Terciária de Proteína , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Migração Transendotelial e Transepitelial , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
J Immunol ; 194(7): 3317-26, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25716998

RESUMO

Surfactant protein D (SP-D) is critical for maintenance of lung homeostasis and provides a first line of defense to pathogens at mucosal surfaces. Polymorphisms in the SP-D-encoding gene SFTPD have been associated with chronic obstructive pulmonary disease and ulcerative colitis. Identification of the immunoreceptors that bind SP-D is essential for understanding its contribution to lung homeostasis and mucosal defense. We located a putative binding motif for the osteoclast-associated receptor (OSCAR) within the SP-D collagenous domain. An OSCAR-Fc fusion protein specifically bound to the collagenous region of recombinant SP-D and captured native SP-D from human bronchoalveolar lavage. OSCAR localized in an intracellular compartment of alveolar macrophages together with SP-D. Moreover, we found OSCAR on the surface of interstitial lung and blood CCR2(+) inflammatory monocytes, which secreted TNF-α when exposed to SP-D in an OSCAR-dependent fashion. OSCAR and SP-D did not exclusively colocalize in lung, as they were also highly expressed in atherosclerotic plaques of human aorta, supporting a role for this interaction in atherosclerosis. Our results identify the OSCAR:SP-D interaction as a potential therapeutic target in chronic inflammatory diseases of the lung as well as other diseases involving tissue accumulation of SP-D, infiltration of inflammatory monocytes, and release of TNF-α.


Assuntos
Inflamação/metabolismo , Monócitos/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Receptores CCR2/metabolismo , Receptores de Superfície Celular/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Biologia Computacional , Células Espumosas/imunologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Expressão Gênica , Humanos , Inflamação/imunologia , Inflamação/patologia , Espaço Intracelular/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Monócitos/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA