Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474555

RESUMO

BACKGROUND: Prostate cancer (PC) and benign prostatic hyperplasia (BPH) are common health problems in the aging male population. Due to the unexplored and unconfirmed impact of food containing isoflavones, like sprouts, on the development of the management of BPH and prostate cancer, we decided to extend the knowledge in this area. RESULTS: We have demonstrated for the first time that chickpea sprouts may play an important role in the chemoprevention of prostate disorders. However, attention should be paid to the isoflavone content in the sprouts, as in our study, chickpea sprouts with a moderate concentration of the compounds, harvested in natural light conditions (CA10L) and blue LED light (CA7B), showed the best scores in terms of their potential towards prostate disorders. METHODS: Chickpea seeds were grown in LED chambers. The methanol extracts from sprouts were quantitatively defined using the HPLC system. Experiments such as the determination of PSA, 5-α-reductase, and dihydrotestosterone were performed on PNT2 and LNCaP cells. For anti-inflammatory assays (determination of NO, IL-6, and TNF-alpha release), murine RAW264.7 macrophages were used. CONCLUSIONS: The role of legume products as a diet element should be deeply evaluated for the development of future dietary recommendations for prostate cancer and BPH prevention.


Assuntos
Cicer , Isoflavonas , Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Cicer/química , Próstata , Isoflavonas/química , Dieta
2.
J Sci Food Agric ; 104(9): 5305-5314, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38380983

RESUMO

BACKGROUND: An attempt has been made to explore the nutritional profile of pink oyster mushrooms that have been grown in various agricultural residues, including sugarcane bagasse, rice straw, coconut coir and sawdust, along with other nutrient supplements such as defatted mustard and chickpea powder, for appropriate growth and fruiting body formation in a short span of time. The spawn production was experimented with five different grain varieties. The study became interesting when the observations differed slightly from the traditional practices, with the addition of defatted mustard supplements resulting in a positive correlation with respect to reducing the fruiting time, as well as improving yield and the nutritional profile of Pleurotus djamor. RESULTS: An elevated yield of 651.93 g kg-1 was recorded in the medium where the RS and DM were used in the ratio of 1:0.01 (rice straw +1% w/w defatted mustard) bag, whereas, in terms of protein content, a maximum yield of 32.57 ± 0.79 mg g-1 was observed when SB:DM was in the same ratio (sugarcane bagasse +1% w/w defatted mustard) bag. CONCLUSION: To confer the best outcomes from the screened substrates, a series of experiments were performed by varying the concentration of RS and SB, with 1% w/w DM. It is worth noting that the highest protein content of 32.76 ± 0.38 mg g-1 was obtained along with the total yield of 702.56 ± 2.9 g kg-1 of mushroom when the ratio of RS:SB was 0.7:0.3. © 2024 Society of Chemical Industry.


Assuntos
Valor Nutritivo , Pleurotus , Pleurotus/metabolismo , Pleurotus/química , Pleurotus/crescimento & desenvolvimento , Oryza/química , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Saccharum/química , Saccharum/metabolismo , Saccharum/crescimento & desenvolvimento , Mostardeira/química , Mostardeira/crescimento & desenvolvimento , Mostardeira/metabolismo , Cicer/química , Cicer/crescimento & desenvolvimento , Cicer/metabolismo , Celulose
3.
Plant Foods Hum Nutr ; 79(2): 539-544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696133

RESUMO

Chickpeas have large variations in their types and nutrient composition, owing to diverse environmental conditions, breeding techniques, and cultivars. Thirty-one improved varieties of chickpeas bred for various agronomic traits like high yield, resistance to diseases, and tolerance to abiotic stress were analyzed for their nutrient composition, along with two local varieties. They were found to be rich in proteins (16.09-26.22 g/100 g) and dietary fiber (10.33-26.33 g/100 g) with moderate amounts of available carbohydrates (34.20-54.72 g/100 g) and to have a significant quantity of minerals like calcium (127.50-183.86 mg/100 g), iron (4.55-8.33 mg/100 g), and phosphorous (285.92-528.31 mg/100 g). They were found to be similar (fat, carbohydrates, dietary fiber) or statistically higher (protein, ash) than the local varieties for all the nutrient parameters that were analyzed. A significant difference was also found between the desi and kabuli varieties, where the desi variety was found to have significantly lower fat and available carbohydrates but high dietary fiber content. This study signifies that the varietal differences in nutritional composition are significant in chickpeas. Varieties like Sasho, ICCV 96030, and Teketay showed desirable nutritional qualities associated with moisture, protein, dietary fiber, and minerals like zinc, phosphorous, iron, copper, and calcium. This data will be beneficial for manufacturers in the product development and value addition industries for the selection of varieties ideal for their needs since the nutrient component also confers several functional and physiochemical properties to the chickpea seed besides providing a nutritionally diverse diet.


Assuntos
Cicer , Fibras na Dieta , Minerais , Valor Nutritivo , Cicer/química , Fibras na Dieta/análise , Minerais/análise , Carboidratos da Dieta/análise , Proteínas Alimentares/análise , Gorduras na Dieta/análise
4.
Plant Foods Hum Nutr ; 79(2): 489-496, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642194

RESUMO

This study explores the impact of co-ingesting cereals and legumes on starch and protein during simulated infant in vitro digestion. Various legumes (chickpeas, lentils, peas) were added to cereals (durum wheat, brown rice, white maize), and their effects on starch and protein hydrolysis were analyzed. Substituting 50% of cereal with legumes increased proteins, minerals, and dietary fiber. Infant food with legumes exhibited smoother pasting properties. Legumes in cereal purées led to varying starch hydrolysis trends, with the lowest values in durum wheat with chickpea and all cereal blends with peas. Resistant starch levels exceeding 50% were found in infant food samples. Digested protein hydrolysis increased with legumes in durum wheat, except for peas. Brown rice mixtures decreased significantly compared to the control with chickpeas (61%) and peas (42%), while lentil blends increased by 46%. Legumes generally did not significantly affect starch bioavailability, even with α-amylase inhibitors. Lentil-cereal purées could enhance infant food nutritional value.


Assuntos
Proteínas Alimentares , Digestão , Grão Comestível , Fabaceae , Alimentos Infantis , Amido , Amido/metabolismo , Grão Comestível/química , Alimentos Infantis/análise , Humanos , Fabaceae/química , Lactente , Proteínas Alimentares/análise , Valor Nutritivo , Fenômenos Fisiológicos da Nutrição do Lactente , Fibras na Dieta/análise , Hidrólise , Lens (Planta)/química , Triticum/química , Cicer/química , Oryza/química , Pisum sativum/química
5.
Proteins ; 91(7): 859-871, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36729014

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in the elderly, with some known classical factors. Cicer arietinum (Leguminosae) is a source of protein for humans and contains albumin, globulin, glutelin, and prolamin. The protein content of two cultivars of C. arietinum, Hashem and Mansour, was isolated to evaluate their inhibition activity against acetylcholinesterase (AChE), butyrylcholine esterase (BChE), and ß-amyloid peptide (ßA) aggregation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and molecular docking were also applied to evaluate the content and determine the potential of each chickpea protein to interact with AChE, respectively. Obtained data showed that proteins from both cultivars could inhibit AChE with IC50 of 17.73 (0.03) and 22.20 (0.06) µg/mL, respectively, with no activity on BChE. The 50 µg/mL protein concentration of each cultivar suppressed ßA accumulation (Mansour: 25.66% and Hashem: 21.69%) and showed biometal chelating activity. SDS-PAGE analysis revealed relatively different protein patterns, though the Mansour cultivar contained some protein bands with molecular weights of 18, 24, and 70 kDa were estimated to belong to vicilin and legumin, which were absent in the Hashem protein mass. Molecular docking showed that legumin and especially vicilin have good potential to interact with AChE. The chickpea proteins showed inhibitory activity against AChE, which might be due to the vicilin and legumin fractions. The characterization of the inhibitory effect of each protein band could be promising in finding new therapeutic peptide candidates to treat Alzheimer's in the future, although more experimental work is needed in this issue.


Assuntos
Doença de Alzheimer , Cicer , Humanos , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Cicer/química , Cicer/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Peptídeos beta-Amiloides , Inibidores da Colinesterase/farmacologia
6.
Biochem Biophys Res Commun ; 671: 26-37, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37290281

RESUMO

Osteoporosis is a systemic bone disease that is caused by multiple factors that lead to an imbalance in bone metabolism. Isoflavones can prevent and treat osteoporosis by regulating bone metabolism through a variety of pathways. The germination of chickpeas can significantly increase their isoflavone contents. However, the use of isoflavones isolated from chickpea sprouts (ICS) to prevent and treat osteoporosis by regulating bone metabolism has not been widely studied. In vivo experimental studies in ovariectomized rats showed that ICS significantly improved femoral bone mineral density (BMD) and trabecular structure, with effects similar to raloxifene. Furthermore, the chemical composition of ICS as well as the targets and signalling pathways its regulates in the prevention and treatment of osteoporosis were predicted by network pharmacological studies. ICS with drug-like properties were identified by Lipinski's 5 principles, and intersecting targets of isoflavones with osteoporosis were identified. The overlapping targets were analysed by PPI, GO and KEGG analyses, and the possible key targets, signalling pathways and biological processes by which ICS treats osteoporosis were predicted; the prediction results were verified by molecular docking technology. The results showed that ICS could play an important role in the treatment of osteoporosis through "multicomponent, multitarget and multipathway" mechanisms, and the MAKP, NF-kB and ER-related signalling pathways may be important pathways by which ICS regulates osteoporosis; these findings provide a new theoretical basis for further experimental studies.


Assuntos
Cicer , Isoflavonas , Osteoporose , Ratos , Animais , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Cicer/química , Cicer/metabolismo , Farmacologia em Rede , Simulação de Acoplamento Molecular , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle
7.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110634

RESUMO

Skin aging represents a health and aesthetic problem that could result in infections and skin diseases. Bioactive peptides can potentially be used in skin aging regulation. Chickpea (Cicer arietinum L.) selenoproteins were obtained from germination with 2 mg Na2SeO3/100 g of seeds for 2 days. Alcalase, pepsin, and trypsin were used as hydrolyzers, and a membrane < 10 kDa was used to fractionate the hydrolysate. Se content, antioxidant capacity, elastase and collagen inhibition, functional stability, and preventative capacity were analyzed. Significant increases in Se content were found in germinated chickpea flour and protein related to the control. An increase of 38% in protein was observed in the selenized flour related to the control. A band (600-550 cm-1) observed in the selenized hydrolysates suggested the insertion of Se into the protein. Hydrolysates from pepsin and trypsin had the highest antioxidant potential. Se enhanced the stability of total protein and protein hydrolysates through time and increased their antioxidant capacity. Hydrolysates > 10 kDa had higher elastase and collagenase inhibition than the total protein and hydrolysates < 10 kDa. Protein hydrolysates < 10 kDa 6 h before UVA radiation had the highest inhibition of collagen degradation. Selenized protein hydrolysates showed promising antioxidant effects that could be related to skin anti-aging effects.


Assuntos
Antioxidantes , Cicer , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cicer/química , Hidrolisados de Proteína/química , Pepsina A/metabolismo , Tripsina/metabolismo , Elastase Pancreática/metabolismo
8.
J Sci Food Agric ; 103(11): 5213-5220, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36988580

RESUMO

Pulses have been part of human nutrition for centuries. They are also used in folk medicine as products with multidirectional medicinal effects. They are annual plants representing the Fabaceae family. Their edible part is the fruit, i.e. the so-called pods. Whole pods or their parts can be eaten, depending on the species and fruit ripeness. Beans, peas, peanuts, chickpeas, lentils, broad beans and soybeans are edible legume species. Legume seeds are characterized by high nutritional value. Compared to seeds from other plants, they have high protein content ranging, on average, from 20% to 35%, depending on the type, growing conditions and maturity of the fruit. This review focuses on various health-promoting properties of legumes and presents their nutritional value and compounds exerting health-promoting effects. Many pulses have a low glycemic index, which is important for prevention and treatment of diabetes. In addition to their low glycemic index and high fiber content, pulses have α-amylase and α-glucosidase inhibitors, which reduce the absorption of glucose from the gastrointestinal tract. These compounds have antidiabetic and anti-inflammatory effects. Pulses have been shown to contain bioactive peptides with angiotensin-converting enzyme inhibitory properties; hence, they are useful in the treatment of cardiovascular diseases. Pulses used in the nutrition of obese individuals provide compounds with pancreatic lipase inhibitory properties, thus promoting weight reduction and control. © 2023 Society of Chemical Industry.


Assuntos
Cicer , Fabaceae , Humanos , Fabaceae/química , Glycine max , Pisum sativum/química , Sementes/química , Cicer/química , Verduras
9.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164080

RESUMO

Protein scarcity is the most vital cause of long-lasting diseases and even untimely deaths in some developing nations. The application of protein in food is advantageous from the point of view of non-toxicity, biocompatibility, and dietary benefits. This study aimed to determine the protein contents of the sprouts of Vigna radiates (mung beans), Lens culinaris (lentils), and Cicer arietinum (chickpeas) using the Kjeldahl and Lowry methods. The results obtained from the Kjeldahl method identified protein concentrations of 2.54, 2.63, and 2.19%, whereas the Lowry method results identified protein concentrations of 2.96%, 4.10%, and 1.6% in mung beans, lentils, and chickpeas, respectively. In both the methods, lentils were found to have the highest amount of protein followed by mung beans and chickpeas. Both the Kjeldahl and Lowry methods demonstrated good protein values and low variation in the protein amount in the analyzed samples. Furthermore, the methods had greater sensitivity and comparable experimental variability. The outcomes revealed that assays can be applied for protein analysis in legumes. In the context of a lack of suitable standard procedures for evaluating legumes' compositions, the present study is suitable for food control laboratories. In addition, the studied samples represent a significant source of protein and can be used to fulfil the daily requirements for protein intake and other food applications.


Assuntos
Cicer/química , Lens (Planta)/química , Proteínas de Plantas/análise , Plântula/química , Vigna/química , Espectrofotometria
10.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164408

RESUMO

Extrusion cooking allows the development of value-added products from pulses, such as gluten-free snacks with added functional properties. The main objective of this study was to evaluate the changes induced by the extrusion process on the carbohydrate fraction (total carbohydrates, soluble sugars and oligosaccharides, dietary fiber, and arabinoxylans) of novel flour formulations based on chickpeas and rice enriched with different dietary fiber sources. Moreover, the influence of the addition of fiber-rich ingredients, such as Fibersol® and passion fruit, on the analyzed compounds was also evaluated. Sucrose was the main soluble sugar found in analyzed formulations, and raffinose was the prevalent oligosaccharide, followed by stachyose. The content of total α-galactosides tended to be higher after extrusion cooking. As a consequence of the extrusion treatment, the content of total and soluble dietary fiber was statistically increased in most of the analyzed samples. In general, no significant changes were observed in total arabinoxylan content as a consequence of the extrusion process, while the content of water-soluble arabinoxylans was significantly increased in extruded formulations. It was observed that the content of total available carbohydrates, stachyose, and water-soluble arabinoxylans were significantly influenced by the addition of passion fruit, Fibersol®, and both. The incorporation of these ingredients in gluten-free formulations based on chickpeas and rice allows one to obtain suitable functional formulations for the development of innovative, gluten-free, extruded snack-type products, which could be an interesting alternative for people with celiac disease.


Assuntos
Cicer/química , Farinha/análise , Oryza/química , Carboidratos/análise , Culinária , Dieta Livre de Glúten , Fibras na Dieta/análise
11.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163956

RESUMO

The Valparaiso region in Chile was decreed a zone affected by catastrophe in 2019 as a consequence of one of the driest seasons of the last 50 years. In this study, three varieties ('Alfa-INIA', 'California-INIA', and one landrace, 'Local Navidad') of kabuli-type chickpea seeds produced in 2018 (control) and 2019 (climate-related catastrophe, hereafter named water stress) were evaluated for their grain yield. Furthermore, the flavonoid profile of both free and esterified phenolic extracts was determined using liquid chromatography-mass spectrometry, and the concentration of the main flavonoid, biochanin A, was determined using liquid chromatography with diode array detection. The grain yield was decreased by up to 25 times in 2019. The concentration of biochanin A was up to 3.2 times higher in samples from the second season (water stress). This study demonstrates that water stress induces biosynthesis of biochanin A. However, positive changes in the biochanin A concentration are overshadowed by negative changes in the grain yield. Therefore, water stress, which may be worsened by climate change in the upcoming years, may jeopardize both the production of chickpeas and the supply of biochanin A, a bioactive compound that can be used to produce dietary supplements and/or nutraceuticals.


Assuntos
Cicer/química , Cicer/metabolismo , Desidratação/metabolismo , Chile , Cromatografia Líquida , Cicer/crescimento & desenvolvimento , Mudança Climática/economia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Flavonoides/metabolismo , Espectrometria de Massas , Fenóis/análise , Sementes/química
12.
J Sci Food Agric ; 102(1): 62-72, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34031883

RESUMO

BACKGROUND: Dehulling and splitting are important elements of the milling process to produce dhal from pulses. However, grain that is difficult-to-mill because of tightly adhered seed coats or cotyledons that resist separation makes it difficult to achieve high quality dhal. Milling yields are reduced, energy inputs into the milling process are increased, and the resulting dhal can be of poorer quality, chipped or abraded. RESULTS: Eight enzyme pre-treatments were chosen based on the hypothesised mechanisms of seed coat and cotyledon adhesion established previously. Using a difficult-to-mill chickpea (Cicer arietinum L.) genotype, we examined the effects of these pre-treatments, over time, on laboratory-scale milling performance and dhal quality. We pioneered a texture analyser method to measure the flex of the cotyledons and the force required to cleave the cotyledons. The enzyme-induced changes ranged from negative (tough seed coat, weight loss, deleterious colour and texture, increased visual damage to cotyledons and increased kibble loss, concave cotyledons, increased flex, and changes in taste) to positive (brittle seed coat, increased seed volume, improved dehulling efficiency and splitting yield, reduced cotyledon cleavage force, and acceptable dhal quality and taste). CONCLUSION: All pre-treatments improved milling performance compared to milling the raw seed, although there was considerable variation between them. Two pre-treatments showed no improvement in milling yields compared to the water control, and several pre-treatments resulted in unacceptable qualities. Three pre-treatments, endo-polygalacturonanase, α-galactosidase and cellulase, show potential for commercial milling applications and could assist pulse millers globally to achieve high quality dhal at the same time as minimising milling effort. © 2021 Society of Chemical Industry.


Assuntos
Cicer/química , Cotilédone/química , Enzimas/química , Manipulação de Alimentos/métodos , Sementes/química , Biocatálise , Cicer/genética , Cotilédone/genética , Qualidade dos Alimentos , Genótipo , Sementes/genética
13.
Molecules ; 26(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466395

RESUMO

Chickpea cooking water (CCW), known as aquafaba, has potential as a replacement for egg whites due to its emulsion and foaming properties which come from the proteins and starch that leach out from chickpeas into the cooking water. High pressure (HP) processing has the ability to modify the functional characteristics of proteins. It is hypothesized that HP processing could favorably affect the functional properties of CCW proteins by influencing their structure. The objective of this study to evaluate the effect of HP treatment on the associated secondary structure, emulsion properties and thermal characteristics of CCW proteins. A central composite rotatable design is used with pressure level (227-573 MPa) and treatment time (6-24 min) as HP variables, and concentration of freeze dried CCW aquafaba powder (11-29%) as product variable, and compared to untreated CCW powder. HP improves aquafaba emulsion properties compared to control sample. HP reduces protein aggregates by 33.3%, while ß-sheets decreases by 4.2-87.6% in which both correlated to increasing protein digestibility. α-helices drops by 50%. It affects the intensity of some HP treated samples, but not the trend of bands in most of them. HP treatment decreases Td and enthalpy because of increasing the degree of denaturation.


Assuntos
Cicer/química , Culinária/métodos , Manipulação de Alimentos/métodos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pressão , Liofilização , Proteínas de Plantas/análise , Água
14.
Molecules ; 26(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361595

RESUMO

Gluten-free (GF) products, including pasta, are often characterised by nutritional deficiencies, such as scarce dietary fibre and excess of calories. Chickpea flour is increasingly being used by the food industries. Hulls, rich in dietary fibre and bioactive compounds, are discarded after milling. The aim of this work was to evaluate the quality features of short-cut GF fresh pasta added of hull (8% w/w) derived from kabuli (KH) or Apulian black (ABH) chickpeas, in comparison with control GF pasta prepared without hull. The enriched pasta, which could be labelled as "high fibre", was characterised by a higher level of bioactive compounds and antioxidant activity than the control. ABH-enriched pasta showed the highest anthocyanins (33.37 ± 1.20 and 20.59 ± 0.11 mg/kg of cyanidin-3-O-glucoside on dry matter in raw and cooked pasta, respectively). Hull addition increased colour intensity and structural quality of GF pasta: ABH-enriched pasta had the lowest cooking loss and the highest water absorption capacity; KH-enriched pasta showed the highest firmness. No significant differences in sensory liking were found among the samples, except for "aftertaste". Chickpea hull can be used as an innovative ingredient to produce potentially functional GF pasta, meeting the dietary needs of consumers without affecting quality.


Assuntos
Cicer/química , Dieta Livre de Glúten , Fibras na Dieta/análise , Farinha/análise , Antocianinas/análise , Antioxidantes
15.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066776

RESUMO

The aim of this work was to monitor the quality, antioxidant capacity and digestibility of chickpea exposed to different modified atmospheres. Chickpea quality (proximal analysis, color, texture, and water absorption) and the antioxidant capacity of free, conjugated, and bound phenol fractions obtained from raw and cooked chickpea, were determined. Cooked chickpea was exposed to N2 and CO2 atmospheres for 0, 25, and 50 days, and the antioxidant capacity was analyzed by DPPH (2,2'-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis-[3ethylbenzothiazoline-6-sulfonic acid]), and total phenols. After in vitro digestion, the antioxidant capacity was measured by DPPH, ABTS, FRAP (ferric reducing antioxidant power), and AAPH (2,2'-Azobis [2-methylpropionamidine]). Additionally, quantification of total phenols, and UPLC-MS profile were determined. The results indicated that this grain contain high quality and high protein (18.38%). Bound phenolic compounds showed the highest amount (105.6 mg GAE/100 g) and the highest antioxidant capacity in all techniques. Cooked chickpeas maintained their quality and antioxidant capacity during 50 days of storage at 4 and -20 °C under a nitrogen atmosphere. Free and conjugated phenolic compounds could be hydrolyzed by digestive enzymes, increasing their bioaccessibility and their antioxidant capacity during each step of digestion. The majority compound in all samples was enterodiol, prevailing the flavonoid type in the rest of the identified compounds. Chickpea contains biological interest compounds with antioxidant potential suggesting that this legume can be exploited for various technologies.


Assuntos
Antioxidantes/química , Atmosfera/química , Dióxido de Carbono , Cicer/química , Grão Comestível/química , Nitrogênio , Cromatografia Líquida , Digestão , Flavonoides/química , Lignanas/química , Espectrometria de Massas , Fenóis/química , Proteínas de Plantas/química
16.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201792

RESUMO

Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-O-glucoside in black bean. Seed coats having proanthocyanidins that are primarily prodelphinidins show higher iron chelation compared with those containing procyanidins and/or propelargonidins.


Assuntos
Antioxidantes/análise , Cicer/química , Quelantes de Ferro/química , Lens (Planta)/química , Metabolômica/métodos , Polifenóis/análise , Sementes/química , Vicia faba/química , Antioxidantes/química , Biflavonoides/análise , Disponibilidade Biológica , Catequina/análise , Correlação de Dados , Flavonoides/análise , Flavonóis/análise , Concentração Inibidora 50 , Espectrometria de Massas , Fenóis/análise , Proantocianidinas/análise , Taninos/análise
17.
J Sci Food Agric ; 101(5): 2108-2116, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32978960

RESUMO

BACKGROUND: Heat-induced composite gels were prepared with 30 mg mL-1 pork myofibrillar protein (MP) and chickpea protein isolate (CPI) (0, 3, 6, 9, 12, and 15 g kg-1 ) in 0.6 mol L-1 NaCl, at pH 7.0. The gel strength, water-holding capacity, rheological properties, and microstructure of MP-CPI composite gels were investigated. RESULTS: Chickpea protein isolate improved (P < 0.05) gel strength and water-holding capacity of the MP composite gels. The rheological properties of MP-CPI composite gels were improved significantly by the addition of CPI. Meanwhile, the effects of CPI on the storage modulus of composite gels were positively correlated with the increased addition of CPI. Furthermore, according to low-field nuclear magnetic resonance (LF-NMR) results, the addition of CPI reduced the relaxation time of the composite gels and the relaxation peak area of free water, indicating that CPI could improve the water-holding capacity of MP-CPI composite gels. The microstructure of MP-CPI composite gels presented smaller and more uniform pores, which means that more water could be retained. CONCLUSION: The addition of chickpea protein isolate improved the gel strength, water-holding capacity, rheological properties, and microstructure of MP gels, indicating that CPI could be a potential protein additive to improve the microstructure, texture, and functional quality of meat products. © 2020 Society of Chemical Industry.


Assuntos
Cicer/química , Manipulação de Alimentos/métodos , Produtos da Carne/análise , Proteínas Musculares/química , Miofibrilas/química , Proteínas de Plantas/química , Animais , Aditivos Alimentares/química , Géis/química , Temperatura Alta , Músculo Esquelético/química , Carne Vermelha , Suínos
18.
J Sci Food Agric ; 101(11): 4464-4472, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33432585

RESUMO

BACKGROUND: Owing to recent changes in consumer eating behaviours as well as potential cost savings for processors, pulse ingredients are finding more application in the meat processing industry. In this study, pea ingredients (pea fibre, FB; pea starch, ST; pea flour, PF) and chickpea flour (CF) were used, at 4% addition level, as fat replacers in low-fat breakfast sausages. The impact of these substitutions on processing and sensory characteristics of breakfast sausage was evaluated. RESULTS: While reduction in fat content in breakfast sausage resulted in some detrimental changes in cooking as well as textural characteristics of the product, addition of binders significantly improved these attributes in low-fat breakfast sausages. Overall, treatment formulation did not significantly affect the pH and the instrumental colour attributes of cooked breakfast sausage. Addition of all binders resulted in reduced cooking loss and increased moisture retention in low-fat breakfast sausage (P < 0.05), whereas, FB and ST were significantly more effective in improving water holding capacity of low-fat breakfast sausage. Furthermore, while both FB and ST increased the hardness, cohesiveness and chewiness parameters of low-fat breakfast sausage (P < 0.05), PF and CF had no impact. Generally, the consumer overall liking and flavour acceptability of FB and ST in low-fat breakfast sausage were significantly higher than those of PF and CF. CONCLUSION: The use of ST or FB as a fat replacer in breakfast sausages offers processors improved cook yield without negatively impacting the important sensory attributes of breakfast sausages. © 2021 Society of Chemical Industry.


Assuntos
Comportamento do Consumidor , Substitutos da Gordura/metabolismo , Aditivos Alimentares/metabolismo , Produtos da Carne/análise , Animais , Desjejum , Cicer/química , Cicer/metabolismo , Cor , Substitutos da Gordura/análise , Gorduras/análise , Gorduras/metabolismo , Farinha/análise , Aditivos Alimentares/análise , Preferências Alimentares , Humanos , Pisum sativum/química , Pisum sativum/metabolismo , Amido/análise , Amido/metabolismo , Suínos , Paladar
19.
J Sci Food Agric ; 101(7): 2869-2876, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33155278

RESUMO

BACKGROUND: There is a growing interest in increasing dietary fiber (DF) consumption because of the health benefits associated with this nutrient. Pulses are considered a good source of non-digestible carbohydrates. The aim of this study was to investigate the possibility of substituting semolina with chickpea flour to increase indigestible carbohydrate content without altering the texture of the pasta. RESULTS: Pasta was prepared by extruding semolina-chickpea blends. The protein and DF content in the cooked pasta increased with the chickpea level, with an important contribution of resistant starch (RS) to the DF values. The optimum cooking time decreased as the chickpea content increased, which was related to the degree of starch gelatinization of the raw pasta. The in vitro digestible starch content decreased with the chickpea substitution level, concomitant with the increase in RS content. In general, the texture of the chickpea-containing pasta was similar to that of semolina pasta. CONCLUSIONS: Pending acceptability studies on these pastas may grant their promotion as good fiber sources, probably helpful in the fight against obesity and diet-related non-communicable diseases. © 2020 Society of Chemical Industry.


Assuntos
Cicer/química , Amido/química , Triticum/química , Cicer/metabolismo , Culinária , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Farinha/análise , Aditivos Alimentares/química , Aditivos Alimentares/metabolismo , Manipulação de Alimentos , Humanos , Amido/metabolismo , Paladar , Triticum/metabolismo
20.
J Nutr ; 150(5): 1178-1185, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006007

RESUMO

BACKGROUND: Legumes are an excellent plant source of the limiting indispensable amino acid (IAA) lysine in vegetarian, cereal-based diets. However, their digestibility is poor largely because of their antiprotease content. Extrusion can enhance digestibility by inactivating trypsin inhibitors and thus potentially improve the protein quality of legumes. OBJECTIVE: We measured the digestibility of extruded chickpea and yellow pea protein with use of a dual stable isotope method in moderately stunted South Indian primary school children. METHODS: Twenty-eight moderately stunted children (height-for-age z scores <-2.0 SD and >-3.0 SD) aged 6-11 y from low to middle socioeconomic status were randomly assigned to receive a test protein (extruded intrinsically [2H]-labeled chickpea or yellow pea) along with a standard of U-[13C]-spirulina protein to measure amino acid (AA) digestibility with use of a dual stable isotope method. Individual AA digestibility in the test protein was calculated by the ratios of AA enrichments in the test protein to the standard protein in the food and their appearance in blood plasma collected at 6 and 6.5 h during the experiment, representing a plateau state. RESULTS: The mean AA digestibility of extruded chickpea and yellow pea protein in moderately stunted children (HAZ; -2.86 to -1.2) was high and similar in both extruded test proteins (89.0% and 88.0%, respectively, P = 0.83). However, lysine and proline digestibilities were higher in extruded chickpea than yellow pea (79.2% compared with 76.5% and 75.0% compared with 72.0%, respectively, P < 0.02). CONCLUSION: Extruded chickpea and yellow pea protein had good IAA digestibility in moderately stunted children, which was 20% higher than an earlier report of their digestibility when pressure-cooked, measured by the same method in adults. Higher digestibility of lysine and proline highlights better retention of these AA in chickpea during extrusion-based processing. Extrusion might be useful for developing high-quality protein foods from legumes. This trial was registered at www.ctri.nic.in as CTRI/2018/03/012439.


Assuntos
Aminoácidos/metabolismo , Cicer/química , Digestão , Manipulação de Alimentos/métodos , Transtornos do Crescimento/metabolismo , Pisum sativum/química , Aminoácidos/sangue , Isótopos de Carbono , Criança , Deutério , Feminino , Humanos , Índia , Lisina/metabolismo , Masculino , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Inibidores da Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA