Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(22): 9815-9827, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768015

RESUMO

Tropical small island developing states (SIDS), with their geographical isolation and limited resources, heavily rely on the fisheries industry for food and revenue. The presence of marine lipophilic phycotoxins (MLPs) poses risks to their economy and human health. To understand the contamination status and potential risks, the Republic of Kiribati was selected as the representative tropical SIDS and 55 species of 256 coral reef fish encompassing multiple trophic levels and feeding strategies were collected to analyze 17 typical MLPs. Our results showed that the potential risks of ciguatoxins were the highest and approximately 62% of fish species may pose risks for consumers. Biomagnification of ciguatoxins was observed in the food web with a trophic magnification factor of 2.90. Brevetoxin-3, okadaic acid, and dinophysistoxin-1 and -2 were first reported, but the risks posed by okadaic acid and dinophysistoxins were found to be negligible. The correlation analysis revealed that fish body size and trophic position are unreliable metrics to indicate the associated risks and prevent the consumption of contaminated fish. The potential risks of MLPs in Kiribati are of concern, and our findings can serve as valuable inputs for developing food safety policies and fisheries management strategies specific to tropical SIDS contexts.


Assuntos
Peixes , Toxinas Marinhas , Animais , Cadeia Alimentar , Ilhas , Humanos , Medição de Risco , Clima Tropical , Ciguatoxinas/toxicidade
2.
Mar Drugs ; 22(9)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39330303

RESUMO

We describe five new isolates of two Gambierdiscus species from Bahía de La Paz in the southern Gulf of California. Batch cultures of Gambierdiscus were established for morphological characterization using light microscopy (LM) and scanning electron microscopy (SEM). Pigment and amino acid profiles were also analyzed using high-performance liquid chromatography (HPLC-UV and HPLC-DAD). Finally, toxicity (CTX-like and MTX-like activity) was evaluated using the Artemia salina assay (ARTOX), mouse assay (MBA), marine fish assay (MFA), and fluorescent receptor binding assay (fRBA). These strains were identified as Gambierdiscus cf. caribaeus and Gambierdiscus cf. carpenteri. Toxicity for CTX-like and MTX-like activity was confirmed in all evaluated clones. Seven pigments were detected, with chlorophyll a, pyridine, Chl2, and diadinoxanthin being particularly noteworthy. For the first time, a screening of the amino acid profile of Gambierdiscus from the Pacific Ocean was conducted, which showed 14 amino acids for all strains except histidine, which was only present in G. cf. caribeaus. We report the presence of Gambierdiscus and Fukuyoa species in the Mexican Pacific, where ciguatera fish poisoning (CFP) cases have occurred.


Assuntos
Dinoflagellida , Animais , Camundongos , Dinoflagellida/química , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão , Artemia/efeitos dos fármacos , Ciguatoxinas/toxicidade , Ciguatera , Peixes/parasitologia
3.
Ecotoxicol Environ Saf ; 282: 116741, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024956

RESUMO

Ciguateric syndrome is a food poisoning associated with the consumption of some species of fish that have accumulated ciguatoxins (CTXs) in their tissues. The effects of the syndrome occur with nervous imbalances which have been described for quite some time, and mentioned in sailing literature for centuries. In the last decade, research has been focused on the implementation of analytical methods for toxin identification and the study of action modes of CTXs to design effective treatments. However, an important aspect is to determine the damage that CTXs caused in the organs of affected individuals. In this work, the damages observed in tissues of mice, mainly in the small intestine, were analyzed. The animals were fed with CTX-contaminated fish muscle at concentrations 10-times below the median lethal dose (LD50) for 10 weeks. The analysis of tissues derived from the oral treatment resulted in an increased occurrence of Paneth cells, presence of lymphoid tissue infiltrating the mucosa and fibrous lesions in the mucosal layer of the small intestine. A decreasing weight in animals fed with toxic muscle was observed.


Assuntos
Ciguatoxinas , Peixes , Intestino Delgado , Animais , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Ciguatoxinas/toxicidade , Camundongos , Contaminação de Alimentos/análise , Ciguatera , Masculino , Alimentos Marinhos , Dose Letal Mediana
4.
Environ Res ; 228: 115869, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044166

RESUMO

Ciguatoxins (CTXs) are marine neurotoxins that cause ciguatera poisoning (CP), mainly through the consumption of fish. The distribution of CTXs in fish is known to be unequal. Studies have shown that viscera accumulate more toxins than muscle, but little has been conducted on toxicity distribution in the flesh, which is the main edible part of fish, and the caudal muscle is also most commonly targeted for the monitoring of CTXs in the Canary Islands. At present, whether this sample is representative of the toxicity of an individual is undisclosed. This study aims to assess the distribution of CTXs in fish, considering different muscle samples, the liver, and gonads. To this end, tissues from four amberjacks (Seriola spp.) and four dusky groupers (Epinephelus marginatus), over 16.5 kg and captured in the Canary Islands, were analyzed by neuroblastoma-2a cell-based assay. Flesh samples were collected from the extraocular region (EM), head (HM), and different areas from the fillet (A-D). In the amberjack, the EM was the most toxic muscle (1.510 CTX1B Eq·g-1), followed by far for the caudal section of the fillet (D) (0.906 CTX1B Eq·g-1). In the dusky grouper flesh samples, D and EM showed the highest toxicity (0.279 and 0.273 CTX1B Eq·g-1). In both species, HM was one of the least toxic samples (0.421 and 0.166 CTX1B Eq·g-1). The liver stood out for its high CTX concentration (3.643 and 2.718 CTX1B Eq·g-1), as were the gonads (1.620 and 0.992 CTX1B Eq·g-1). According to these results, the caudal muscle next to the tail is a reliable part for use in determining the toxicity of fish flesh to guarantee its safe consumption. Additionally, the analysis of the liver and gonads could provide further information on doubtful specimens, and be used for CTX monitoring in areas with an unknown prevalence of ciguatera.


Assuntos
Bass , Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/toxicidade , Ciguatoxinas/análise , Ciguatera/epidemiologia , Peixes , Alimentos Marinhos/análise , Fígado/química
5.
Mar Drugs ; 22(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38248639

RESUMO

Ciguatoxins (CTXs), potent neurotoxins produced by dinoflagellates of the genera Gambierdiscus and Fukuyoa, accumulate in commonly consumed fish species, causing human ciguatera poisoning. Field collections of Pacific reef fish reveal that consumed CTXs undergo oxidative biotransformations, resulting in numerous, often toxified analogs. Following our study showing rapid CTX accumulation in flesh of an herbivorous fish, we used the same laboratory model to examine the tissue distribution and metabolization of Pacific CTXs following long-term dietary exposure. Naso brevirostris consumed cells of Gambierdiscus polynesiensis in a gel food matrix over 16 weeks at a constant dose rate of 0.36 ng CTX3C equiv g-1 fish d-1. CTX toxicity determination of fish tissues showed CTX activity in all tissues of exposed fish (eight tissues plus the carcass), with the highest concentrations in the spleen. Muscle tissue retained the largest proportion of CTXs, with 44% of the total tissue burden. Moreover, relative to our previous study, we found that larger fish with slower growth rates assimilated a higher proportion of ingested toxin in their flesh (13% vs. 2%). Analysis of muscle extracts revealed the presence of CTX3C and CTX3B as well as a biotransformed product showing the m/z transitions of 2,3-dihydroxyCTX3C. This is the first experimental evidence of oxidative transformation of an algal CTX in a model consumer and known vector of CTX into the fish food web. These findings that the flesh intended for human consumption carries the majority of the toxin load, and that growth rates can influence the relationship between exposure and accumulation, have significant implications in risk assessment and the development of regulatory measures aimed at ensuring seafood safety.


Assuntos
Ciguatoxinas , Dinoflagellida , Animais , Humanos , Ciguatoxinas/toxicidade , Distribuição Tecidual , Exposição Dietética , Peixes
6.
Mar Drugs ; 21(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999414

RESUMO

The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.


Assuntos
Ciguatera , Ciguatoxinas , Neuroblastoma , Camundongos , Animais , Humanos , Ciguatoxinas/toxicidade , Células HEK293 , Canais de Sódio/metabolismo
7.
Mar Drugs ; 21(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37103383

RESUMO

Tropical epibenthic dinoflagellate communities produce a plethora of bioactive secondary metabolites, including the toxins ciguatoxins (CTXs) and potentially gambierones, that can contaminate fishes, leading to ciguatera poisoning (CP) when consumed by humans. Many studies have assessed the cellular toxicity of causative dinoflagellate species to better understand the dynamics of CP outbreaks. However, few studies have explored extracellular toxin pools which may also enter the food web, including through alternative and unanticipated routes of exposure. Additionally, the extracellular exhibition of toxins would suggest an ecological function and may prove important to the ecology of the CP-associated dinoflagellate species. In this study, semi-purified extracts obtained from the media of a Coolia palmyrensis strain (DISL57) isolated from the U.S. Virgin Islands were assessed for bioactivity via a sodium channel specific mouse neuroblastoma cell viability assay and associated metabolites evaluated by targeted and non-targeted liquid chromatography tandem and high-resolution mass spectrometry. We found that extracts of C. palmyrensis media exhibit both veratrine enhancing bioactivity and non-specific bioactivity. LC-HR-MS analysis of the same extract fractions identified gambierone and multiple undescribed peaks with mass spectral characteristics suggestive of structural similarities to polyether compounds. These findings implicate C. palmyrensis as a potential contributor to CP and highlight extracellular toxin pools as a potentially significant source of toxins that may enter the food web through multiple exposure pathways.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Toxinas Biológicas , Animais , Camundongos , Humanos , Dinoflagellida/química , Ciguatoxinas/toxicidade
8.
Arch Toxicol ; 96(9): 2621-2638, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35657391

RESUMO

Ciguatoxins are marine compounds that share a ladder-shaped polyether structure produced by dinoflagellates of the genus Gambierdiscus and Fukuyoa, and include maitotoxins (MTX1 and MTX3), ciguatoxins (CTX3C) and analogues (gambierone), components of one of the most frequent human foodborne illness diseases known as ciguatera fish poisoning. This disease was previously found primarily in tropical and subtropical areas but nowadays, the dinoflagellates producers of ciguatoxins had spread to European coasts. One decade ago, the European Food Safety Authority has raised the need to complete the toxicological available data for the ciguatoxin group of compounds. Thus, in this work, the in vivo effects of ciguatoxin-related compounds have been investigated using internationally adopted guidelines for the testing of chemicals. Intraperitoneal acute toxicity was tested for maitotoxin 1 at doses between 200 and 3200 ng/kg and the acute oral toxicity of Pacific Ciguatoxin CTX3C at 330 and 1050 ng/kg and maitotoxin 1 at 800 ng/kg were also evaluated showing not effects on mice survival after a 96 h observation period. Therefore, for the following experiments the oral subchronic doses were between 172 and 1760 ng/kg for gambierone, 10 and 102 ng/kg for Pacific Ciguatoxin CTX3C, 550 and 1760 ng/kg for maitotoxin 3 and 800, 2560 and 5000 ng/kg for maitotoxin 1. The results presented here raise the need to reevaluate the in vivo activity of these agents. Although the intraperitoneal lethal dose of maitotoxin 1 is assumed to be 50 ng/kg, without chemical purity identifications and description of the bioassay procedures, in this work, an intraperitoneal lethal dose of 1107 ng/kg was obtained. Therefore, the data presented here highlight the need to use a common procedure and certified reference material to clearly establish the levels of these environmental contaminants in food.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Animais , Bioensaio , Ciguatoxinas/química , Ciguatoxinas/toxicidade , Dinoflagellida/química , Humanos , Camundongos
9.
Mar Drugs ; 21(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36662176

RESUMO

The benthic dinoflagellate genus Gambierdiscus is the primary producer of toxins responsible for ciguatera poisoning (CP), a food intoxication endemic in tropical and subtropical areas of the world. We used high-performance liquid chromatography tandem high-resolution mass spectrometry (HPLC-HRMS) to investigate the toxin profile of Gambierdiscus balechii 1123M1M10, which was obtained from Marakei Island (2°01'N, 173°15'E), Republic of Kiribati, located in the central Pacific Ocean. Four new gambierone analogues including 12,13-dihydro-44-methylgambierone, 38-dehydroxy-12,13-dihydro-44-methylgambierone, 38-dehydroxy-44-methylgambierone, and desulfo-hydroxyl gambierone, and two known compounds, gambierone and 44-methylgambierone, were proposed by analyzing their fragmentation behaviors and pathways. Our findings provide new insights into the toxin profile of Gambierdiscus balechii 1123M1M10, which can be used as a biomarker for species identification, and lay the foundation for further toxin isolation and bioactivity studies of gambierones.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Toxinas Biológicas , Humanos , Éteres/metabolismo , Dinoflagellida/metabolismo , Ciguatoxinas/toxicidade , Ciguatoxinas/metabolismo
10.
Mar Drugs ; 20(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447924

RESUMO

Ciguatera poisoning (CP) results from the consumption of coral reef fish or marine invertebrates contaminated with potent marine polyether compounds, namely ciguatoxins. In French Polynesia, 220 fish specimens belonging to parrotfish (Chlorurus microrhinos, Scarus forsteni, and Scarus ghobban), surgeonfish (Naso lituratus), and groupers (Epinephelus polyphekadion) were collected from two sites with contrasted risk of CP, i.e., Kaukura Atoll versus Mangareva Island. Fish age and growth were assessed from otoliths' yearly increments and their ciguatoxic status (negative, suspect, or positive) was evaluated by neuroblastoma cell-based assay. Using permutational multivariate analyses of variance, no significant differences in size and weight were found between negative and suspect specimens while positive specimens showed significantly greater size and weight particularly for E. polyphekadion and S. ghobban. However, eating small or low-weight specimens remains risky due to the high variability in size and weight of positive fish. Overall, no relationship could be evidenced between fish ciguatoxicity and age and growth characteristics. In conclusion, size, weight, age, and growth are not reliable determinants of fish ciguatoxicity which appears to be rather species and/or site-specific, although larger fish pose an increased risk of poisoning. Such findings have important implications in current CP risk management programs.


Assuntos
Bass , Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/análise , Ciguatoxinas/toxicidade , Recifes de Corais , Peixes , Polinésia , Alimentos Marinhos/análise
11.
Ecotoxicol Environ Saf ; 247: 114223, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306624

RESUMO

Gambierdiscus spp. is mainly responsible for the ciguatera fish poisoning (CFP) around the world. The gambiertoxin produced by Gambierdiscus can be passed through the food chain to form ciguatoxins (CTXs) that cause ciguatoxins poisoning. However, the toxic effects of Gambierdiscus on fish through the food chain and related mechanism remains unclear. In this study, the toxicity of Gambierdiscus caribaeus on the marine medaka (Oryzias melastigma) was investigated, where the simulated food chain toxic algae-food organism-fish (G. caribaeus-Artemia metanauplii-O. melastigma) was set. The results showed that direct or indirect exposure through the food chain of G. caribaeus could affect the swimming behaviour of O. melastigma, manifested as decreased swimming performance and spontaneous abnormal swimming behaviours. Histological observation showed that direct or indirect exposure of G. caribaeus caused different degrees of pathological damage to the gills, intestine and liver tissues of O. melastigma. Transcriptome sequencing and RT-qPCR demonstrated that G. caribaeus exposure could trigger a series of physiological and biochemical responses, mainly reflected in energy metabolism, reproductive system, neural activity, immune stress and drug metabolism in marine medaka. Our finding may provide novel insight into the toxicity of Gambierdiscus on fish.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Oryzias , Animais , Ciguatoxinas/toxicidade , Dinoflagellida/genética
12.
Shokuhin Eiseigaku Zasshi ; 63(5): 190-194, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-36328475

RESUMO

Ciguatera fish poisoning (CFP) is recognized as the most frequent seafood poisoning due to the consumption of fish containing the principal toxins, ciguatoxins (CTXs). In Japan, CFP events have been reported annually from Okinawa and Amami Islands, locating subtropical regions. In addition, there have been reported several outbreaks due to consumption of the fish caught from the Pacific coast of the Mainland and they were often caused by the matured spotted knifejaw, Oplegnathus punctatus. As part of our research on CFP in Japan, we investigated CTXs analysis by LC-MS/MS on 176 individuals of O. punctatus (weight: 100-6,350 g, standard length: 13-60 cm) from the coast of the Mainland (Honshu, Shikoku, and Kyushu), Amami, Okinawa, and Ogasawara (Bonin) Islands. CTXs were detected from only two specimens collected from Okinawa. Total CTXs levels of the two specimens were at 0.014 and 0.040 µg/kg, respectively, exceeding FDA guidance level at 0.01 µg CTX1B equivalent/kg. However, they might be little risk of CFP because consuming over 1.5 kg of flesh is needed to develop intoxication. The toxins consisted of CTX1B analogs including CTX1B, 52-epi-54-deoxyCTX1B, CTX4A, and CTX4B, and no CTX3C analogs, supporting the finding that ciguatoxic fishes in Okinawan Waters containing only CTX1B analogs.


Assuntos
Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/toxicidade , Ciguatoxinas/análise , Cromatografia Líquida , Japão , Espectrometria de Massas em Tandem , Ciguatera/epidemiologia , Ciguatera/etiologia , Peixes
13.
Environ Res ; 162: 144-151, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29306662

RESUMO

Ciguatoxins (CTXs) are lipid-soluble polyether compounds produced by dinoflagellates from the genus Gambierdiscus spp. typically found in tropical and subtropical zones. This endemic area is however rapidly expanding due to environmental perturbations, and both toxic Gambierdiscus spp. and ciguatoxic fishes have been recently identified in the North Atlantic Ocean (Madeira and Canary islands) and Mediterranean Sea. Ciguatoxins bind to Voltage Gated Sodium Channels on the membranes of sensory neurons, causing Ciguatera Fish Poisoning (CFP) in humans, a disease characterized by a complex array of gastrointestinal, neurological, neuropsychological, and cardiovascular symptoms. Although CFP is the most frequently reported non bacterial food-borne poisoning worldwide, there is still no simple and quick way of detecting CTXs in contaminated samples. In the prospect to engineer rapid and easy-to-use CTXs live cells-based tests, we have studied the effects of CTXs on the yeast Saccharomyces cerevisiae, a unicellular model which displays a remarkable conservation of cellular signalling pathways with higher eukaryotes. Taking advantage of this high level of conservation, yeast strains have been genetically modified to encode specific transcriptional reporters responding to CTXs exposure. These yeast strains were further exposed to different concentrations of either purified CTX or micro-algal extracts containing CTXs. Our data establish that CTXs are not cytotoxic to yeast cells even at concentrations as high as 1µM, and cause an increase in the level of free intracellular calcium in yeast cells. Concomitantly, a dose-dependent activation of the calcineurin signalling pathway is observed, as assessed by measuring the activity of specific transcriptional reporters in the engineered yeast strains. These findings offer promising prospects regarding the potential development of a yeast cells-based test that could supplement or, in some instances, replace current methods for the routine detection of CTXs in seafood products.


Assuntos
Calcineurina , Ciguatoxinas , Saccharomyces cerevisiae/metabolismo , Animais , Calcineurina/efeitos dos fármacos , Calcineurina/metabolismo , Ciguatera , Ciguatoxinas/análise , Ciguatoxinas/toxicidade , Humanos , Mar Mediterrâneo , Saccharomyces cerevisiae/efeitos dos fármacos , Espanha
14.
Mar Drugs ; 16(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301247

RESUMO

Ciguatera Fish Poisoning (CFP) is a human illness caused by the consumption of marine fish contaminated with ciguatoxins (CTX) and possibly maitotoxins (MTX), produced by species from the benthic dinoflagellate genus Gambierdiscus. Here, we describe the identity and toxicology of Gambierdiscus spp. isolated from the tropical and temperate waters of eastern Australia. Based on newly cultured strains, we found that four Gambierdiscus species were present at the tropical location, including G. carpenteri, G. lapillus and two others which were not genetically identical to other currently described species within the genus, and may represent new species. Only G. carpenteri was identified from the temperate location. Using LC-MS/MS analysis we did not find any characterized microalgal CTXs (P-CTX-3B, P-CTX-3C, P-CTX-4A and P-CTX-4B) or MTX-1; however, putative maitotoxin-3 (MTX-3) was detected in all species except for the temperate population of G. carpenteri. Using the Ca2+ influx SH-SY5Y cell Fluorescent Imaging Plate Reader (FLIPR) bioassay we found CTX-like activity in extracts of the unidentified Gambierdiscus strains and trace level activity in strains of G. lapillus. While no detectable CTX-like activity was observed in tropical or temperate strains of G. carpenteri, all species showed strong maitotoxin-like activity. This study, which represents the most comprehensive analyses of the toxicology of Gambierdiscus strains isolated from Australia to date, suggests that CFP in this region may be caused by currently undescribed ciguatoxins and maitotoxins.


Assuntos
Ciguatoxinas/isolamento & purificação , Dinoflagellida/classificação , Toxinas Marinhas/isolamento & purificação , Oxocinas/isolamento & purificação , Animais , Austrália , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Ciguatera , Ciguatoxinas/toxicidade , Dinoflagellida/química , Humanos , Toxinas Marinhas/toxicidade , Oxocinas/toxicidade , Espectrometria de Massas em Tandem , Clima Tropical
15.
Mar Drugs ; 16(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642418

RESUMO

The sea urchin Tripneustes gratilla (Toxopneustidae, Echinoids) is a source of protein for many islanders in the Indo-West Pacific. It was previously reported to occasionally cause ciguatera-like poisoning; however, the exact nature of the causative agent was not confirmed. In April and July 2015, ciguatera poisonings were reported following the consumption of T.gratilla in Anaho Bay (Nuku Hiva Island, Marquesas archipelago, French Polynesia). Patient symptomatology was recorded and sea urchin samples were collected from Anaho Bay in July 2015 and November 2016. Toxicity analysis using the neuroblastoma cell-based assay (CBA-N2a) detected the presence of ciguatoxins (CTXs) in T.gratilla samples. Gambierdiscus species were predominant in the benthic assemblages of Anaho Bay, and G.polynesiensis was highly prevalent in in vitro cultures according to qPCR results. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses revealed that P-CTX-3B was the major ciguatoxin congener in toxic sea urchin samples, followed by 51-OH-P-CTX-3C, P-CTX-3C, P-CTX-4A, and P-CTX-4B. Between July 2015 and November 2016, the toxin content in T.gratilla decreased, but was consistently above the safety limit allowed for human consumption. This study provides evidence of CTX bioaccumulation in T.gratilla as a cause of ciguatera-like poisoning associated with a documented symptomatology.


Assuntos
Ciguatera/etiologia , Ciguatoxinas/análise , Dinoflagellida , Ouriços-do-Mar/microbiologia , Alimentos Marinhos/toxicidade , Idoso , Animais , Baías , Bioensaio/métodos , Linhagem Celular Tumoral , Ciguatera/epidemiologia , Ciguatera/prevenção & controle , Ciguatoxinas/toxicidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polinésia/epidemiologia , Alimentos Crus/microbiologia , Alimentos Crus/toxicidade , Alimentos Marinhos/microbiologia , Testes de Toxicidade/métodos
16.
Mar Drugs ; 15(3)2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28335428

RESUMO

Ciguatera Fish Poisoning (CFP) is the most frequently reported seafood-toxin illness in the world. It causes substantial human health, social, and economic impacts. The illness produces a complex array of gastrointestinal, neurological and neuropsychological, and cardiovascular symptoms, which may last days, weeks, or months. This paper is a general review of CFP including the human health effects of exposure to ciguatoxins (CTXs), diagnosis, human pathophysiology of CFP, treatment, detection of CTXs in fish, epidemiology of the illness, global dimensions, prevention, future directions, and recommendations for clinicians and patients. It updates and expands upon the previous review of CFP published by Friedman et al. (2008) and addresses new insights and relevant emerging global themes such as climate and environmental change, international market issues, and socioeconomic impacts of CFP. It also provides a proposed universal case definition for CFP designed to account for the variability in symptom presentation across different geographic regions. Information that is important but unchanged since the previous review has been reiterated. This article is intended for a broad audience, including resource and fishery managers, commercial and recreational fishers, public health officials, medical professionals, and other interested parties.


Assuntos
Ciguatera/epidemiologia , Ciguatoxinas/toxicidade , Peixes/metabolismo , Alimentos Marinhos/intoxicação , Animais , Surtos de Doenças , Humanos , Saúde Pública
17.
Mar Drugs ; 15(7)2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696400

RESUMO

Species in the genus Gambierdiscus produce ciguatoxins (CTXs) and/or maitotoxins (MTXs), which may cause ciguatera fish poisoning (CFP) in humans if contaminated fish are consumed. Species of Gambierdiscus have previously been isolated from macroalgae at Rangitahua (Raoul Island and North Meyer Islands, northern Kermadec Islands), and the opportunity was taken to sample for Gambierdiscus at the more southerly Macauley Island during an expedition in 2016. Gambierdiscus cells were isolated, cultured, and DNA extracted and sequenced to determine the species present. Bulk cultures were tested for CTXs and MTXs by liquid chromatography-mass spectrometry (LC-MS/MS). The species isolated were G. australes, which produced MTX-1 (ranging from 3 to 36 pg/cell), and G. polynesiensis, which produced neither MTX-1 nor, unusually, any known CTXs. Isolates of both species produced putative MTX-3. The risk of fish, particularly herbivorous fish, causing CFP in the Zealandia and Kermadec Islands region is real, although in mainland New Zealand the risk is currently low. Both Gambierdiscus and Fukuyoa have been recorded in the sub-tropical northern region of New Zealand, and so the risk may increase with warming seas and shift in the distribution of Gambierdiscus species.


Assuntos
Ciguatera/etiologia , Ciguatoxinas/toxicidade , Dinoflagellida/genética , Dinoflagellida/isolamento & purificação , Peixes/parasitologia , Animais , Ilhas , Nova Zelândia , Espectrometria de Massas em Tandem
18.
Mar Drugs ; 15(7)2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665362

RESUMO

Ciguatoxins (CTXs), and possibly maitotoxins (MTXs), are responsible for Ciguatera Fish Poisoning, an important health problem for consumers of reef fish (such as inhabitants of islands in the South Pacific Ocean). The habitational range of the Gambierdiscus species is expanding, and new species are being discovered. In order to provide information on the potential health risk of the Gambierdiscus species, and one Fukuyoa species (found in the Cook Islands, the Kermadec Islands, mainland New Zealand, and New South Wales, Australia), 17 microalgae isolates were collected from these areas. Unialgal cultures were grown and extracts of the culture isolates were analysed for CTXs and MTXs by liquid chromatography tandem mass spectrometry (LC-MS/MS), and their toxicity to mice was determined by intraperitoneal and oral administration. An isolate of G. carpenteri contained neither CTXs nor MTXs, while 15 other isolates (including G. australes, G. cheloniae, G. pacificus, G.honu, and F. paulensis) contained only MTX-1 and/or MTX-3. An isolate of G. polynesiensis contained both CTXs and MTX-3. All the extracts were toxic to mice by intraperitoneal injection, but those containing only MTX-1 and/or -3 were much less toxic by oral administration. The extract of G. polynesiensis was highly toxic by both routes of administration.


Assuntos
Ciguatoxinas/toxicidade , Dinoflagellida/química , Toxinas Marinhas/toxicidade , Oxocinas/toxicidade , Administração Oral , Animais , Cromatografia Líquida , Ciguatera/epidemiologia , Ciguatoxinas/administração & dosagem , Ciguatoxinas/isolamento & purificação , Feminino , Injeções Intraperitoneais , Toxinas Marinhas/administração & dosagem , Toxinas Marinhas/isolamento & purificação , Camundongos , Oxocinas/administração & dosagem , Oxocinas/isolamento & purificação , Oceano Pacífico , Especificidade da Espécie , Espectrometria de Massas em Tandem , Testes de Toxicidade
19.
Mar Drugs ; 15(7)2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696398

RESUMO

Maitotoxins (MTXs) are among the most potent toxins known. These toxins are produced by epi-benthic dinoflagellates of the genera Gambierdiscus and Fukuyoa and may play a role in causing the symptoms associated with Ciguatera Fish Poisoning. A recent survey revealed that, of the species tested, the newly described species from the Canary Islands, G. excentricus, is one of the most maitotoxic. The goal of the present study was to characterize MTX-related compounds produced by this species. Initially, lysates of cells from two Canary Island G. excentricus strains VGO791 and VGO792 were partially purified by (i) liquid-liquid partitioning between dichloromethane and aqueous methanol followed by (ii) size-exclusion chromatography. Fractions from chromatographic separation were screened for MTX toxicity using both the neuroblastoma neuro-2a (N2a) cytotoxicity and Ca2+ flux functional assays. Fractions containing MTX activity were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to pinpoint potential MTX analogs. Subsequent non-targeted HRMS analysis permitted the identification of a novel MTX analog, maitotoxin-4 (MTX4, accurate mono-isotopic mass of 3292.4860 Da, as free acid form) in the most toxic fractions. HRMS/MS spectra of MTX4 as well as of MTX are presented. In addition, crude methanolic extracts of five other strains of G. excentricus and 37 other strains representing one Fukuyoa species and ten species, one ribotype and one undetermined strain/species of Gambierdiscus were screened for the presence of MTXs using low resolution tandem mass spectrometry (LRMS/MS). This targeted analysis indicated the original maitotoxin (MTX) was only present in one strain (G. australes S080911_1). Putative maitotoxin-2 (p-MTX2) and maitotoxin-3 (p-MTX3) were identified in several other species, but confirmation was not possible because of the lack of reference material. Maitotoxin-4 was detected in all seven strains of G. excentricus examined, independently of their origin (Brazil, Canary Islands and Caribbean), and not detected in any other species. MTX4 may therefore serve as a biomarker for the highly toxic G. excentricus in the Atlantic area.


Assuntos
Dinoflagellida/química , Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , Oxocinas/química , Oxocinas/toxicidade , Animais , Bioensaio/métodos , Brasil , Região do Caribe , Linhagem Celular Tumoral , Ciguatera/genética , Ciguatera/parasitologia , Ciguatoxinas/toxicidade , Camundongos , Filogenia , Espanha , Especificidade da Espécie
20.
Foodborne Pathog Dis ; 14(9): 537-543, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28682115

RESUMO

Each year in the United States, ∼260,000 people get sick from contaminated fish. Fish is also the most commonly implicated food category in outbreaks. We reviewed the Centers for Disease Control and Prevention Foodborne Disease Outbreak Surveillance System for outbreaks resulting from consumption of fish during the period 1998-2015. We found 857 outbreaks associated with fish, resulting in 4815 illnesses, 359 hospitalizations, and 4 deaths. The median number of illnesses per outbreak was three (range: 2-425). The annual number of fish-associated outbreaks declined from an average of 62 per year during the period 1998-2006 to 34 per year during the period 2007-2015. Hawaii (221 outbreaks [26%]) and Florida (203 [24%]) reported the most outbreaks. Among 637 outbreaks (74%) with a confirmed etiology, scombrotoxin (349 [55%]) and ciguatoxin (227 [36%]) were by far most common. Most outbreak-associated illnesses were caused by scombrotoxin (1299 [34%]), Salmonella (978 [26%]), and ciguatoxin (894 [23%]). Most hospitalizations were caused by Salmonella (97 [31%]) and ciguatoxin (96 [31%]). Norovirus (105 average illnesses; range: [6-380]) and Salmonella (54 [3-425]) caused the largest outbreaks. Fish types implicated most often were tuna (37%), mahi-mahi (10%), and grouper (9%). The etiology-fish pairs responsible for the most outbreaks were scombrotoxin and tuna (223 outbreaks), scombrotoxin and mahi-mahi (64), and ciguatoxin and grouper (54). The pairs responsible for the most illnesses were scombrotoxin and tuna (720 illnesses) and Salmonella and tuna (660). Of the 840 outbreaks (98%) with a single location of food preparation, 52% were associated with fish prepared in a restaurant and 33% with fish prepared in a private home. Upstream control measures targeted to the most common etiologies and controls during processing and preparation could further reduce outbreaks caused by fish.


Assuntos
Ciguatoxinas/toxicidade , Contaminação de Alimentos/estatística & dados numéricos , Doenças Transmitidas por Alimentos/epidemiologia , Toxinas Marinhas/toxicidade , Norovirus/isolamento & purificação , Salmonella/isolamento & purificação , Animais , Centers for Disease Control and Prevention, U.S. , Surtos de Doenças , Peixes , Doenças Transmitidas por Alimentos/microbiologia , Hospitalização , Humanos , Vigilância em Saúde Pública , Restaurantes , Alimentos Marinhos/microbiologia , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA