Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.684
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 177(3): 608-621.e12, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30955891

RESUMO

Normal tissues accumulate genetic changes with age, but it is unknown if somatic mutations promote clonal expansion of non-malignant cells in the setting of chronic degenerative diseases. Exome sequencing of diseased liver samples from 82 patients revealed a complex mutational landscape in cirrhosis. Additional ultra-deep sequencing identified recurrent mutations in PKD1, PPARGC1B, KMT2D, and ARID1A. The number and size of mutant clones increased as a function of fibrosis stage and tissue damage. To interrogate the functional impact of mutated genes, a pooled in vivo CRISPR screening approach was established. In agreement with sequencing results, examination of 147 genes again revealed that loss of Pkd1, Kmt2d, and Arid1a promoted clonal expansion. Conditional heterozygous deletion of these genes in mice was also hepatoprotective in injury assays. Pre-malignant somatic alterations are often viewed through the lens of cancer, but we show that mutations can promote regeneration, likely independent of carcinogenesis.


Assuntos
Hepatopatias/patologia , Fígado/metabolismo , Regeneração , Animais , Doença Crônica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Hidrolases/deficiência , Hidrolases/genética , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Hepatopatias/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regeneração/fisiologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento do Exoma
2.
Nature ; 616(7958): 747-754, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046084

RESUMO

Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.


Assuntos
Hematopoiese Clonal , Suscetibilidade a Doenças , Hepatite , Cirrose Hepática , Animais , Camundongos , Hematopoiese Clonal/genética , Hepatite/genética , Inflamação/genética , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/genética , Razão de Chances , Progressão da Doença
3.
EMBO J ; 42(24): e113898, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962490

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing cause of morbidity with limited treatment options. Thus, accurate in vitro systems to test new therapies are indispensable. While recently, human liver organoid models have emerged to assess steatotic liver disease, a systematic evaluation of their translational potential is still missing. Here, we evaluated human liver organoid models of MASLD, comparatively testing disease induction in three conditions: oleic acid, palmitic acid, and TGF-ß1. Through single-cell analyses, we find that all three models induce inflammatory signatures, but only TGF-ß1 promotes collagen production, fibrosis, and hepatic stellate cell expansion. In striking contrast, oleic acid ameliorates fibrotic signatures and reduces the hepatic stellate cell population. Linking data from each model to gene expression signatures associated with MASLD disease progression further demonstrates that palmitic acid and TGF-ß1 more robustly model inflammation and fibrosis. Our findings highlight the importance of stratifying MASLD organoid models by signatures of clinical disease progression, provide a single-cell reference to benchmark future organoid injury models, and allow us to study evolving steatohepatitis, fibrosis, and HSC susceptibility to injury in a dynamic, multi-lineage human in vitro system.


Assuntos
Fígado Gorduroso , Cirrose Hepática , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fígado Gorduroso/genética , Perfilação da Expressão Gênica , Progressão da Doença
4.
J Cell Sci ; 136(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37667902

RESUMO

Liver injury leads to fibrosis and cirrhosis. The primary mechanism underlying the fibrogenic response is the activation of hepatic stellate cells (HSCs), which are 'quiescent' in normal liver but become 'activated' after injury by transdifferentiating into extracellular matrix (ECM)-secreting myofibroblasts. Given that integrins are important in HSC activation and fibrogenesis, we hypothesized that paxillin, a key downstream effector in integrin signaling, might be critical in the fibrosis pathway. Using a cell-culture-based model of HSC activation and in vivo models of liver injury, we found that paxillin is upregulated in activated HSCs and fibrotic livers. Overexpression of paxillin (both in vitro and in vivo) led to increased ECM protein expression, and depletion of paxillin in a novel conditional mouse injury model reduced fibrosis. The mechanism by which paxillin mediated this effect appeared to be through the actin cytoskeleton, which signals to the ERK pathway and induces ECM protein production. These data highlight a novel role for paxillin in HSC biology and fibrosis.


Assuntos
Actinas , Células Estreladas do Fígado , Camundongos , Animais , Paxilina/genética , Paxilina/metabolismo , Actinas/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Polimerização , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado/metabolismo , Fibrose , Modelos Animais de Doenças
5.
N Engl J Med ; 387(6): 514-524, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35748699

RESUMO

BACKGROUND: Alpha1-antitrypsin (AAT) deficiency results from carriage of a homozygous SERPINA1 "Z" mutation (proteinase inhibitor [PI] ZZ). The Z allele produces a mutant AAT protein called Z-AAT, which accumulates in hepatocytes and can lead to progressive liver disease and fibrosis. This open-label, phase 2 trial investigated the safety and efficacy of fazirsiran, an RNA interference therapeutic, in patients with liver disease associated with AAT deficiency. METHODS: We assigned adults with the PI ZZ genotype and liver fibrosis to receive fazirsiran at a dose of 200 mg (cohorts 1 [4 patients] and 2 [8 patients]) or 100 mg (cohort 1b [4 patients]) subcutaneously on day 1 and week 4 and then every 12 weeks. The primary end point was the change from baseline to week 24 (cohorts 1 and 1b) or week 48 (cohort 2) in liver Z-AAT concentrations, which were measured by means of liquid chromatography-mass spectrometry. RESULTS: All the patients had reduced accumulation of Z-AAT in the liver (median reduction, 83% at week 24 or 48). The nadir in serum was a reduction of approximately 90%, and treatment was also associated with a reduction in histologic globule burden (from a mean score of 7.4 [scores range from 0 to 9, with higher scores indicating a greater globule burden] at baseline to 2.3 at week 24 or 48). All cohorts had reductions in liver enzyme concentrations. Fibrosis regression was observed in 7 of 15 patients and fibrosis progression in 2 of 15 patients after 24 or 48 weeks. There were no adverse events leading to trial or drug discontinuation. Four serious adverse events (viral myocarditis, diverticulitis, dyspnea, and vestibular neuronitis) resolved. CONCLUSIONS: In this small trial, fazirsiran was associated with a strong reduction of Z-AAT concentrations in the serum and liver and concurrent improvements in liver enzyme concentrations. (Funded by Arrowhead Pharmaceuticals; AROAAT-2002 ClinicalTrials.gov number, NCT03946449.).


Assuntos
Cirrose Hepática , Terapêutica com RNAi , Deficiência de alfa 1-Antitripsina , alfa 1-Antitripsina , Adulto , Genótipo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Injeções Subcutâneas , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Mutação , Terapêutica com RNAi/efeitos adversos , Terapêutica com RNAi/métodos , alfa 1-Antitripsina/análise , alfa 1-Antitripsina/sangue , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/tratamento farmacológico , Deficiência de alfa 1-Antitripsina/genética
6.
RNA ; 29(7): 977-1006, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37015806

RESUMO

LncRNAs comprise a heterogeneous class of RNA-encoding genes typified by low expression, nuclear enrichment, high tissue-specificity, and functional diversity, but the vast majority remain uncharacterized. Here, we assembled the mouse liver noncoding transcriptome from >2000 bulk RNA-seq samples and discovered 48,261 liver-expressed lncRNAs, a majority novel. Using these lncRNAs as a single-cell transcriptomic reference set, we elucidated lncRNA dysregulation in mouse models of high fat diet-induced nonalcoholic steatohepatitis and carbon tetrachloride-induced liver fibrosis. Trajectory inference analysis revealed lncRNA zonation patterns across the liver lobule in each major liver cell population. Perturbations in lncRNA expression and zonation were common in several disease-associated liver cell types, including nonalcoholic steatohepatitis-associated macrophages, a hallmark of fatty liver disease progression, and collagen-producing myofibroblasts, a central feature of liver fibrosis. Single-cell-based gene regulatory network analysis using bigSCale2 linked individual lncRNAs to specific biological pathways, and network-essential regulatory lncRNAs with disease-associated functions were identified by their high network centrality metrics. For a subset of these lncRNAs, promoter sequences of the network-defined lncRNA target genes were significantly enriched for lncRNA triplex formation, providing independent mechanistic support for the lncRNA-target gene linkages predicted by the gene regulatory networks. These findings elucidate liver lncRNA cell-type specificities, spatial zonation patterns, associated regulatory networks, and temporal patterns of dysregulation during hepatic disease progression. A subset of the liver disease-associated regulatory lncRNAs identified have human orthologs and are promising candidates for biomarkers and therapeutic targets.


Assuntos
Hepatopatia Gordurosa não Alcoólica , RNA Longo não Codificante , Humanos , Camundongos , Animais , Transcriptoma , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Perfilação da Expressão Gênica , Progressão da Doença
7.
Hepatology ; 79(1): 183-197, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540195

RESUMO

BACKGROUND AIMS: Human genetic variation is thought to guide the outcome of HCV infection, but model systems within which to dissect these host genetic mechanisms are limited. Norway rat hepacivirus, closely related to HCV, causes chronic liver infection in rats but causes acute self-limiting hepatitis in typical strains of laboratory mice, which resolves in 2 weeks. The Collaborative Cross (CC) is a robust mouse genetics resource comprised of a panel of recombinant inbred strains, which model the complexity of the human genome and provide a system within which to understand diseases driven by complex allelic variation. APPROACH RESULTS: We infected a panel of CC strains with Norway rat hepacivirus and identified several that failed to clear the virus after 4 weeks. Strains displayed an array of virologic phenotypes ranging from delayed clearance (CC046) to chronicity (CC071, CC080) with viremia for at least 10 months. Body weight loss, hepatocyte infection frequency, viral evolution, T-cell recruitment to the liver, liver inflammation, and the capacity to develop liver fibrosis varied among infected CC strains. CONCLUSIONS: These models recapitulate many aspects of HCV infection in humans and demonstrate that host genetic variation affects a multitude of viruses and host phenotypes. These models can be used to better understand the molecular mechanisms that drive hepacivirus clearance and chronicity, the virus and host interactions that promote chronic disease manifestations like liver fibrosis, therapeutic and vaccine performance, and how these factors are affected by host genetic variation.


Assuntos
Hepacivirus , Hepatite C , Camundongos , Humanos , Ratos , Animais , Hepacivirus/genética , Cirrose Hepática/genética , Doença Aguda , Variação Genética
8.
Hepatology ; 79(4): 857-868, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732945

RESUMO

BACKGROUND AND AIMS: Inherited short telomeres are associated with a risk of liver disease, whereas longer telomeres predispose to cancer. The association between telomere length and risk of HCC and cholangiocarcinoma remains unknown. APPROACH AND RESULTS: We measured leukocyte telomere length using multiplex PCR in 63,272 individuals from the Danish general population. Telomere length and plasma ALT concentration were not associated (ß = 4 ×10 -6 , p -value = 0.06) in a linear regression model, without any signs of a nonlinear relationship. We tested the association between telomere length and risk of cirrhosis, HCC, and cholangiocarcinoma using Cox regression. During a median follow-up of 11 years, 241, 76, and 112 individuals developed cirrhosis, HCC, and cholangiocarcinoma, respectively. Telomere length and risk of cirrhosis were inversely and linearly associated ( p -value = 0.004, p for nonlinearity = 0.27). Individuals with telomeres in the shortest vs. longest quartile had a 2.25-fold higher risk of cirrhosis. Telomere length and risk of HCC were nonlinearly associated ( p -value = 0.009, p -value for nonlinearity = 0.01). This relationship resembled an inverted J-shape, with the highest risk observed in individuals with short telomeres. Individuals with telomeres in the shortest versus longest quartile had a 2.29-fold higher risk of HCC. Telomere length was inversely and linearly associated with the risk of cholangiocarcinoma. Individuals with telomeres in the shortest versus longest quartile had a 1.86-fold higher risk of cholangiocarcinoma. CONCLUSIONS: Shorter telomere length is associated with a higher risk of cirrhosis, HCC, and cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Fatores de Risco , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Leucócitos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Colangiocarcinoma/epidemiologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/epidemiologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Telômero/genética
9.
Exp Cell Res ; 437(1): 113992, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492634

RESUMO

BACKGROUND: Hepatic fibrosis, a common pathological process that occurs in end-stage liver diseases, is a serious public health problem and lacks effective therapy. Notoginsenoside R1 (NR1) is a small molecule derived from the traditional Chinese medicine Sanqi, exhibiting great potential in treating diverse metabolie disorders. Here we aimed to enquired the role of NR1 in liver fibrosis and its underlying mechanism in hepatoprotective effects. METHODS: We investigated the anti-fibrosis effect of NR1 using CCl4-induced mouse mode of liver fibrosis as well as TGF-ß1-activated JS-1, LX-2 cells and primary hepatic stellate cell. Cell samples treated by NR1 were collected for transcriptomic profiling analysis. PPAR-γ mediated TGF-ß1/Smads signaling was examined using PPAR-γ selective inhibitors and agonists intervention, immunofluorescence staining and western blot analysis. Additionally, we designed and studied the binding of NR1 to PPAR-γ using molecular docking. RESULTS: NR1 obviously attenuated liver histological damage, reduced serum ALT, AST levels, and decreased liver fibrogenesis markers in mouse mode. Mechanistically, NR1 elevated PPAR-γ and decreased TGF-ß1, p-Smad2/3 expression. The TGF-ß1/Smads signaling pathway and fibrotic phenotype were altered in JS-1 cells after using PPAR-γ selective inhibitors and agonists respectively, confirming PPAR-γ played a pivotal protection role inNR1 treating liver fibrosis. Further molecular docking indicated NR1 had a strong binding tendency to PPAR-γ with minimum free energy. CONCLUSIONS: NR1 attenuates hepatic stellate cell activation and hepatic fibrosis by elevating PPAR-γ to inhibit TGF-ß1/Smads signalling. NR1 may be a potential candidate compound for reliving liver fibrosis.


Assuntos
Ginsenosídeos , Células Estreladas do Fígado , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Fibrose , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
10.
Nature ; 575(7783): 512-518, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31597160

RESUMO

Liver cirrhosis is a major cause of death worldwide and is characterized by extensive fibrosis. There are currently no effective antifibrotic therapies available. To obtain a better understanding of the cellular and molecular mechanisms involved in disease pathogenesis and enable the discovery of therapeutic targets, here we profile the transcriptomes of more than 100,000 single human cells, yielding molecular definitions for non-parenchymal cell types that are found in healthy and cirrhotic human liver. We identify a scar-associated TREM2+CD9+ subpopulation of macrophages, which expands in liver fibrosis, differentiates from circulating monocytes and is pro-fibrogenic. We also define ACKR1+ and PLVAP+ endothelial cells that expand in cirrhosis, are topographically restricted to the fibrotic niche and enhance the transmigration of leucocytes. Multi-lineage modelling of ligand and receptor interactions between the scar-associated macrophages, endothelial cells and PDGFRα+ collagen-producing mesenchymal cells reveals intra-scar activity of several pro-fibrogenic pathways including TNFRSF12A, PDGFR and NOTCH signalling. Our work dissects unanticipated aspects of the cellular and molecular basis of human organ fibrosis at a single-cell level, and provides a conceptual framework for the discovery of rational therapeutic targets in liver cirrhosis.


Assuntos
Células Endoteliais/patologia , Cirrose Hepática/patologia , Fígado/patologia , Macrófagos/patologia , Análise de Célula Única , Animais , Estudos de Casos e Controles , Linhagem da Célula , Sistema do Grupo Sanguíneo Duffy/metabolismo , Células Endoteliais/metabolismo , Feminino , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/citologia , Cirrose Hepática/genética , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Fenótipo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Tetraspanina 29/metabolismo , Transcriptoma , Migração Transendotelial e Transepitelial
11.
Cell Mol Life Sci ; 81(1): 96, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372748

RESUMO

Activation of hepatic stellate cells (HSCs) has been demonstrated to play a pivotal role in the process of liver fibrogenesis. In this study, we observed a decrease in the expression of KIF18A in fibrotic liver tissues compared to healthy liver tissues, which exhibited a negative correlation with the activation of HSCs. To elucidate the molecular mechanisms underlying the involvement of KIF18A, we performed in vitro proliferation experiments and established a CCl4-induced liver fibrosis model. Our results revealed that KIF18A knockdown enhanced HSCs proliferation and reduced HSCs apoptosis in vitro. Mouse liver fibrosis grade was evaluated with Masson's trichrome and alpha-smooth muscle actin (α-SMA) staining. In addition, the expression of fibrosis markers Col1A1, Stat1, and Timp1 were detected. Animal experiments demonstrated that knockdown of KIF18A could promote liver fibrosis, whereas overexpression of KIF18A alleviated liver fibrosis in a CCl4-induced mouse model. Mechanistically, we found that KIF18A suppressed the AKT/mTOR pathway and exhibited direct binding to TTC3. Moreover, TTC3 was found to interact with p-AKT and could promote its ubiquitination and degradation. Our findings provide compelling evidence that KIF18A enhances the protein binding between TTC3 and p-AKT, promoting TTC3-mediated ubiquitination and degradation of p-AKT. These results refine the current understanding of the mechanisms underlying the pathogenesis of liver fibrosis and may offer new targets for treating this patient population.


Assuntos
Células Estreladas do Fígado , Cinesinas , Cirrose Hepática , Animais , Humanos , Camundongos , Cinesinas/genética , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Ubiquitina-Proteína Ligases
12.
Nano Lett ; 24(4): 1062-1073, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38164915

RESUMO

Senescence of activated hepatic stellate cells (HSCs) is crucial for the regression of liver fibrosis. However, impaired immune clearance can result in the accumulation of senescent HSCs, exacerbating liver fibrosis. The activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is essential for both senescence and the innate immune response. Additionally, the specific delivery to activated HSCs is hindered by their inaccessible anatomical location, capillarization of liver sinusoidal endothelial cells (LSECs), and loss of substance exchange. Herein, we propose an antifibrotic strategy that combines prosenescence with enhanced immune clearance through targeted delivery of manganese (a cGAS-STING stimulator) via albumin-mediated transcytosis, specifically aimed at inducing senescence and eliminating activated HSCs in liver fibrosis. Our findings demonstrate that only albumin efficiently transfers manganese to activated HSCs from LSECs via transcytosis compared to liposomes, resulting in significant antifibrotic effects in vivo while exhibiting negligible toxicity.


Assuntos
Células Estreladas do Fígado , Fígado , Humanos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado/patologia , Manganês , Células Endoteliais/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Albuminas/metabolismo , Nucleotidiltransferases/metabolismo
13.
J Lipid Res ; 65(3): 100514, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309418

RESUMO

Human genetic evidence suggests a protective role of loss-of-function variants in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) for liver fibrotic diseases. Although there is limited preclinical experimental data on Hsd17b13 antisense oligonucleotide (ASO) or siRNA in a fibrosis model, several ASO and siRNA approaches are being tested clinically as potential therapies for nonalcoholic steatohepatitis (NASH). The aim of this study was to assess the therapeutic potential of Hsd17b13 ASO in a preclinical advanced NASH-like hepatic fibrosis in vivo model. In vitro testing on primary hepatocytes demonstrated that Hsd17b13 ASO exhibited strong efficacy and specificity for knockdown of the Hsd17b13 gene. In choline-deficient, L-amino acid-defined, HFD (CDAHFD)-induced steatotic and fibrotic mice, therapeutic administration of Hsd17b13 ASO resulted in a significant and dose-dependent reduction of hepatic Hsd17b13 gene expression. The CDAHFD group exhibited considerably elevated liver enzyme levels, hepatic steatosis score, hepatic fibrosis, and increased fibrotic and inflammatory gene expression, indicating an advanced NASH-like hepatic fibrosis phenotype. Although Hsd17b13 ASO therapy significantly affected hepatic steatosis, it had no effect on hepatic fibrosis. Our findings demonstrate, for the first time, that Hsd17b13 ASO effectively suppressed Hsd17b13 gene expression both in vitro and in vivo, and had a modulatory effect on hepatic steatosis in mice, but did not affect fibrosis in the CDAHFD mouse model of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Modelos Animais de Doenças , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/metabolismo
14.
J Proteome Res ; 23(4): 1433-1442, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488493

RESUMO

MDR3 (multidrug resistance 3) deficiency in humans (MDR2 in mice) causes progressive familial intrahepatic cholestasis type 3 (PFIC3). PFIC3 is a lethal disease characterized by an early onset of intrahepatic cholestasis progressing to liver cirrhosis, a preneoplastic condition, putting individuals at risk of hepatocellular carcinoma (HCC). Hepatocyte-like organoids from MDR2-deficient mice (MDR2KO) were used in this work to study the molecular alterations caused by the deficiency of this transporter. Proteomic analysis by mass spectrometry allowed characterization of 279 proteins that were differentially expressed in MDR2KO compared with wild-type organoids. Functional enrichment analysis indicated alterations in three main cellular functions: (1) interaction with the extracellular matrix, (2) remodeling intermediary metabolism, and (3) cell proliferation and differentiation. The affected cellular processes were validated by orthogonal molecular biology techniques. Our results point to molecular mechanisms associated with PFIC3 that may drive the progression to liver cirrhosis and HCC and suggest proteins and cellular processes that could be targeted for the development of early detection strategies for these severe liver diseases.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Carcinoma Hepatocelular , Colestase Intra-Hepática , Colestase , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Carcinoma Hepatocelular/patologia , Colestase/genética , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Knockout , Proteômica
15.
J Cell Physiol ; 239(5): e31198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38451745

RESUMO

Liver sinusoidal endothelial cells (LSECs) dysfunction is a key process in the development of chronic liver disease (CLD). Progressive scarring increases liver stiffness in a winch-like loop stimulating a dysfunctional liver cell phenotype. Cellular stretching is supported by biomechanically modulated molecular factors (BMMFs) that can translocate into the cytoplasm to support mechanotransduction through cytoskeleton remodeling and gene transcription. Currently, the molecular mechanisms of stiffness-induced LSECs dysfunction remain largely unclear. Here we propose calcium- and integrin-binding protein 1 (CIB1) as BMMF with crucial role in LSECs mechanobiology in CLD. CIB1 expression and translocation was characterized in healthy and cirrhotic human livers and in LSECs cultured on polyacrylamide gels with healthy and cirrhotic-like stiffnesses. Following the modulation of CIB1 with siRNA, the transcriptome was scrutinized to understand downstream effects of CIB1 downregulation. CIB1 expression is increased in LSECs in human cirrhosis. In vitro, CIB1 emerges as an endothelial BMMF. In human umbilical vein endothelial cells and LSECs, CIB1 expression and localization are modulated by stiffness-induced trafficking across the nuclear membrane. LSECs from cirrhotic liver tissue both in animal model and human disease exhibit an increased amount of CIB1 in cytoplasm. Knockdown of CIB1 in LSECs exposed to high stiffness improves LSECs phenotype by regulating the intracellular tension as well as the inflammatory response. Our results demonstrate that CIB1 is a key factor in sustaining cellular tension and stretching in response to high stiffness. CIB1 downregulation ameliorates LSECs dysfunction, enhancing their redifferentiation, and reducing the inflammatory response.


Assuntos
Proteínas de Ligação ao Cálcio , Células Endoteliais , Cirrose Hepática , Fígado , Mecanotransdução Celular , Animais , Humanos , Masculino , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Feminino , Ratos , Ratos Sprague-Dawley
16.
Cancer Sci ; 115(2): 564-574, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38083881

RESUMO

The impacts of patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M-rs738409, methylenetetrahydrofolate reductase (MTHFR) Ala222Val-rs1801133, and aldehyde dehydrogenase 2 (ALDH2) Glu504Lys-rs671 on the outcomes of Taiwanese patients with steatotic liver disease (SLD) have remained elusive. An 8-year prospective cohort study of patients with (n = 546) and without (n = 580) SLD (controls) was undertaken in a Taiwanese tertiary care center. The 546 SLD patients comprised 306 (56.0%) men and 240 (44.0%) women with mean ages of 53.3 and 56.4 years, respectively. Compared with the controls, SLD patients had an increased frequency of the PNPLA3 I148M-rs738409 GG genotype (25.5 vs. 5.9%, p = 0.001). Among the SLD patients, 236 (43.1%) suffered cardiovascular events, 52 (9.5%) showed extrahepatic cancers, 13 (2.38%) experienced hepatic events, including hepatocellular carcinoma (n = 3, 0.5%) and liver cirrhosis (n = 8, 1.47%), and none died. The Fibrosis-4 (FIB-4) scores were associated with extrahepatic cancer (hazard ratio [HR] 1.325; 95% confidence interval [CI], 1.038-1.691) and cirrhosis development (HR 1.532; 95% CI, 1.055-2.224), and the PNPLA3 I148M-rs738409 G allele (ß = 0.158, 95% CI, 0.054-0.325) was associated with the FIB-4 score. Stratified analyses showed that the impact of the FIB-4 score on extrahepatic cancer development was evident only in SLD patients with the PNPLA3 I148M-rs738409 GG genotype (HR 1.543; 95% CI, 1.195-1.993) and not in patients with the GC or CC genotype. Moreover, the ALDH2 Glu504Lys-rs671 G allele had a dose-dependent effect on alcoholism, and the MTHFR and ALDH2 genotypes were not significantly associated with SLD patient outcomes. In conclusion, special vigilance should be exercised for emerging extrahepatic cancer in SLD patients with the PNPLA3 I148M-rs738409 GG genotype and high FIB-4 scores.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aldeído-Desidrogenase Mitocondrial/genética , Carcinoma Hepatocelular/genética , Predisposição Genética para Doença , Genótipo , Cirrose Hepática/complicações , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos
17.
J Hepatol ; 81(1): 135-148, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38460791

RESUMO

BACKGROUND & AIMS: NOTCH signaling in liver sinusoidal endothelial cells (LSECs) regulates liver fibrosis, a pathological feature of chronic liver diseases. POFUT1 is an essential regulator of NOTCH signaling. Here, we investigated the role of LSEC-expressed POFUT1 in liver fibrosis. METHODS: Endothelial-specific Pofut1 knockout mice were generated and experimental liver fibrosis was induced by chronic carbon tetrachloride exposure or common bile duct ligation. Liver samples were assessed by ELISA, histology, electron microscopy, immunostaining and RNA in situ hybridization. LSECs and hepatic stellate cells (HSCs) were isolated for gene expression analysis by RNA sequencing, qPCR, and western blotting. Signaling crosstalk between LSECs and HSCs was investigated by treating HSCs with supernatant from LSEC cultures. Liver single-cell RNA sequencing datasets from patients with cirrhosis and healthy individuals were analyzed to evaluate the clinical relevance of gene expression changes observed in mouse studies. RESULTS: POFUT1 loss promoted injury-induced LSEC capillarization and HSC activation, leading to aggravated liver fibrosis. RNA sequencing analysis revealed that POFUT1 deficiency upregulated fibrinogen expression in LSECs. Consistently, fibrinogen was elevated in LSECs of patients with cirrhosis. HSCs treated with supernatant from LSECs of Pofut1 null mice showed exacerbated activation compared to those treated with supernatant from control LSECs, and this effect was attenuated by knockdown of fibrinogen or by pharmacological inhibition of fibrinogen receptor signaling, altogether suggesting that LSEC-derived fibrinogen induced the activation of HSCs. Mechanistically, POFUT1 loss augmented fibrinogen expression by enhancing NOTCH/HES1/STAT3 signaling. CONCLUSIONS: Endothelial POFUT1 prevents injury-induced liver fibrosis by repressing the expression of fibrinogen, which functions as a profibrotic paracrine signal to activate HSCs. Therapies targeting the POFUT1/fibrinogen axis offer a promising strategy for the prevention and treatment of fibrotic liver diseases. IMPACT AND IMPLICATIONS: Paracrine signals produced by liver vasculature play a major role in the development of liver fibrosis, which is a pathological hallmark of most liver diseases. Identifying those paracrine signals is clinically relevant in that they may serve as therapeutic targets. In this study, we discovered that genetic deletion of Pofut1 aggravated experimental liver fibrosis in mouse models. Moreover, fibrinogen was identified as a downstream target repressed by Pofut1 in liver endothelial cells and functioned as a novel paracrine signal that drove liver fibrosis. In addition, fibrinogen was found to be relevant to cirrhosis and may serve as a potential therapeutic target for this devastating human disease.


Assuntos
Células Endoteliais , Fibrinogênio , Células Estreladas do Fígado , Cirrose Hepática , Camundongos Knockout , Animais , Camundongos , Fibrinogênio/metabolismo , Fibrinogênio/biossíntese , Fibrinogênio/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Células Estreladas do Fígado/metabolismo , Células Endoteliais/metabolismo , Humanos , Transdução de Sinais , Masculino , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Receptores Notch/metabolismo , Receptores Notch/fisiologia , Modelos Animais de Doenças
18.
J Hepatol ; 80(6): 928-940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38336346

RESUMO

BACKGROUND & AIMS: Men are more prone to develop and die from liver fibrosis than women. In this study, we aim to investigate how sex-determining region Y gene (SRY) in hepatocytes promotes liver fibrosis. METHODS: Hepatocyte-specific Sry knock-in (KI), Sry knockout (KO), and Sry KI with platelet-derived growth factor receptor α (Pdgfrα) KO mice were generated. Liver fibrosis was induced in mice by bile duct ligation for 2 weeks or carbon tetrachloride treatment for 6 weeks. In addition, primary hepatocytes, hepatic stellate cells (HSCs), and immortalized cell lines were used for in vitro studies and mechanistic investigation. RESULTS: Compared to females, the severity of toxin- or cholestasis-induced liver fibrosis is similarly increased in castrated and uncastrated male mice. Among all Y chromosome-encoded genes, SRY was the most significantly upregulated and consistently increased gene in fibrotic/cirrhotic livers in male patients and in mouse models. Sry KI mice developed exacerbated liver fibrosis, whereas Sry KO mice had alleviated liver fibrosis, compared to age- and sex-matched control mice after bile duct ligation or administration of carbon tetrachloride. Mechanistically, both our in vivo and in vitro studies illustrated that SRY in hepatocytes can transcriptionally regulate Pdgfrα expression, and promote HMGB1 (high mobility group box 1) release and subsequent HSC activation. Pdgfrα KO or treatment with the SRY inhibitor DAX1 in Sry KI mice abolished SRY-induced HMGB1 secretion and liver fibrosis. CONCLUSIONS: SRY is a strong pro-fibrotic factor and accounts for the sex disparity observed in liver fibrosis, suggesting its critical role as a potentially sex-specific therapeutic target for prevention and treatment of the disease. IMPACT AND IMPLICATION: We identified that a male-specific gene, sex-determining region Y gene (SRY), is a strong pro-fibrotic gene that accounts for the sex disparity observed in liver fibrosis. As such, SRY might be an appropriate target for surveillance and treatment of liver fibrosis in a sex-specific manner. Additionally, SRY might be a key player in the sexual dimorphism observed in hepatic pathophysiology more generally.


Assuntos
Células Estreladas do Fígado , Hepatócitos , Cirrose Hepática , Camundongos Knockout , Proteína da Região Y Determinante do Sexo , Animais , Masculino , Feminino , Camundongos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/fisiopatologia , Humanos , Hepatócitos/metabolismo , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Células Estreladas do Fígado/metabolismo , Caracteres Sexuais , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/efeitos adversos , Colestase/genética , Colestase/metabolismo , Colestase/fisiopatologia , Modelos Animais de Doenças
19.
J Hepatol ; 80(6): 941-956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38365182

RESUMO

BACKGROUND & AIMS: The PNPLA3 rs738409 C>G (encoding for I148M) variant is a risk locus for the fibrogenic progression of chronic liver diseases, a process driven by hepatic stellate cells (HSCs). We investigated how the PNPLA3 I148M variant affects HSC biology using transcriptomic data and validated findings in 3D-culture models. METHODS: RNA sequencing was performed on 2D-cultured primary human HSCs and liver biopsies of individuals with obesity, genotyped for the PNPLA3 I148M variant. Data were validated in wild-type (WT) or PNPLA3 I148M variant-carrying HSCs cultured on 3D extracellular matrix (ECM) scaffolds from human healthy and cirrhotic livers, with/without TGFB1 or cytosporone B (Csn-B) treatment. RESULTS: Transcriptomic analyses of liver biopsies and HSCs highlighted shared PNPLA3 I148M-driven dysregulated pathways related to mitochondrial function, antioxidant response, ECM remodelling and TGFB1 signalling. Analogous pathways were dysregulated in WT/PNPLA3-I148M HSCs cultured in 3D liver scaffolds. Mitochondrial dysfunction in PNPLA3-I148M cells was linked to respiratory chain complex IV insufficiency. Antioxidant capacity was lower in PNPLA3-I148M HSCs, while reactive oxygen species secretion was increased in PNPLA3-I148M HSCs and higher in bioengineered cirrhotic vs. healthy scaffolds. TGFB1 signalling followed the same trend. In PNPLA3-I148M cells, expression and activation of the endogenous TGFB1 inhibitor NR4A1 were decreased: treatment with the Csn-B agonist increased total NR4A1 in HSCs cultured in healthy but not in cirrhotic 3D scaffolds. NR4A1 regulation by TGFB1/Csn-B was linked to Akt signalling in PNPLA3-WT HSCs and to Erk signalling in PNPLA3-I148M HSCs. CONCLUSION: HSCs carrying the PNPLA3 I148M variant have impaired mitochondrial function, antioxidant responses, and increased TGFB1 signalling, which dampens antifibrotic NR4A1 activity. These features are exacerbated by cirrhotic ECM, highlighting the dual impact of the PNPLA3 I148M variant and the fibrotic microenvironment in progressive chronic liver diseases. IMPACT AND IMPLICATIONS: Hepatic stellate cells (HSCs) play a key role in the fibrogenic process associated with chronic liver disease. The PNPLA3 genetic mutation has been linked with increased risk of fibrogenesis, but its role in HSCs requires further investigation. Here, by using comparative transcriptomics and a novel 3D in vitro model, we demonstrate the impact of the PNPLA3 genetic mutation on primary human HSCs' behaviour, and we show that it affects the cell's mitochondrial function and antioxidant response, as well as the antifibrotic gene NR4A1. Our publicly available transcriptomic data, 3D platform and our findings on NR4A1 could facilitate the discovery of targets to develop more effective treatments for chronic liver diseases.


Assuntos
Matriz Extracelular , Células Estreladas do Fígado , Lipase , Cirrose Hepática , Proteínas de Membrana , Fator de Crescimento Transformador beta1 , Humanos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Lipase/genética , Lipase/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Células Cultivadas , Fígado/patologia , Fígado/metabolismo , Transdução de Sinais/genética , Obesidade/genética , Obesidade/metabolismo , Masculino , Aciltransferases , Fosfolipases A2 Independentes de Cálcio
20.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G747-G761, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591148

RESUMO

Insufficient expression of steroidogenic acute regulatory-related lipid transfer protein 5 (StarD5) on liver cholesterol/lipid homeostasis is not clearly defined. The ablation of StarD5 was analyzed in mice on a normal or Western diet (WD) to determine its importance in hepatic lipid accumulation and fibrosis compared with wild-type (WT) mice. Rescue experiments in StarD5-/- mice and hepatocytes were performed. In addition to increased hepatic triglyceride (TG)-cholesterol levels, global StarD5-/- mice fed a normal diet displayed reduced plasma triglycerides and liver very low-density lipoprotein (VLDL) secretion as compared with WT counterparts. Insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) scoring were elevated, demonstrating developing insulin resistance (IR). WD-fed StarD5-/- mice upregulated WW domain containing transcription regulator 1 (TAZ or WWTR1) expression with accelerated liver fibrosis when compared with WD-fed WT mice. Suppression of oxysterol 7α-hydroxylase (CYP7B1) coupled with chronic accumulation of toxic oxysterol levels correlated with presentation of fibrosis. "Hepatocyte-selective" StarD5 overexpression in StarD5-/- mice restored expression, reduced hepatic triglycerides, and improved HOMA-IR. Observations in two additional mouse and one human metabolic dysfunction-associated steatotic liver disease (MASLD) model were supportive. The downregulation of StarD5 with hepatic lipid excess is a previously unappreciated physiological function appearing to promote lipid storage for future needs. Conversely, lingering downregulation of StarD5 with prolonged lipid-cholesterol excess accelerates fatty liver's transition to fibrosis; mediated via dysregulation in the oxysterol signaling pathway.NEW & NOTEWORTHY We have found that deletion of the cholesterol transport protein StarD5 in mice leads to an increase in insulin resistance and lipid accumulation due to the upregulation of lipid synthesis and decrease VLDL secretion from the liver. In addition, deletion of StarD5 increased fibrosis when mice were fed a Western diet. This represents a novel pathway of fibrosis development in the liver.


Assuntos
Resistência à Insulina , Cirrose Hepática , Fígado , Camundongos Knockout , Animais , Humanos , Masculino , Camundongos , Colesterol/metabolismo , Colesterol/sangue , Dieta Ocidental/efeitos adversos , Progressão da Doença , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA