RESUMO
Cancer cells selectively promote translation of specific oncogenic transcripts to facilitate cancer survival and progression, but the underlying mechanisms are poorly understood. Here, we find that N7-methylguanosine (m7G) tRNA modification and its methyltransferase complex components, METTL1 and WDR4, are significantly upregulated in intrahepatic cholangiocarcinoma (ICC) and associated with poor prognosis. We further reveal the critical role of METTL1/WDR4 in promoting ICC cell survival and progression using loss- and gain-of-function assays in vitro and in vivo. Mechanistically, m7G tRNA modification selectively regulates the translation of oncogenic transcripts, including cell-cycle and epidermal growth factor receptor (EGFR) pathway genes, in m7G-tRNA-decoded codon-frequency-dependent mechanisms. Moreover, using overexpression and knockout mouse models, we demonstrate the crucial oncogenic function of Mettl1-mediated m7G tRNA modification in promoting ICC tumorigenesis and progression in vivo. Our study uncovers the important physiological function and mechanism of METTL1-mediated m7G tRNA modification in the regulation of oncogenic mRNA translation and cancer progression.
Assuntos
Colangiocarcinoma/genética , Proteínas de Ligação ao GTP/genética , Metiltransferases/genética , Biossíntese de Proteínas , Animais , Carcinogênese/genética , Colangiocarcinoma/patologia , Progressão da Doença , Receptores ErbB/genética , Guanosina/análogos & derivados , Guanosina/genética , Humanos , Camundongos , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , RNA de Transferência/genéticaRESUMO
Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis, and elucidation of the molecular mechanisms underlying iCCA malignancy is of great significance. Glycosylation, an important post-translational modification, is closely associated with tumor progression. Altered glycosylation, including aberrant sialylation resulting from abnormal expression of sialyltransferases (STs) and neuraminidases (NEUs), is a significant feature of cancer cells. However, there is limited information on the roles of STs and NEUs in iCCA malignancy. Here, utilizing our proteogenomic resources from a cohort of 262 patients with iCCA, we identified ST3GAL1 as a prognostically relevant molecule in iCCA. Moreover, overexpression of ST3GAL1 promoted proliferation, migration, and invasion and inhibited apoptosis of iCCA cells in vitro. Through proteomic analyses, we identified the downstream pathway potentially regulated by ST3GAL1, which was the NF-κB signaling pathway, and further demonstrated that this pathway was positively correlated with malignancy in iCCA cells. Notably, glycoproteomics showed that O-glycosylation was changed in iCCA cells with high ST3GAL1 expression. Importantly, the altered O-glycopeptides underscored the potential utility of O-glycosylation profiling as a discriminatory marker for iCCA cells with ST3GAL1 overexpression. Additionally, miR-320b was identified as a post-transcriptional regulator of ST3GAL1, capable of suppressing ST3GAL1 expression and then reducing the proliferation, migration, and invasion abilities of iCCA cell lines. Taken together, these results suggest ST3GAL1 could serve as a promising therapeutic target for iCCA.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , beta-Galactosídeo alfa-2,3-Sialiltransferase , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apoptose , beta-Galactosídeo alfa-2,3-Sialiltransferase/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , Glicosilação , Invasividade Neoplásica , NF-kappa B/metabolismo , Fenótipo , Prognóstico , Proteômica/métodos , Sialiltransferases/metabolismo , Sialiltransferases/genética , Transdução de SinaisRESUMO
BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.
Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Células Estreladas do Fígado , Proteína-Lisina 6-Oxidase , Microambiente Tumoral , Humanos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/enzimologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/enzimologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimologia , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/enzimologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/enzimologia , Fosforilação Oxidativa , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Transdução de SinaisRESUMO
Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm prone to metastasis. Whether cancer-associated fibroblasts (CAFs) affect the metastasis of ICC is unclear. Herein, ICC patient-derived CAF lines and related cancerous cell lines were established and the effects of CAFs on the tumor progressive properties of the ICC cancerous cells were analyzed. CAFs could be classified into cancer-restraining or cancer-promoting categories based on distinct tumorigenic effects. The RNA-sequencing analyses of ICC cancerous cell lines identified polycomb group ring finger 4 (PCGF4; alias BMI1) as a potential metastasis regulator. The changes of PCGF4 levels in ICC cells mirrored the restraining or promoting effects of CAFs on ICC migration. Immunohistochemical analyses on the ICC tissue microarrays indicated that PCGF4 was negatively correlated with overall survival of ICC. The promoting effects of PCGF4 on cell migration, drug resistance activity, and stemness properties were confirmed. Mechanistically, cancer-restraining CAFs triggered the proteasome-dependent degradation of PCGF4, whereas cancer-promoting CAFs enhanced the stability of PCGF4 via activating the IL-6/phosphorylated STAT3 pathway. In summary, the current data identified the role of CAFs in ICC metastasis and revealed a new mechanism of the CAFs on ICC progression in which PCGF4 acted as the key effector by both categories of CAFs. These findings shed light on developing comprehensive therapeutic strategies for ICC.
Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Metástase Neoplásica , Complexo Repressor Polycomb 1 , Animais , Humanos , Masculino , Camundongos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Movimento Celular , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Fator de Transcrição STAT3/metabolismoRESUMO
BACKGROUND: While resection remains the only curative option for perihilar cholangiocarcinoma, it is well known that such surgery is associated with a high risk of morbidity and mortality. Nevertheless, beyond facing life-threatening complications, patients may also develop early disease recurrence, defining a "futile" outcome in perihilar cholangiocarcinoma surgery. The aim of this study is to predict the high-risk category (futile group) where surgical benefits are reversed and alternative treatments may be considered. METHODS: The study cohort included prospectively maintained data from 27 Western tertiary referral centers: the population was divided into a development and a validation cohort. The Framingham Heart Study methodology was used to develop a preoperative scoring system predicting the "futile" outcome. RESULTS: A total of 2271 cases were analyzed: among them, 309 were classified within the "futile group" (13.6%). American Society of Anesthesiology (ASA) score ≥ 3 (OR 1.60; p = 0.005), bilirubin at diagnosis ≥50 mmol/L (OR 1.50; p = 0.025), Ca 19-9 ≥ 100 U/mL (OR 1.73; p = 0.013), preoperative cholangitis (OR 1.75; p = 0.002), portal vein involvement (OR 1.61; p = 0.020), tumor diameter ≥3 cm (OR 1.76; p < 0.001), and left-sided resection (OR 2.00; p < 0.001) were identified as independent predictors of futility. The point system developed, defined three (ie, low, intermediate, and high) risk classes, which showed good accuracy (AUC 0.755) when tested on the validation cohort. CONCLUSIONS: The possibility to accurately estimate, through a point system, the risk of severe postoperative morbidity and early recurrence, could be helpful in defining the best management strategy (surgery vs. nonsurgical treatments) according to preoperative features.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Colangite , Tumor de Klatskin , Humanos , Tumor de Klatskin/cirurgia , Tumor de Klatskin/complicações , Futilidade Médica , Recidiva Local de Neoplasia/etiologia , Colangite/complicações , Hepatectomia/métodos , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Estudos Retrospectivos , Resultado do TratamentoRESUMO
BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary ducts. Current CCA diagnostic and prognostic assessments cannot satisfy the clinical requirement. Bile detection is rarely performed, and herein, we aim to estimate the clinical significance of bile liquid biopsy by assessing bile exosomal concentrations and components. APPROACH RESULTS: Exosomes in bile and sera from CCA, pancreatic cancer, and common bile duct stone were identified and quantified by transmission electronmicroscopy, nanoparticle tracking analysis, and nanoFCM. Exosomal components were assessed by liquid chromatography with tandem mass spectrometry and microRNA sequencing (miRNA-seq). Bile exosomal concentration in different diseases had no significant difference, but miR-182-5p and miR-183-5p were ectopically upregulated in CCA bile exosomes. High miR-182/183-5p in both CCA tissues and bile indicates a poor prognosis. Bile exosomal miR-182/183-5p is secreted by CCA cells and can be absorbed by biliary epithelium or CCA cells. With xenografts in humanized mice, we showed that bile exosomal miR-182/183-5p promotes CCA proliferation, invasion, and epithelial-mesenchymal transition (EMT) by targeting hydroxyprostaglandin dehydrogenase in CCA cells and mast cells (MCs), and increasing prostaglandin E2 generation, which stimulates PTGER1 and increases CCA stemness. In single-cell mRNA-seq, hydroxyprostaglandin dehydrogenase is predominantly expressed in MCs. miR-182/183-5p prompts MC to release VEGF-A release from MC by increasing VEGF-A expression, which facilitates angiogenesis. CONCLUSIONS: CCA cells secret exosomal miR-182/183-5p into bile, which targets hydroxyprostaglandin dehydrogenase in CCA cells and MCs and increases prostaglandin E2 and VEGF-A release. Prostaglandin E2 promotes stemness by activating PTGER1. Our results reveal a type of CCA self-driven progression dependent on bile exosomal miR-182/183-5p and MCs, which is a new interplay pattern of CCA and bile.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , Animais , Camundongos , Dinoprostona , MicroRNAs/genética , Bile/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Hidroxiprostaglandina Desidrogenases/genética , Proliferação de Células , Regulação Neoplásica da Expressão GênicaRESUMO
BACKGROUND AND AIMS: Lymph node metastasis is a significant risk factor for patients with cholangiocarcinoma, but the mechanisms underlying cholangiocarcinoma colonization in the lymph node microenvironment remain unclear. We aimed to determine whether metabolic reprogramming fueled the adaptation and remodeling of cholangiocarcinoma cells to the lymph node microenvironment. APPROACH AND RESULTS: Here, we applied single-cell RNA sequencing of primary tumor lesions and paired lymph node metastases from patients with cholangiocarcinoma and revealed significantly reduced intertumor heterogeneity and syntropic lipid metabolic reprogramming of cholangiocarcinoma after metastasis to lymph nodes, which was verified by pan-cancer single-cell RNA sequencing analysis, highlighting the essential role of lipid metabolism in tumor colonization in lymph nodes. Metabolomics and in vivo CRISPR/Cas9 screening identified PPARγ as a crucial regulator in fueling cholangiocarcinoma colonization in lymph nodes through the oleic acid-PPARγ-fatty acid-binding protein 4 positive feedback loop by upregulating fatty acid uptake and oxidation. Patient-derived organoids and animal models have demonstrated that blocking this loop impairs cholangiocarcinoma proliferation and colonization in the lymph node microenvironment and is superior to systemic inhibition of fatty acid oxidation. PPARγ-regulated fatty acid metabolic reprogramming in cholangiocarcinoma also contributes to the immune-suppressive niche in lymph node metastases by producing kynurenine and was found to be associated with tumor relapse, immune-suppressive lymph node microenvironment, and poor immune checkpoint blockade response. CONCLUSIONS: Our results reveal the role of the oleic acid-PPARγ-fatty acid-binding protein 4 loop in fueling cholangiocarcinoma colonization in lymph nodes and demonstrate that PPARγ-regulated lipid metabolic reprogramming is a promising therapeutic target for relieving cholangiocarcinoma lymph node metastasis burden and reducing further progression.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteínas de Ligação a Ácido Graxo , Metástase Linfática , Ácido Oleico , PPAR gama , Microambiente Tumoral , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , PPAR gama/metabolismo , Humanos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Camundongos , Linfonodos/patologia , Metabolismo dos LipídeosRESUMO
BACKGROUND AND AIMS: Inherited short telomeres are associated with a risk of liver disease, whereas longer telomeres predispose to cancer. The association between telomere length and risk of HCC and cholangiocarcinoma remains unknown. APPROACH AND RESULTS: We measured leukocyte telomere length using multiplex PCR in 63,272 individuals from the Danish general population. Telomere length and plasma ALT concentration were not associated (ß = 4 ×10 -6 , p -value = 0.06) in a linear regression model, without any signs of a nonlinear relationship. We tested the association between telomere length and risk of cirrhosis, HCC, and cholangiocarcinoma using Cox regression. During a median follow-up of 11 years, 241, 76, and 112 individuals developed cirrhosis, HCC, and cholangiocarcinoma, respectively. Telomere length and risk of cirrhosis were inversely and linearly associated ( p -value = 0.004, p for nonlinearity = 0.27). Individuals with telomeres in the shortest vs. longest quartile had a 2.25-fold higher risk of cirrhosis. Telomere length and risk of HCC were nonlinearly associated ( p -value = 0.009, p -value for nonlinearity = 0.01). This relationship resembled an inverted J-shape, with the highest risk observed in individuals with short telomeres. Individuals with telomeres in the shortest versus longest quartile had a 2.29-fold higher risk of HCC. Telomere length was inversely and linearly associated with the risk of cholangiocarcinoma. Individuals with telomeres in the shortest versus longest quartile had a 1.86-fold higher risk of cholangiocarcinoma. CONCLUSIONS: Shorter telomere length is associated with a higher risk of cirrhosis, HCC, and cholangiocarcinoma.
Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Fatores de Risco , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Leucócitos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Colangiocarcinoma/epidemiologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/epidemiologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Telômero/genéticaRESUMO
Cholangiolocarcinoma (CLC) is a primary liver carcinoma that resembles the canals of Hering and that has been reported to be associated with stem cell features. Due to its rarity, the nature of CLC remains unclear, and its pathological classification remains controversial. To clarify the positioning of CLC in primary liver cancers and identify characteristics that could distinguish CLC from other liver cancers, we performed integrated analyses using whole-exome sequencing (WES), immunohistochemistry, and a retrospective review of clinical information on eight CLC cases and two cases of recurrent CLC. WES demonstrated that CLC includes IDH1 and BAP1 mutations, which are characteristic of intrahepatic cholangiocarcinoma (iCCA). A mutational signature analysis showed a pattern similar to that of iCCA, which was different from that of hepatocellular carcinoma (HCC). CLC cells, including CK7, CK19, and EpCAM, were positive for cholangiocytic differentiation markers. However, the hepatocytic differentiation marker AFP and stem cell marker SALL4 were completely negative. The immunostaining patterns of CLC with CD56 and epithelial membrane antigen were similar to those of the noncancerous bile ductules. In contrast, mutational signature cluster analyses revealed that CLC formed a cluster associated with mismatch-repair deficiency (dMMR), which was separate from iCCA. Therefore, to evaluate MMR status, we performed immunostaining of four MMR proteins (PMS2, MSH6, MLH1, and MSH2) and detected dMMR in almost all CLCs. In conclusion, CLC had highly similar characteristics to iCCA but not to HCC. CLC can be categorized as a subtype of iCCA. In contrast, CLC has characteristics of dMMR tumors that are not found in iCCA, suggesting that it should be treated distinctly from iCCA. © 2024 The Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias dos Ductos Biliares , Neoplasias Encefálicas , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Colorretais , Neoplasias Hepáticas , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologiaRESUMO
This study demonstrates the potential of using biological nanoparticles to deliver RNA therapeutics targeting programmed death-ligand 1 (PD-L1) as a treatment strategy for cholangiocarcinoma (CCA). RNA therapeutics offer prospects for intracellular immune modulation, but effective clinical translation requires appropriate delivery strategies. Milk-derived nanovesicles were decorated with epithelial cellular adhesion molecule (EpCAM) aptamers and used to deliver PD-L1 small interfering RNA (siRNA) or Cas9 ribonucleoproteins directly to CCA cells. In vitro, nanovesicle treatments reduced PD-L1 expression in CCA cells while increasing degranulation, cytokine release, and tumor cell cytotoxicity when tumor cells were co-cultured with T cells or natural killer cells. Similarly, immunomodulation was observed in multicellular spheroids that mimicked the tumor microenvironment. Combining targeted therapeutic vesicles loaded with siRNA to PD-L1 with gemcitabine effectively reduced tumor burden in an immunocompetent mouse CCA model compared with controls. This proof-of-concept study demonstrates the potential of engineered targeted nanovesicle platforms for delivering therapeutic RNA cargoes to tumors, as well as their use in generating effective targeted immunomodulatory therapies for difficult-to-treat cancers such as CCA.
Assuntos
Antígeno B7-H1 , Colangiocarcinoma , Imunoterapia , RNA Interferente Pequeno , Colangiocarcinoma/terapia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/imunologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Imunoterapia/métodos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/administração & dosagem , Nanopartículas/química , Neoplasias dos Ductos Biliares/terapia , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/imunologia , Microambiente Tumoral/imunologia , Modelos Animais de Doenças , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , GencitabinaRESUMO
Cholangiocarcinoma (CCA) is widely noted for its high degree of malignancy, rapid progression, and limited therapeutic options. This study was carried out on transcriptome data of 417 CCA samples from different anatomical locations. The effects of lipid metabolism related genes and immune related genes as CCA classifiers were compared. Key genes were derived from MVI subtypes and better molecular subtypes. Pathways such as epithelial mesenchymal transition (EMT) and cell cycle were significantly activated in MVI-positive group. CCA patients were classified into three (four) subtypes based on lipid metabolism (immune) related genes, with better prognosis observed in lipid metabolism-C1, immune-C2, and immune-C4. IPTW analysis found that the prognosis of lipid metabolism-C1 was significantly better than that of lipid metabolism-C2 + C3 before and after correction. KRT16 was finally selected as the key gene. And knockdown of KRT16 inhibited proliferation, migration and invasion of CCA cells.
Assuntos
Neoplasias dos Ductos Biliares , Biomarcadores Tumorais , Colangiocarcinoma , Transição Epitelial-Mesenquimal , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Prognóstico , Masculino , Metabolismo dos Lipídeos , Movimento Celular , Feminino , Proliferação de Células , Transcriptoma , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão GênicaRESUMO
OBJECTIVE: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with limited therapeutic options. KRAS mutations are among the most abundant genetic alterations in iCCA associated with poor clinical outcome and treatment response. Recent findings indicate that Poly(ADP-ribose)polymerase1 (PARP-1) is implicated in KRAS-driven cancers, but its exact role in cholangiocarcinogenesis remains undefined. DESIGN: PARP-1 inhibition was performed in patient-derived and established iCCA cells using RNAi, CRISPR/Cas9 and pharmacological inhibition in KRAS-mutant, non-mutant cells. In addition, Parp-1 knockout mice were combined with iCCA induction by hydrodynamic tail vein injection to evaluate an impact on phenotypic and molecular features of Kras-driven and Kras-wildtype iCCA. Clinical implications were confirmed in authentic human iCCA. RESULTS: PARP-1 was significantly enhanced in KRAS-mutant human iCCA. PARP-1-based interventions preferentially impaired cell viability and tumourigenicity in human KRAS-mutant cell lines. Consistently, loss of Parp-1 provoked distinct phenotype in Kras/Tp53-induced versus Akt/Nicd-induced iCCA and abolished Kras-dependent cholangiocarcinogenesis. Transcriptome analyses confirmed preferential impairment of DNA damage response pathways and replicative stress response mediated by CHK1. Consistently, inhibition of CHK1 effectively reversed PARP-1 mediated effects. Finally, Parp-1 depletion induced molecular switch of KRAS-mutant iCCA recapitulating good prognostic human iCCA patients. CONCLUSION: Our findings identify the novel prognostic and therapeutic role of PARP-1 in iCCA patients with activation of oncogenic KRAS signalling.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Fenótipo , Poli(ADP-Ribose) Polimerase-1 , Proteínas Proto-Oncogênicas p21(ras) , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Camundongos Knockout , Linhagem Celular Tumoral , MutaçãoRESUMO
OBJECTIVE: The correlation between cholangiocarcinoma (CCA) progression and bile is rarely studied. Here, we aimed to identify differential metabolites in benign and malignant bile ducts and elucidate the generation, function and degradation of bile metabolites. DESIGN: Differential metabolites in the bile from CCA and benign biliary stenosis were identified by metabonomics. Biliary molecules able to induce mast cell (MC) degranulation were revealed by in vitro and in vivo experiments, including liquid chromatography-mass spectrometry (MS)/MS and bioluminescence resonance energy transfer assays. Histamine (HA) receptor expression in CCA was mapped using a single-cell mRNA sequence. HA receptor functions were elucidated by patient-derived xenografts (PDX) in humanised mice and orthotopic models in MC-deficient mice. Genes involved in HA-induced proliferation were screened by CRISPR/Cas9. RESULTS: Bile HA was elevated in CCA and indicated poorer prognoses. Cancer-associated fibroblasts (CAFs)-derived stem cell factor (SCF) recruited MCs, and bile N,N-dimethyl-1,4-phenylenediamine (DMPD) stimulated MCs to release HA through G protein-coupled receptor subtype 2 (MRGPRX2)-Gαq signalling. Bile-induced MCs released platelet-derived growth factor subunit B (PDGF-B) and angiopoietin 1/2 (ANGPT1/2), which enhanced CCA angiogenesis and lymphangiogenesis. Histamine receptor H1 (HRH1) and HRH2 were predominantly expressed in CCA cells and CAFs, respectively. HA promoted CCA cell proliferation by activating HRH1-Gαq signalling and hastened CAFs to secrete hepatocyte growth factor by stimulating HRH2-Gαs signalling. Solute carrier family 22 member 3 (SLC22A3) inhibited HA-induced CCA proliferation by importing bile HA into cells for degradation, and SLC22A3 deletion resulted in HA accumulation. CONCLUSION: Bile HA is released from MCs through DMPD stimulation and degraded via SLC22A3 import. Different HA receptors exhibit a distinct expression profile in CCA and produce different oncogenic effects. MCs promote CCA progression in a CCA-bile interplay pattern.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Mastócitos , Microambiente Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Mastócitos/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Animais , Humanos , Camundongos , Bile/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/metabolismo , Histamina/metabolismo , Proliferação de Células , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Degranulação CelularRESUMO
In contrast to other types of cancers, there is no available efficient pharmacological treatment to improve the outcomes of patients suffering from major primary liver cancers, i.e., hepatocellular carcinoma and cholangiocarcinoma. This dismal situation is partly due to the existence in these tumors of many different and synergistic mechanisms of resistance, accounting for the lack of response of these patients, not only to classical chemotherapy but also to more modern pharmacological agents based on the inhibition of tyrosine kinase receptors (TKIs) and the stimulation of the immune response against the tumor using immune checkpoint inhibitors (ICIs). This review summarizes the efforts to develop strategies to overcome this severe limitation, including searching for novel drugs derived from synthetic, semisynthetic, or natural products with vectorial properties against therapeutic targets to increase drug uptake or reduce drug export from cancer cells. Besides, immunotherapy is a promising line of research that is already starting to be implemented in clinical practice. Although less successful than in other cancers, the foreseen future for this strategy in treating liver cancers is considerable. Similarly, the pharmacological inhibition of epigenetic targets is highly promising. Many novel "epidrugs," able to act on "writer," "reader," and "eraser" epigenetic players, are currently being evaluated in preclinical and clinical studies. Finally, gene therapy is a broad field of research in the fight against liver cancer chemoresistance, based on the impressive advances recently achieved in gene manipulation. In sum, although the present is still dismal, there is reason for hope in the non-too-distant future.
Assuntos
Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Animais , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/imunologia , Colangiocarcinoma/patologia , Epigênese Genética/efeitos dos fármacosRESUMO
Intrahepatic cholangiocarcinoma is a rare disease associated with a poor prognosis, primarily due to early recurrence and metastasis. An important feature of this condition is microvascular invasion (MVI). However, current predictive models based on imaging have limited efficacy in this regard. This study employed a random forest model to construct a predictive model for MVI identification and uncover its biological basis. Single-cell transcriptome sequencing, whole exome sequencing, and proteome sequencing were performed. The area under the curve of the prediction model in the validation set was 0.93. Further analysis indicated that MVI-associated tumor cells exhibited functional changes related to epithelial-mesenchymal transition and lipid metabolism due to alterations in the nuclear factor-kappa B and mitogen-activated protein kinase signaling pathways. Tumor cells were also differentially enriched for the interleukin-17 signaling pathway. There was less infiltration of SLC30A1+ CD8+ T cells expressing cytotoxic genes in MVI-associated intrahepatic cholangiocarcinoma, whereas there was more infiltration of myeloid cells with attenuated expression of the major histocompatibility complex II pathway. Additionally, MVI-associated intercellular communication was closely related to the SPP1-CD44 and ANXA1-FPR1 pathways. These findings resulted in a brilliant predictive model and fresh insights into MVI.
Artificial intelligence improves microvascular invasion (MVI) recognition. Multi-omics studies reveal malignant features associated with MVI. Tumors with MVI have disrupted lipid metabolism. MVI indicates a suppressive immune microenvironment. MVI can serve as a foundation for immunotherapy selection.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Aprendizado de Máquina , Invasividade Neoplásica , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Humanos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Transição Epitelial-Mesenquimal , Microvasos/patologia , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transdução de Sinais , Sequenciamento do Exoma , Microambiente TumoralRESUMO
Tumour morphology (tumour burden score (TBS)) and liver function (albumin-to-alkaline phosphatase ratio (AAPR)) have been shown to correlate with outcomes in intrahepatic cholangiocarcinoma (ICC). This study aimed to evaluate the combined predictive effect of TBS and AAPR on survival outcomes in ICC patients. We conducted a retrospective analysis using a multicentre database of ICC patients who underwent curative surgery from 2011 to 2018. The Kaplan-Meier method was employed to examine the relationship between a new index (combining TBS and AAPR) and long-term outcomes. The predictive efficacy of this index was compared to other conventional indicators. A total of 560 patients were included in the study. Based on TBS and AAPR stratification, patients were classified into three groups. Kaplan-Meier curves demonstrated that 124 patients with low TBS and high AAPR had the best overall survival (OS) and recurrence-free survival (RFS), while 170 patients with high TBS and low AAPR had the worst outcomes (log-rank p < 0.001). Multivariate analyses identified the combined index as an independent predictor of OS and RFS. Furthermore, the index showed superior accuracy in predicting OS and RFS compared to other conventional indicators. Collectively, this study demonstrated that the combination of liver function and tumour morphology provides a synergistic effect in evaluating the prognosis of ICC patients. The novel index combining TBS and AAPR effectively stratified postoperative survival outcomes in ICC patients undergoing curative resection.
Assuntos
Fosfatase Alcalina , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Carga Tumoral , Humanos , Colangiocarcinoma/patologia , Colangiocarcinoma/cirurgia , Colangiocarcinoma/sangue , Colangiocarcinoma/mortalidade , Feminino , Masculino , Fosfatase Alcalina/sangue , Pessoa de Meia-Idade , Prognóstico , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/cirurgia , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/sangue , Idoso , Estudos Retrospectivos , Estimativa de Kaplan-Meier , Biomarcadores Tumorais/sangueRESUMO
Cholangiocarcinoma (CCA), an aggressive biliary tract cancer, carries a grim prognosis with a 5-year survival rate of 5%-15%. Standard chemotherapy regimens for CCA, gemcitabine plus cisplatin (GemCis) or its recently approved combination with durvalumab demonstrate dismal clinical activity, yielding a median survival of 12-14 months. Increased serotonin accumulation and secretion have been implicated in the oncogenic activity of CCA. This study investigated the therapeutic efficacy of telotristat ethyl (TE), a tryptophan hydroxylase inhibitor blocking serotonin biosynthesis, in combination with standard chemotherapies in preclinical CCA models. Nab-paclitaxel (NPT) significantly enhanced animal survival (60%), surpassing the marginal effects of TE (11%) or GemCis (9%) in peritoneal dissemination xenografts. Combining TE with GemCis (26%) or NPT (68%) further increased survival rates. In intrahepatic (iCCA), distal (dCCA) and perihilar (pCCA) subcutaneous xenografts, TE exhibited substantial tumour growth inhibition (41%-53%) compared to NPT (56%-69%) or GemCis (37%-58%). The combination of TE with chemotherapy demonstrated enhanced tumour growth inhibition in all three cell-derived xenografts (67%-90%). PDX studies revealed TE's marked inhibition of tumour growth (40%-73%) compared to GemCis (80%-86%) or NPT (57%-76%). Again, combining TE with chemotherapy exhibited an additive effect. Tumour cell proliferation reduction aligned with tumour growth inhibition in all CDX and PDX tumours. Furthermore, TE treatment consistently decreased serotonin levels in all tumours under all therapeutic conditions. This investigation decisively demonstrated the antitumor efficacy of TE across a spectrum of CCA preclinical models, suggesting that combination therapies involving TE, particularly for patients exhibiting serotonin overexpression, hold the promise of improving clinical CCA therapy.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Triptofano Hidroxilase , Ensaios Antitumorais Modelo de Xenoenxerto , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Animais , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/antagonistas & inibidores , Humanos , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Camundongos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Gencitabina , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sinergismo Farmacológico , Modelos Animais de Doenças , Serotonina/metabolismo , FemininoRESUMO
Secreted proteins are overexpressed in cholangiocarcinoma (CCA) and actively involved in promoting metastatic spread. Many of these proteins possess one or more sites of glycosylation and their various glycoforms have potential utility as prognostic or diagnostic biomarkers. To evaluate the effects of secretome glycosylation on patient outcome, we elucidated the glycosylation patterns of proteins secreted by parental and metastatic CCA cells using liquid chromatography-mass spectrometry. Our analysis showed that the secretome of CCA cells was dominated by fucosylated and fucosialylated glycoforms. Based on the glycan and protein profiles, we evaluated the combined prognostic significance of glycosyltransferases and secretory proteins. Significantly, genes encoding fucosyltransferases and sialyltransferases showed favorable prognostic effects when combined with secretory protein-coding gene expression, particularly thrombospondin-1. Combining these measures may provide improved risk assessment for CCA and be used to indicate stages of disease progression.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Glicoproteínas , Humanos , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Glicosilação , Prognóstico , Polissacarídeos/metabolismo , Progressão da Doença , Glicoproteínas/metabolismo , Linhagem Celular TumoralRESUMO
Intrahepatic cholangiocarcinoma (ICC) is a lethal cancer with poor survival especially when it spreads. The histopathology of its rare intraductal papillary neoplasm of the bile duct type (IPNB) characteristically shows cancer cells originating within the confined bile duct space. These cells eventually invade and infiltrate the nearby liver tissues, making it a good model to study the mechanism of local invasion, which is the earliest step of metastasis. To discover potential suppressor genes of local invasion in ICC, we analyzed the somatic mutation profiles and performed clonal evolution analyses of the 11 pairs of macrodissected locally invasive IPNB tissues (LI-IPNB) and IPNB tissues without local invasion from the same patients. We identified a protein-truncating variant in an E3 ubiquitin ligase, RNF213 (c.6967C>T; p.Gln2323X; chr17: 78,319,102 [hg19], exon 29), as the most common protein-truncating variant event in LI-IPNB samples (4/11 patients). Knockdown of RNF213 in HuCCT1 and YSCCC cells showed increased migration and invasion, and reduced vasculogenic mimicry but maintained normal proliferation. Transcriptomic analysis of the RNF213-knockdown vs control cells was then performed in the HuCCT1, YSCCC, and KKU-100 cells. Gene ontology enrichment analysis of the common differentially expressed genes revealed significantly altered cytokine and oxidoreductase-oxidizing metal ion activities, as confirmed by Western blotting. Gene Set Enrichment Analysis identified the most enriched pathways being oxidative phosphorylation, fatty acid metabolism, reactive oxygen species, adipogenesis, and angiogenesis. In sum, loss-of-function mutation of RNF213 is a common genetic alteration in LI-IPNB tissues. RNF213 knockdown leads to increased migration and invasion of ICC cells, potentially through malfunctions of the pathways related to inflammation and energy metabolisms.