Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.383
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(3): 605-619.e22, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031743

RESUMO

Exploration of novel environments ensures survival and evolutionary fitness. It is expressed through exploratory bouts and arrests that change dynamically based on experience. Neural circuits mediating exploratory behavior should therefore integrate experience and use it to select the proper behavioral output. Using a spatial exploration assay, we uncovered an experience-dependent increase in momentary arrests in locations where animals arrested previously. Calcium imaging in freely exploring mice revealed a genetically and projection-defined neuronal ensemble in the basolateral amygdala that is active during self-paced behavioral arrests. This ensemble was recruited in an experience-dependent manner, and closed-loop optogenetic manipulation of these neurons revealed that they are sufficient and necessary to drive experience-dependent arrests during exploration. Projection-specific imaging and optogenetic experiments revealed that these arrests are effected by basolateral amygdala neurons projecting to the central amygdala, uncovering an amygdala circuit that mediates momentary arrests in familiar places but not avoidance or anxiety/fear-like behaviors.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Núcleo Central da Amígdala/fisiologia , Comportamento Exploratório/fisiologia , Rede Nervosa/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/diagnóstico por imagem , Feminino , Locomoção , Aprendizado de Máquina , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Imagem Óptica
2.
Nat Rev Neurosci ; 25(3): 195-208, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263217

RESUMO

For many years, neuroscientists have investigated the behavioural, computational and neurobiological mechanisms that support value-based decisions, revealing how humans and animals make choices to obtain rewards. However, many decisions are influenced by factors other than the value of physical rewards or second-order reinforcers (such as money). For instance, animals (including humans) frequently explore novel objects that have no intrinsic value solely because they are novel and they exhibit the desire to gain information to reduce their uncertainties about the future, even if this information cannot lead to reward or assist them in accomplishing upcoming tasks. In this Review, I discuss how circuits in the primate brain responsible for detecting, predicting and assessing novelty and uncertainty regulate behaviour and give rise to these behavioural components of curiosity. I also briefly discuss how curiosity-related behaviours arise during postnatal development and point out some important reasons for the persistence of curiosity across generations.


Assuntos
Comportamento Exploratório , Comportamento de Busca de Informação , Animais , Humanos , Comportamento Exploratório/fisiologia , Encéfalo , Incerteza , Recompensa , Primatas
3.
Nature ; 592(7853): 267-271, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658711

RESUMO

The behaviour of an animal is determined by metabolic, emotional and social factors1,2. Depending on its state, an animal will focus on avoiding threats, foraging for food or on social interactions, and will display the appropriate behavioural repertoire3. Moreover, survival and reproduction depend on the ability of an animal to adapt to changes in the environment by prioritizing the appropriate state4. Although these states are thought to be associated with particular functional configurations of large-brain systems5,6, the underlying principles are poorly understood. Here we use deep-brain calcium imaging of mice engaged in spatial or social exploration to investigate how these processes are represented at the neuronal population level in the basolateral amygdala, which is a region of the brain that integrates emotional, social and metabolic information. We demonstrate that the basolateral amygdala encodes engagement in exploratory behaviour by means of two large, functionally anticorrelated ensembles that exhibit slow dynamics. We found that spatial and social exploration were encoded by orthogonal pairs of ensembles with stable and hierarchical allocation of neurons according to the saliency of the stimulus. These findings reveal that the basolateral amygdala acts as a low-dimensional, but context-dependent, hierarchical classifier that encodes state-dependent behavioural repertoires. This computational function may have a fundamental role in the regulation of internal states in health and disease.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Comportamento Exploratório/fisiologia , Animais , Cálcio/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social , Navegação Espacial/fisiologia
4.
Nature ; 599(7886): 645-649, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732888

RESUMO

The ability to suppress actions that lead to a negative outcome and explore alternative actions is necessary for optimal decision making. Although the basal ganglia have been implicated in these processes1-5, the circuit mechanisms underlying action selection and exploration remain unclear. Here, using a simple lateralized licking task, we show that indirect striatal projection neurons (iSPN) in the basal ganglia contribute to these processes through modulation of the superior colliculus (SC). Optogenetic activation of iSPNs suppresses contraversive licking and promotes ipsiversive licking. Activity in lateral superior colliculus (lSC), a region downstream of the basal ganglia, is necessary for task performance and predicts lick direction. Furthermore, iSPN activation suppresses ipsilateral lSC, but surprisingly excites contralateral lSC, explaining the emergence of ipsiversive licking. Optogenetic inactivation reveals inter-collicular competition whereby each hemisphere of the superior colliculus inhibits the other, thus allowing the indirect pathway to disinhibit the contralateral lSC and trigger licking. Finally, inactivating iSPNs impairs suppression of devalued but previously rewarded licking and reduces exploratory licking. Our results reveal that iSPNs engage the competitive interaction between lSC hemispheres to trigger a motor action and suggest a general circuit mechanism for exploration during action selection.


Assuntos
Gânglios da Base/citologia , Gânglios da Base/fisiologia , Corpo Estriado/fisiologia , Comportamento Exploratório/fisiologia , Inibição Neural/fisiologia , Vias Neurais/fisiologia , Colículos Superiores/fisiologia , Animais , Comportamento Animal/fisiologia , Corpo Estriado/citologia , Tomada de Decisões , Feminino , Masculino , Camundongos , Neurônios/fisiologia , Optogenética , Recompensa , Colículos Superiores/citologia
5.
Nature ; 590(7844): 115-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33299180

RESUMO

Behavioural experiences activate the FOS transcription factor in sparse populations of neurons that are critical for encoding and recalling specific events1-3. However, there is limited understanding of the mechanisms by which experience drives circuit reorganization to establish a network of Fos-activated cells. It is also not known whether FOS is required in this process beyond serving as a marker of recent neural activity and, if so, which of its many gene targets underlie circuit reorganization. Here we demonstrate that when mice engage in spatial exploration of novel environments, perisomatic inhibition of Fos-activated hippocampal CA1 pyramidal neurons by parvalbumin-expressing interneurons is enhanced, whereas perisomatic inhibition by cholecystokinin-expressing interneurons is weakened. This bidirectional modulation of inhibition is abolished when the function of the FOS transcription factor complex is disrupted. Single-cell RNA-sequencing, ribosome-associated mRNA profiling and chromatin analyses, combined with electrophysiology, reveal that FOS activates the transcription of Scg2, a gene that encodes multiple distinct neuropeptides, to coordinate these changes in inhibition. As parvalbumin- and cholecystokinin-expressing interneurons mediate distinct features of pyramidal cell activity4-6, the SCG2-dependent reorganization of inhibitory synaptic input might be predicted to affect network function in vivo. Consistent with this prediction, hippocampal gamma rhythms and pyramidal cell coupling to theta phase are significantly altered in the absence of Scg2. These findings reveal an instructive role for FOS and SCG2 in establishing a network of Fos-activated neurons via the rewiring of local inhibition to form a selectively modulated state. The opposing plasticity mechanisms acting on distinct inhibitory pathways may support the consolidation of memories over time.


Assuntos
Rede Nervosa/citologia , Rede Nervosa/fisiologia , Inibição Neural , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Colecistocinina/metabolismo , Comportamento Exploratório/fisiologia , Feminino , Ritmo Gama , Interneurônios/metabolismo , Masculino , Consolidação da Memória , Camundongos , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Secretogranina II/genética , Secretogranina II/metabolismo , Navegação Espacial/fisiologia , Ritmo Teta
6.
J Neurosci ; 44(21)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38575343

RESUMO

Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.


Assuntos
Comportamento Exploratório , Hormônios Hipotalâmicos , Locus Cerúleo , Melaninas , Neurônios , Hormônios Hipofisários , Animais , Locus Cerúleo/metabolismo , Locus Cerúleo/citologia , Locus Cerúleo/fisiologia , Melaninas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipofisários/metabolismo , Masculino , Feminino , Camundongos , Neurônios/fisiologia , Neurônios/metabolismo , Comportamento Exploratório/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Somatostatina/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia
7.
PLoS Comput Biol ; 20(4): e1011516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626219

RESUMO

When facing an unfamiliar environment, animals need to explore to gain new knowledge about which actions provide reward, but also put the newly acquired knowledge to use as quickly as possible. Optimal reinforcement learning strategies should therefore assess the uncertainties of these action-reward associations and utilise them to inform decision making. We propose a novel model whereby direct and indirect striatal pathways act together to estimate both the mean and variance of reward distributions, and mesolimbic dopaminergic neurons provide transient novelty signals, facilitating effective uncertainty-driven exploration. We utilised electrophysiological recording data to verify our model of the basal ganglia, and we fitted exploration strategies derived from the neural model to data from behavioural experiments. We also compared the performance of directed exploration strategies inspired by our basal ganglia model with other exploration algorithms including classic variants of upper confidence bound (UCB) strategy in simulation. The exploration strategies inspired by the basal ganglia model can achieve overall superior performance in simulation, and we found qualitatively similar results in fitting model to behavioural data compared with the fitting of more idealised normative models with less implementation level detail. Overall, our results suggest that transient dopamine levels in the basal ganglia that encode novelty could contribute to an uncertainty representation which efficiently drives exploration in reinforcement learning.


Assuntos
Gânglios da Base , Dopamina , Modelos Neurológicos , Recompensa , Dopamina/metabolismo , Dopamina/fisiologia , Incerteza , Animais , Gânglios da Base/fisiologia , Comportamento Exploratório/fisiologia , Reforço Psicológico , Neurônios Dopaminérgicos/fisiologia , Biologia Computacional , Simulação por Computador , Masculino , Algoritmos , Tomada de Decisões/fisiologia , Comportamento Animal/fisiologia , Ratos
8.
J Cogn Neurosci ; 36(6): 1156-1171, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437186

RESUMO

Should we keep doing what we know works for us, or should we risk trying something new as it could work even better? The exploration-exploitation dilemma is ubiquitous in daily life decision-making, and balancing between the two is crucial for adaptive behavior. Yet, we only have started to unravel the neurocognitive mechanisms that help us to find this balance in practice. Analyzing BOLD signals of healthy young adults during virtual foraging, we could show that a behavioral tendency for prolonged exploitation was associated with weakened signaling during exploration in central node points of the frontoparietal attention network, plus the frontopolar cortex. These results provide an important link between behavioral heuristics that we use to balance between exploitation and exploration and the brain function that supports shifts from one tendency to the other. Importantly, they stress that interindividual differences in behavioral strategies are reflected in differences in brain activity during exploration and should thus be more in the focus of basic research that aims at delineating general laws governing visual attention.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Atenção/fisiologia , Comportamento Exploratório/fisiologia , Mapeamento Encefálico , Lobo Frontal/fisiologia , Oxigênio/sangue , Tomada de Decisões/fisiologia
9.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656542

RESUMO

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Assuntos
Comportamento Exploratório , Hipocampo , Plasticidade Neuronal , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Peptídeo Intestinal Vasoativo , Animais , Masculino , Ratos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Comportamento Exploratório/fisiologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Ratos Wistar , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34234017

RESUMO

Heterogeneous selection is often proposed as a key mechanism maintaining repeatable behavioral variation ("animal personality") in wild populations. Previous studies largely focused on temporal variation in selection within single populations. The relative importance of spatial versus temporal variation remains unexplored, despite these processes having distinct effects on local adaptation. Using data from >3,500 great tits (Parus major) and 35 nest box plots situated within five West-European populations monitored over 4 to 18 y, we show that selection on exploration behavior varies primarily spatially, across populations, and study plots within populations. Exploration was, simultaneously, selectively neutral in the average population and year. These findings imply that spatial variation in selection may represent a primary mechanism maintaining animal personalities, likely promoting the evolution of local adaptation, phenotype-dependent dispersal, and nonrandom settlement. Selection also varied within populations among years, which may counteract local adaptation. Our study underlines the importance of combining multiple spatiotemporal scales in the study of behavioral adaptation.


Assuntos
Migração Animal/fisiologia , Comportamento Exploratório/fisiologia , Passeriformes/fisiologia , Animais , Europa (Continente) , Dinâmica não Linear
11.
Behav Brain Sci ; 47: e119, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770845

RESUMO

In our target article, we proposed that curiosity and creativity are both manifestations of the same novelty-seeking process. We received 29 commentaries from diverse disciplines that add insights to our initial proposal. These commentaries ultimately expanded and supplemented our model. Here we draw attention to five central practical and theoretical issues that were raised by the commentators: (1) The complex construct of novelty and associated concepts; (2) the underlying subsystems and possible mechanisms; (3) the different pathways and subtypes of curiosity and creativity; (4) creativity and curiosity "in the wild"; (5) the possible link(s) between creativity and curiosity.


Assuntos
Criatividade , Comportamento Exploratório , Humanos , Comportamento Exploratório/fisiologia
12.
Behav Brain Sci ; 47: e99, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770848

RESUMO

We extend Ivancovsky et al.'s finding on the association between curiosity and creativity by proposing a sequential causal model assuming that (a) curiosity determines the motivation to seek information and that (b) creativity constitutes a capacity to act on that motivation. This framework assumes that both high levels of curiosity and creativity are necessary for information-seeking behavior.


Assuntos
Criatividade , Comportamento Exploratório , Modelos Psicológicos , Motivação , Humanos , Comportamento Exploratório/fisiologia , Comportamento de Busca de Informação
13.
Behav Brain Sci ; 47: e101, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770852

RESUMO

Novelty is neither necessary nor sufficient to link curiosity and creativity as stated in the target article. We point out the article's logical shortcomings, outline preconditions that may link curiosity and creativity, and suggest that curiosity and creativity may be expressions of a common epistemic drive.


Assuntos
Criatividade , Comportamento Exploratório , Comportamento Exploratório/fisiologia , Humanos , Conhecimento
14.
Behav Brain Sci ; 47: e93, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770853

RESUMO

We propose expanding the authors' shared novelty-seeking basis for creativity and curiosity by emphasizing an underlying computational principle: Minimizing prediction errors (mismatch between predictions and incoming data). Curiosity is tied to the anticipation of minimizing prediction errors through future, novel information, whereas creative AHA moments are connected to the actual minimization of prediction errors through current, novel information.


Assuntos
Criatividade , Comportamento Exploratório , Humanos , Comportamento Exploratório/fisiologia
15.
Behav Brain Sci ; 47: e97, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770849

RESUMO

The Novelty-Seeking Model can explain incubation's effect on creativity by assuming an adaptive decision threshold. During an impasse, the threshold for novelty becomes too high and biased to previous neural activity, hindering progress. Incubation "resets" this threshold through attentional decoupling, allowing for spontaneous ideas to emerge from subsequent mind wandering or other activities that attract attention, facilitating progress.


Assuntos
Atenção , Criatividade , Comportamento Exploratório , Humanos , Comportamento Exploratório/fisiologia , Atenção/fisiologia
16.
Behav Brain Sci ; 47: e106, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770857

RESUMO

The Novelty Seeking Model (NSM) places "novelty" at center stage in characterizing the mechanisms behind curiosity. We argue that the NSM's conception of novelty is too broad, obscuring distinct constructs. More critically, the NSM underemphasizes triggers of curiosity that better unify these constructs and that have received stronger empirical support: those that signal the potential for useful learning.


Assuntos
Comportamento Exploratório , Comportamento Exploratório/fisiologia , Humanos , Modelos Psicológicos , Animais , Aprendizagem/fisiologia
17.
Behav Brain Sci ; 47: e116, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770858

RESUMO

Ivancovsky et al.'s Novelty-Seeking Model suggests several mechanisms that might underlie developmental change in creativity and curiosity. We discuss how these implications both do and do not align with extant developmental findings, suggest two further elements that can provide a more complete developmental account, and discuss current methodological barriers to formulating an integrated developmental model of curiosity and creativity.


Assuntos
Criatividade , Comportamento Exploratório , Humanos , Comportamento Exploratório/fisiologia , Modelos Psicológicos , Desenvolvimento Humano/fisiologia
18.
Behav Brain Sci ; 47: e107, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770854

RESUMO

The novelty-seeking model (NSM) does not offer a compelling unifying framework for understanding creativity and curiosity. It fails to explain important manifestations and features of curiosity. Moreover, the arguments offered to support a curiosity-creativity link - a shared association with a common core process and various superficial associations between them - are neither convincing nor do they yield useful predictions.


Assuntos
Criatividade , Comportamento Exploratório , Comportamento Exploratório/fisiologia , Humanos , Modelos Psicológicos
19.
Behav Brain Sci ; 47: e117, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770855

RESUMO

We extend the work of Ivancovsky et al. by proposing that in addition to novelty seeking, mood regulation goals - including enhancing positive mood and repairing negative mood - motivate both creativity and curiosity. Additionally, we discuss how the effects of mood on state of mind are context-dependent (not fixed), and how such flexibility may impact creativity and curiosity.


Assuntos
Afeto , Criatividade , Comportamento Exploratório , Humanos , Afeto/fisiologia , Comportamento Exploratório/fisiologia
20.
Behav Brain Sci ; 47: e98, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770860

RESUMO

The Novelty-Seeking Model does not address the iterative nature of creativity, and how it restructures one's worldview, resulting in overemphasis on the role of curiosity, and underemphasis on inspiration and perseverance. It overemphasizes the product; creators often seek merely to express themselves or figure out or come to terms with something. We point to inconsistencies regarding divergent and convergent thought.


Assuntos
Criatividade , Comportamento Exploratório , Humanos , Comportamento Exploratório/fisiologia , Modelos Psicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA