Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.470
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 89: 821-851, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32228045

RESUMO

Natural rubber (NR), principally comprising cis-1,4-polyisoprene, is an industrially important natural hydrocarbon polymer because of its unique physical properties, which render it suitable for manufacturing items such as tires. Presently, industrial NR production depends solely on latex obtained from the Pará rubber tree, Hevea brasiliensis. In latex, NR is enclosed in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The similarity of the basic carbon skeleton structure between NR and dolichols and polyprenols, which are found in most organisms, suggests that the NR biosynthetic pathway is related to the polyisoprenoid biosynthetic pathway and that rubber transferase, which is the key enzyme in NR biosynthesis, belongs to the cis-prenyltransferase family. Here, we review recent progress in the elucidation of molecular mechanisms underlying NR biosynthesis through the identification of the enzymes that are responsible for the formation of the NR backbone structure.


Assuntos
Hemiterpenos/biossíntese , Hevea/metabolismo , Látex/biossíntese , Proteínas de Plantas/química , Borracha/química , Transferases/química , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hemiterpenos/química , Hemiterpenos/metabolismo , Hevea/química , Hevea/genética , Látex/química , Látex/metabolismo , Modelos Moleculares , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Borracha/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/química , Terpenos/metabolismo , Transferases/genética , Transferases/metabolismo
2.
Annu Rev Biochem ; 82: 497-530, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23746261

RESUMO

Isoprenoids are a class of natural products with more than 55,000 members. All isoprenoids are constructed from two precursors, isopentenyl diphosphate and its isomer dimethylallyl diphosphate. Two of the most important discoveries in isoprenoid biosynthetic studies in recent years are the elucidation of a second isoprenoid biosynthetic pathway [the methylerythritol phosphate (MEP) pathway] and a modified mevalonic acid (MVA) pathway. In this review, we summarize mechanistic insights on the MEP pathway enzymes. Because many isoprenoids have important biological activities, the need to produce them in sufficient quantities for downstream research efforts or commercial application is apparent. Recent advances in both MVA and MEP pathway-based synthetic biology are also illustrated by reviewing the landmark work of artemisinic acid and taxadien-5α-ol production through microbial fermentations.


Assuntos
Vias Biossintéticas/fisiologia , Eritritol/metabolismo , Hemiterpenos/biossíntese , Terpenos/metabolismo , Catálise , Humanos , Compostos Organofosforados
3.
N Engl J Med ; 390(24): 2284-2294, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38904277

RESUMO

BACKGROUND: NF2-related schwannomatosis (NF2-SWN, formerly called neurofibromatosis type 2) is a tumor predisposition syndrome that is manifested by multiple vestibular schwannomas, nonvestibular schwannomas, meningiomas, and ependymomas. The condition is relentlessly progressive with no approved therapies. On the basis of preclinical activity of brigatinib (an inhibitor of multiple tyrosine kinases) in NF2-driven nonvestibular schwannoma and meningioma, data were needed on the use of brigatinib in patients with multiple types of progressive NF2-SWN tumors. METHODS: In this phase 2 platform trial with a basket design, patients who were 12 years of age or older with NF2-SWN and progressive tumors were treated with oral brigatinib at a dose of 180 mg daily. A central review committee evaluated one target tumor and up to five nontarget tumors in each patient. The primary outcome was radiographic response in target tumors. Key secondary outcomes were safety, response rate in all tumors, hearing response, and patient-reported outcomes. RESULTS: A total of 40 patients (median age, 26 years) with progressive target tumors (10 vestibular schwannomas, 8 nonvestibular schwannomas, 20 meningiomas, and 2 ependymomas) received treatment with brigatinib. After a median follow-up of 10.4 months, the percentage of tumors with a radiographic response was 10% (95% confidence interval [CI], 3 to 24) for target tumors and 23% (95% CI, 16 to 30) for all tumors; meningiomas and nonvestibular schwannomas had the greatest benefit. Annualized growth rates decreased for all tumor types during treatment. Hearing improvement occurred in 35% (95% CI, 20 to 53) of eligible ears. Exploratory analyses suggested a decrease in self-reported pain severity during treatment (-0.013 units per month; 95% CI, -0.002 to -0.029) on a scale from 0 (no pain) to 3 (severe pain). No grade 4 or 5 treatment-related adverse events were reported. CONCLUSIONS: Brigatinib treatment resulted in radiographic responses in multiple tumor types and clinical benefit in a heavily pretreated cohort of patients with NF2-SWN. (Funded by the Children's Tumor Foundation and others; INTUITT-NF2 ClinicalTrials.gov number, NCT04374305.).


Assuntos
Antineoplásicos , Neurofibromatose 2 , Compostos Organofosforados , Pirimidinas , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Neurilemoma/tratamento farmacológico , Neurilemoma/diagnóstico por imagem , Neurofibromatose 2/diagnóstico por imagem , Neurofibromatose 2/tratamento farmacológico , Neurofibromatose 2/terapia , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Pirimidinas/administração & dosagem , Pirimidinas/efeitos adversos , Administração Oral , Progressão da Doença , Imageamento por Ressonância Magnética , Carga Tumoral/efeitos dos fármacos , Transtornos da Audição/tratamento farmacológico , Transtornos da Audição/etiologia , Qualidade de Vida
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701414

RESUMO

Gliomas are the most common type of malignant brain tumors, with glioblastoma multiforme (GBM) having a median survival of 15 months due to drug resistance and relapse. The treatment of gliomas relies on surgery, radiotherapy and chemotherapy. Only 12 anti-brain tumor chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma subtype-specific metabolic models were reconstructed to simulate metabolite exchanges, in silico knockouts and the prediction of drug and drug combinations for all three subtypes. The simulations were confronted with literature, high-throughput screenings (HTSs), xenograft and clinical trial data to validate the workflow and further prioritize the drug candidates. The three subtype models accurately displayed different degrees of dependencies toward glutamine and glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these drug candidates have been previously tested in HTSs. Half of the tested drug candidates reduce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/adapalene were predicted specifically for GBM and low-grade glioma, respectively. Most drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailability and mode-of-action to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic vulnerabilities, repurposable drugs and combinations for the glioma subtypes.


Assuntos
Glioma , Humanos , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Animais , Modelos Biológicos , Linhagem Celular Tumoral , Compostos Organofosforados/uso terapêutico , Compostos Organofosforados/farmacologia
5.
Nature ; 583(7817): 548-553, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32480398

RESUMO

Tertiary stereogenic centres containing one fluorine atom are valuable for medicinal chemistry because they mimic common tertiary stereogenic centres containing one hydrogen atom, but they possess distinct charge distribution, lipophilicity, conformation and metabolic stability1-3. Although tertiary stereogenic centres containing one hydrogen atom are often set by enantioselective desymmetrization reactions at one of the two carbon-hydrogen (C-H) bonds of a methylene group, tertiary stereocentres containing fluorine have not yet been constructed by the analogous desymmetrization reaction at one of the two carbon-fluorine (C-F) bonds of a difluoromethylene group3. Fluorine atoms are similar in size to hydrogen atoms but have distinct electronic properties, causing C-F bonds to be exceptionally strong and geminal C-F bonds to strengthen one another4. Thus, exhaustive defluorination typically dominates over the selective replacement of a single C-F bond, hindering the development of the enantioselective substitution of one fluorine atom to form a stereogenic centre5,6. Here we report the catalytic, enantioselective activation of a single C-F bond in an allylic difluoromethylene group to provide a broad range of products containing a monofluorinated tertiary stereogenic centre. By combining a tailored chiral iridium phosphoramidite catalyst, which controls regioselectivity, chemoselectivity and enantioselectivity, with a fluorophilic activator, which assists the oxidative addition of the C-F bond, these reactions occur in high yield and selectivity. The design principles proposed in this work extend to palladium-catalysed benzylic substitution, demonstrating the generality of the approach.


Assuntos
Carbono/química , Flúor/química , Alcenos/química , Catálise , Cátions , Halogenação , Hidrogênio/química , Irídio/química , Compostos Organofosforados/química , Oxirredução , Paládio/química
6.
Mol Cell ; 72(1): 178-186.e5, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30270109

RESUMO

Substantial improvements in enzyme activity demand multiple mutations at spatially proximal positions in the active site. Such mutations, however, often exhibit unpredictable epistatic (non-additive) effects on activity. Here we describe FuncLib, an automated method for designing multipoint mutations at enzyme active sites using phylogenetic analysis and Rosetta design calculations. We applied FuncLib to two unrelated enzymes, a phosphotriesterase and an acetyl-CoA synthetase. All designs were active, and most showed activity profiles that significantly differed from the wild-type and from one another. Several dozen designs with only 3-6 active-site mutations exhibited 10- to 4,000-fold higher efficiencies with a range of alternative substrates, including hydrolysis of the toxic organophosphate nerve agents soman and cyclosarin and synthesis of butyryl-CoA. FuncLib is implemented as a web server (http://FuncLib.weizmann.ac.il); it circumvents iterative, high-throughput experimental screens and opens the way to designing highly efficient and diverse catalytic repertoires.


Assuntos
Domínio Catalítico , Coenzima A Ligases/química , Hidrolases de Triester Fosfórico/química , Engenharia de Proteínas , Acil Coenzima A/biossíntese , Acil Coenzima A/química , Catálise , Coenzima A Ligases/genética , Cinética , Mutação , Compostos Organofosforados/química , Hidrolases de Triester Fosfórico/genética , Filogenia , Software , Especificidade por Substrato
7.
Nucleic Acids Res ; 52(18): 10754-10774, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39231537

RESUMO

In this study, we report the synthesis of 2'-formamidonucleoside phosphoramidite derivatives and their incorporation into siRNA strands to reduce seed-based off-target effects of small interfering RNAs (siRNAs). Formamido derivatives of all four nucleosides (A, G, C and U) were synthesized in 5-11 steps from commercial compounds. Introducing these derivatives into double-stranded RNA slightly reduced its thermodynamic stability, but X-ray crystallography and CD spectrum analysis confirmed that the RNA maintained its natural A-form structure. Although the introduction of the 2'-formamidonucleoside derivative at the 2nd position in the guide strand of the siRNA led to a slight decrease in the on-target RNAi activity, the siRNAs with different sequences incorporating 2'-formamidonucleoside with four kinds of nucleobases into any position other than 2nd position in the seed region revealed a significant suppression of off-target activity while maintaining on-target RNAi activity. This indicates that 2'-formamidonucleosides represent a promising approach for mitigating off-target effects in siRNA therapeutics.


Assuntos
Compostos Organofosforados , Interferência de RNA , RNA Interferente Pequeno , RNA Interferente Pequeno/química , RNA Interferente Pequeno/síntese química , Compostos Organofosforados/química , Humanos , Nucleosídeos/química , Nucleosídeos/síntese química , Nucleosídeos/farmacologia , RNA de Cadeia Dupla/química , Cristalografia por Raios X
8.
Proc Natl Acad Sci U S A ; 120(21): e2220315120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186847

RESUMO

The unsatisfactory catalytic activity of nanozymes owing to their inefficient electron transfer (ET) is the major challenge in biomimetic catalysis-related biomedical applications. Inspired by the photoelectron transfers in natural photoenzymes, we herein report a photonanozyme of single-atom Ru anchored on metal-organic frameworks (UiO-67-Ru) for achieving photoenhanced peroxidase (POD)-like activity. We demonstrate that the atomically dispersed Ru sites can realize high photoelectric conversion efficiency, superior POD-like activity (7.0-fold photoactivity enhancement relative to that of UiO-67), and good catalytic specificity. Both in situ experiments and theoretical calculations reveal that photoelectrons follow the cofactor-mediated ET process of enzymes to promote the production of active intermediates and the release of products, demonstrating more favorable thermodynamics and kinetics in H2O2 reduction. Taking advantage of the unique interaction of the Zr-O-P bond, we establish a UiO-67-Ru-based immunoassay platform for the photoenhanced detection of organophosphorus pesticides.


Assuntos
Peróxido de Hidrogênio , Praguicidas , Biomimética , Compostos Organofosforados , Oxirredução , Catálise
9.
Nat Methods ; 19(1): 71-80, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969985

RESUMO

Understanding the relationship between protein structural dynamics and function is crucial for both basic research and biotechnology. However, methods for studying the fast dynamics of structural changes are limited. Here, we introduce fluorescent nanoantennas as a spectroscopic technique to sense and report protein conformational changes through noncovalent dye-protein interactions. Using experiments and molecular simulations, we detect and characterize five distinct conformational states of intestinal alkaline phosphatase, including the transient enzyme-substrate complex. We also explored the universality of the nanoantenna strategy with another model protein, Protein G and its interaction with antibodies, and demonstrated a rapid screening strategy to identify efficient nanoantennas. These versatile nanoantennas can be used with diverse dyes to monitor small and large conformational changes, suggesting that they could be used to characterize diverse protein movements or in high-throughput screening applications.


Assuntos
Corantes Fluorescentes/química , Proteínas/química , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Compostos de Anilina/química , Biotina/química , DNA de Cadeia Simples/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nanoestruturas/química , Compostos Organofosforados/química , Conformação Proteica , Espectrofotometria Ultravioleta
10.
RNA ; 29(7): 1077-1083, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37059467

RESUMO

Preadenylated single-stranded DNA ligation adaptors are essential reagents in many next generation RNA sequencing library preparation protocols. These oligonucleotides can be adenylated enzymatically or chemically. Enzymatic adenylation reactions have high yield but are not amendable to scale up. In chemical adenylation, adenosine 5'-phosphorimidazolide (ImpA) reacts with 5' phosphorylated DNA. It is easily scalable but gives poor yields, requiring labor-intensive cleanup steps. Here, we describe an improved chemical adenylation method using 95% formamide as the solvent, which results in the adenylation of oligonucleotides with >90% yield. In standard conditions, with water as the solvent, hydrolysis of the starting material to adenosine monophosphate limits the yields. To our surprise, we find that rather than increasing adenylation yields by decreasing the rate of ImpA hydrolysis, formamide does so by increasing the reaction rate between ImpA and 5'-phosphorylated DNA by ∼10-fold. The method described here enables straightforward preparation of chemically adenylated adapters with higher than 90% yield, simplifying reagent preparation for NGS.


Assuntos
DNA , Compostos Organofosforados , RNA , Oligonucleotídeos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
11.
Plant Cell ; 34(10): 3543-3556, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35877068

RESUMO

The prevailing view of intracellular RNA trafficking in eukaryotic cells is that RNAs transcribed in the nucleus either stay in the nucleus or cross the nuclear envelope, entering the cytoplasm for function. However, emerging evidence illustrates that numerous functional RNAs move in the reverse direction, from the cytoplasm to the nucleus. The mechanism underlying RNA nuclear import has not been well elucidated. Viroids are single-stranded circular noncoding RNAs that infect plants. Using Nicotiana benthamiana, tomato (Solanum lycopersicum), and nuclear-replicating viroids as a model, we showed that cellular IMPORTIN ALPHA-4 (IMPa-4) is likely involved in viroid RNA nuclear import, empirically supporting the involvement of Importin-based cellular pathway in RNA nuclear import. We also confirmed the involvement of a cellular protein (viroid RNA-binding protein 1 [VIRP1]) that binds both IMPa-4 and viroids. Moreover, a conserved C-loop in nuclear-replicating viroids serves as a key signal for nuclear import. Disrupting C-loop impairs VIRP1 binding, viroid nuclear accumulation, and infectivity. Further, C-loop exists in a subviral satellite noncoding RNA that relies on VIRP1 for nuclear import. These results advance our understanding of subviral RNA infection and the regulation of RNA nuclear import.


Assuntos
Solanum lycopersicum , Viroides , Transporte Ativo do Núcleo Celular , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Compostos Organofosforados , Doenças das Plantas/genética , RNA , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Viroides/genética , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
12.
Nature ; 575(7782): 380-384, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666695

RESUMO

Mitochondria are essential regulators of cellular energy and metabolism, and have a crucial role in sustaining the growth and survival of cancer cells. A central function of mitochondria is the synthesis of ATP by oxidative phosphorylation, known as mitochondrial bioenergetics. Mitochondria maintain oxidative phosphorylation by creating a membrane potential gradient that is generated by the electron transport chain to drive the synthesis of ATP1. Mitochondria are essential for tumour initiation and maintaining tumour cell growth in cell culture and xenografts2,3. However, our understanding of oxidative mitochondrial metabolism in cancer is limited because most studies have been performed in vitro in cell culture models. This highlights a need for in vivo studies to better understand how oxidative metabolism supports tumour growth. Here we measure mitochondrial membrane potential in non-small-cell lung cancer in vivo using a voltage-sensitive, positron emission tomography (PET) radiotracer known as 4-[18F]fluorobenzyl-triphenylphosphonium (18F-BnTP)4. By using PET imaging of 18F-BnTP, we profile mitochondrial membrane potential in autochthonous mouse models of lung cancer, and find distinct functional mitochondrial heterogeneity within subtypes of lung tumours. The use of 18F-BnTP PET imaging enabled us to functionally profile mitochondrial membrane potential in live tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Neoplasias Pulmonares/fisiopatologia , Potencial da Membrana Mitocondrial , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Camundongos Transgênicos , Compostos Organofosforados , Tomografia por Emissão de Pósitrons
13.
Mol Cell ; 66(5): 577-578, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575654

RESUMO

In this issue of Molecular Cell, Wei et al. (2017) report how a DNA translocase uses SUMO as a cue to save Top2 from ubiquitin-mediated degradation and to minimize DNA breaks, thus providing insights into the SUMO and ubiquitin interplay in genome maintenance.


Assuntos
Proteína SUMO-1/genética , Sumoilação , Humanos , Compostos Organofosforados
14.
Drug Resist Updat ; 74: 101081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521003

RESUMO

Precision oncology has revolutionized the treatment of ALK-positive lung cancer with targeted therapies. However, an unmet clinical need still to address is the treatment of refractory tumors that contain drug-induced resistant mutations in the driver oncogene or exhibit resistance through the activation of diverse mechanisms. In this study, we established mouse tumor-derived cell models representing the two most prevalent EML4-ALK variants in human lung adenocarcinomas and characterized their proteomic profiles to gain insights into the underlying resistance mechanisms. We showed that Eml4-Alk variant 3 confers a worse response to ALK inhibitors, suggesting its role in promoting resistance to targeted therapy. In addition, proteomic analysis of brigatinib-treated cells revealed the upregulation of SRC kinase, a protein frequently activated in cancer. Co-targeting of ALK and SRC showed remarkable inhibitory effects in both ALK-driven murine and ALK-patient-derived lung tumor cells. This combination induced cell death through a multifaceted mechanism characterized by profound perturbation of the (phospho)proteomic landscape and a synergistic suppressive effect on the mTOR pathway. Our study demonstrates that the simultaneous inhibition of ALK and SRC can potentially overcome resistance mechanisms and enhance clinical outcomes in ALK-positive lung cancer patients. ONE SENTENCE SUMMARY: Co-targeting ALK and SRC enhances ALK inhibitor response in lung cancer by affecting the proteomic profile, offering hope for overcoming resistance and improving clinical outcomes.


Assuntos
Quinase do Linfoma Anaplásico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Compostos Organofosforados , Inibidores de Proteínas Quinases , Proteoma , Quinases da Família src , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Humanos , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Camundongos , Proteoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Proteômica/métodos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 119(32): e2203604119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917352

RESUMO

Anthropogenic organophosphorus compounds (AOPCs), such as phosphotriesters, are used extensively as plasticizers, flame retardants, nerve agents, and pesticides. To date, only a handful of soil bacteria bearing a phosphotriesterase (PTE), the key enzyme in the AOPC degradation pathway, have been identified. Therefore, the extent to which bacteria are capable of utilizing AOPCs as a phosphorus source, and how widespread this adaptation may be, remains unclear. Marine environments with phosphorus limitation and increasing levels of pollution by AOPCs may drive the emergence of PTE activity. Here, we report the utilization of diverse AOPCs by four model marine bacteria and 17 bacterial isolates from the Mediterranean Sea and the Red Sea. To unravel the details of AOPC utilization, two PTEs from marine bacteria were isolated and characterized, with one of the enzymes belonging to a protein family that, to our knowledge, has never before been associated with PTE activity. When expressed in Escherichia coli with a phosphodiesterase, a PTE isolated from a marine bacterium enabled growth on a pesticide analog as the sole phosphorus source. Utilization of AOPCs may provide bacteria a source of phosphorus in depleted environments and offers a prospect for the bioremediation of a pervasive class of anthropogenic pollutants.


Assuntos
Organismos Aquáticos , Bactérias , Poluentes Ambientais , Compostos Organofosforados , Hidrolases de Triester Fosfórico , Organismos Aquáticos/enzimologia , Bactérias/enzimologia , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oceano Índico , Mar Mediterrâneo , Compostos Organofosforados/metabolismo , Hidrolases de Triester Fosfórico/genética , Hidrolases de Triester Fosfórico/metabolismo , Fósforo/metabolismo , Água do Mar/microbiologia
16.
Biochemistry ; 63(18): 2335-2343, 2024 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-39231435

RESUMO

Prenylated-FMN (prFMN) is the cofactor used by the UbiD-like family of decarboxylases that catalyzes the decarboxylation of various aromatic and unsaturated carboxylic acids. prFMN is synthesized from reduced FMN and dimethylallyl phosphate (DMAP) by a specialized prenyl transferase, UbiX. UbiX catalyzes the sequential formation of two bonds, the first between N5 of the flavin and C1 of DMAP, and the second between C6 of the flavin and C3 of DMAP. We have examined the reaction of UbiX with both FMN and riboflavin. Although UbiX converts FMN to prFMN, we show that significant amounts of the N5-dimethylallyl-FMN intermediate are released from the enzyme during catalysis. With riboflavin as the substrate, UbiX catalyzes only a partial reaction, resulting in only N5-dimethylallyl-riboflavin being formed. Purification of the N5-dimethylallyl-FMN adduct allowed its structure to be verified by 1H NMR spectroscopy and its reactivity to be investigated. Surprisingly, whereas reduced prFMN oxidizes in seconds to form the stable prFMN semiquinone radical when exposed to air, N5-dimethylallyl-FMN oxidizes much more slowly over several hours; in this case, oxidation is accompanied by spontaneous hydrolysis to regenerate FMN. These studies highlight the important contribution that cyclization of the prenyl-derived ring of prFMN makes to the cofactor's biological activity.


Assuntos
Dimetilaliltranstransferase , Mononucleotídeo de Flavina , Prenilação , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/química , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Riboflavina/biossíntese , Riboflavina/análogos & derivados , Riboflavina/metabolismo , Riboflavina/química , Compostos Organofosforados/metabolismo , Compostos Organofosforados/química , Catálise , Compostos Alílicos/metabolismo , Compostos Alílicos/química , Escherichia coli/metabolismo , Escherichia coli/genética , Carboxiliases , Hemiterpenos
17.
J Physiol ; 602(9): 1923-1937, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38568933

RESUMO

A key mechanism promoting vascular endothelial dysfunction is mitochondrial-derived reactive oxygen species (mtROS). Aerobic exercise preserves endothelial function in preclinical models by lowering mtROS. However, the effects of mtROS on endothelial function in exercising and non-exercising adults is limited. In a double-blind, randomized, placebo-controlled crossover study design 23 (10 M/13 F, age 62.1 ± 11.5 years) middle-aged and older (MA/O, ≥45 years) adults were divided into two groups: exercisers (EX, n = 11) and non-exercisers (NEX, n = 12). All participants had endothelial function (brachial artery flow-mediated dilatation, FMDBA) measured before and ∼1 h after mitoquinone mesylate (MitoQ) (single dose, 80 mg) and placebo supplementation. A two-way repeated measures ANOVA was used to determine the effects of MitoQ and placebo on FMDBA. Pearson correlations assessed the association between the change in FMDBA with MitoQ and baseline FMDBA and cardiorespiratory fitness (CRF). Compared with placebo, MitoQ increased FMDBA in NEX by + 2.1% (MitoQ pre: 4.9 ± 0.4 vs. post: 7.0 ± 0.4 %, P = 0.004, interaction) but not in EX (P = 0.695, interaction). MitoQ also increased endothelial function in adults with a FMDBA <6% (P < 0.0001, interaction) but not >6% (P = 0.855, interaction). Baseline FMDBA and CRF were correlated (r = 0.44, P = 0.037), whereas the change in FMDBA with MitoQ was inversely correlated with CRF (r = -0.66, P < 0.001) and baseline FMDBA (r = -0.73, P < 0.0001). The relationship between the change in FMDBA and baseline FMDBA remained correlated after adjusting for CRF (r = -0.55, P = 0.007). These data demonstrate that MitoQ acutely improves FMDBA in NEX and EX adults who have a baseline FMDBA <6%. KEY POINTS: A key age-related change contributing to increased cardiovascular disease (CVD) risk is vascular endothelial dysfunction due to increased mitochondrial-derived reactive oxygen species (mtROS). Aerobic exercise preserves endothelial function via suppression of mtROS in preclinical models but the evidence in humans is limited. In the present study, a single dose of the mitochondria-targeted antioxidant, mitoquinone mesylate (MitoQ), increases endothelial function in non-exercisers with lower cardiorespiratory fitness (CRF) but not in exercisers with higher CRF. The acute effects of MitoQ on endothelial function in middle-aged and older adults (MA/O) are influenced by baseline endothelial function independent of CRF. These data provide initial evidence that the acute MitoQ-enhancing effects on endothelial function in MA/O adults are influenced, in part, via CRF and baseline endothelial function.


Assuntos
Artéria Braquial , Aptidão Cardiorrespiratória , Estudos Cross-Over , Endotélio Vascular , Compostos Organofosforados , Ubiquinona , Ubiquinona/análogos & derivados , Humanos , Masculino , Ubiquinona/farmacologia , Pessoa de Meia-Idade , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Feminino , Idoso , Compostos Organofosforados/farmacologia , Método Duplo-Cego , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/fisiologia , Vasodilatação/efeitos dos fármacos , Exercício Físico/fisiologia
18.
J Cell Physiol ; 239(8): e31323, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801103

RESUMO

Senescence in bone marrow mesenchymal stem cells (BMSCs), triggered by excessive oxidative stress, plays a crucial role in the onset of postmenopausal osteoporosis. Recent studies underscore the importance of mitochondrial rehabilitation and quality control as key determinants in the modulation of oxidative stress and cellular senescence. MitoTEMPO, a mitochondria-targeted antioxidant, has been shown to mitigate the heightened levels of reactive oxygen species (ROS). In our research, we observed that BMSCs from ovariectomized (OVX) rats displayed premature senescence, which was attributed to combined mitochondrial and lysosomal dysfunction, a condition that worsens with extended estrogen deprivation. Treatment with MitoTEMPO effectively reversed these effects, reinstating lysosomal functionality and suppressing the mitochondrial unfolded protein response (UPRmt). Subsequent in vivo experiments corroborated these observations, revealing that MitoTEMPO administration in OVX rats curtailed trabecular bone loss and reduced the expression of p53, HSP60, and CLPP in the trabecular bone region of the proximal tibia. Overall, our findings suggest that MitoTEMPO holds promise as a therapeutic agent to counteract senescence in OVX-BMSCs, offering a potential strategy for treating postmenopausal osteoporosis.


Assuntos
Antioxidantes , Senescência Celular , Células-Tronco Mesenquimais , Mitocôndrias , Ovariectomia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Feminino , Senescência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Compostos Organotiofosforados/farmacologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Proteína Supressora de Tumor p53/metabolismo , Humanos , Compostos Organofosforados , Piperidinas
19.
J Am Chem Soc ; 146(6): 3926-3942, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291562

RESUMO

(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase, or IspH (formerly known as LytB), catalyzes the terminal step of the bacterial methylerythritol phosphate (MEP) pathway for isoprene synthesis. This step converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into one of two possible isomeric products, either isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). This reaction involves the removal of the C4 hydroxyl group of HMBPP and addition of two electrons. IspH contains a [4Fe-4S] cluster in its active site, and multiple cluster-based paramagnetic species of uncertain redox and ligation states can be detected after incubation with reductant, addition of a ligand, or during catalysis. To characterize the clusters in these species, 57Fe-labeled samples of IspH were prepared and studied by electron paramagnetic resonance (EPR), 57Fe electron-nuclear double resonance (ENDOR), and Mössbauer spectroscopies. Notably, this ENDOR study provides a rarely reported, complete determination of the 57Fe hyperfine tensors for all four Fe ions in a [4Fe-4S] cluster. The resting state of the enzyme (Ox) has a diamagnetic [4Fe-4S]2+ cluster. Reduction generates [4Fe-4S]+ (Red) with both S = 1/2 and S = 3/2 spin ground states. When the reduced enzyme is incubated with substrate, a transient paramagnetic reaction intermediate is detected (Int) which is thought to contain a cluster-bound substrate-derived species. The EPR properties of Int are indicative of a 3+ iron-sulfur cluster oxidation state, and the Mössbauer spectra presented here confirm this. Incubation of reduced enzyme with the product IPP induced yet another paramagnetic [4Fe-4S]+ species (Red+P) with S = 1/2. However, the g-tensor of this state is commonly associated with a 3+ oxidation state, while Mössbauer parameters show features typical for 2+ clusters. Implications of these complicated results are discussed.


Assuntos
Hemiterpenos , Proteínas Ferro-Enxofre , Compostos Organofosforados , Domínio Catalítico , Ligantes , Oxirredução , Espectroscopia de Ressonância de Spin Eletrônica , Catálise , Proteínas Ferro-Enxofre/química
20.
Lab Invest ; 104(1): 100284, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949357

RESUMO

Claudin 18.2 (CLDN18.2), the dominant isoform of CLDN18 in gastric tissues, is a highly specific tight junction protein of the gastric mucosa with variably retained expressions in gastric and gastroesophageal junction cancers. Additionally, CLDN18.2-targeted treatment with zolbetuximab, in combination with chemotherapy, has recently been assessed in 2 phase-III studies of patients with HER2-negative, locally advanced, unresectable, or metastatic gastric or gastroesophageal junction adenocarcinoma. These trials used the investigational VENTANA CLDN18 (43-14A) RxDx immunohistochemistry (IHC) assay on the Ventana BenchMark platform to identify patients eligible for CLDN18.2-targeted treatment. We report the findings of a global ring study evaluating the analytical comparability of concordance of the results of 3 CLDN18 antibodies (Ventana, LSBio, and Novus) stained on 3 IHC-staining platforms (Ventana, Dako, and Leica). A tissue microarray (TMA), comprising 15 gastric cancer cases, was stained by 27 laboratories across 11 countries. Each laboratory stained the TMAs using at least 2 of the 3 evaluated CLDN18 antibodies. Stained TMAs were assessed and scored using an agreed IHC-scoring algorithm, and the results were collated for statistical analysis. The data confirmed a high level of concordance for the VENTANA CLDN18 (43-14A; Ventana platform only) and LSBio antibodies on both the Dako and Leica platforms, with accuracy, precision, sensitivity, and specificity rates all reaching a minimum acceptable ≥85% threshold and good-to-excellent levels of concordance as measured by Cohen's kappa coefficient. The Novus antibody showed the highest level of variability against the reference central laboratory results for the same antibody/platform combinations. It also failed to meet the threshold for accuracy and sensitivity when used on either the Dako or Leica platform. These results demonstrated the reliability of IHC testing for CLDN18 expression in gastric tumor samples when using commercially available platforms with an appropriate methodology and primary antibody selection.


Assuntos
Compostos Organofosforados , Polímeros , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Reprodutibilidade dos Testes , Junção Esofagogástrica/patologia , Claudinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA