Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.267
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(15): 3143-3145, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37478818

RESUMO

Assisted reproduction is on the rise globally. Cell morphology is commonly used for embryo selection, but the cell biology of early preimplantation development remains poorly understood. In this issue of Cell, Domingo-Muelas et al. reveal novel features of human embryos with critical implications for preimplantation genetic testing.


Assuntos
Corantes , Desenvolvimento Embrionário , Humanos , Blastocisto , Embrião de Mamíferos , Testes Genéticos
2.
Cell ; 179(1): 46-50, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31519312

RESUMO

The iconic phrase "a shot heard 'round the world" signifies an exceptional event. Seurat's masterpiece La Grande Jatte, painted with many thousand dots of color, came as a shot to the art world-a shot fired by the imagination of the artist and inspired by the color theories of a scientist.


Assuntos
Distinções e Prêmios , Percepção de Cores , Cor , Criatividade , Ilusões Ópticas , Pinturas/história , Química , Corantes/química , França , História do Século XIX , História do Século XX , Humanos , Pintura
3.
Cell ; 172(5): 1108-1121.e15, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474910

RESUMO

The extracellular space (ECS) of the brain has an extremely complex spatial organization, which has defied conventional light microscopy. Consequently, despite a marked interest in the physiological roles of brain ECS, its structure and dynamics remain largely inaccessible for experimenters. We combined 3D-STED microscopy and fluorescent labeling of the extracellular fluid to develop super-resolution shadow imaging (SUSHI) of brain ECS in living organotypic brain slices. SUSHI enables quantitative analysis of ECS structure and reveals dynamics on multiple scales in response to a variety of physiological stimuli. Because SUSHI produces sharp negative images of all cellular structures, it also enables unbiased imaging of unlabeled brain cells with respect to their anatomical context. Moreover, the extracellular labeling strategy greatly alleviates problems of photobleaching and phototoxicity associated with traditional imaging approaches. As a straightforward variant of STED microscopy, SUSHI provides unprecedented access to the structure and dynamics of live brain ECS and neuropil.


Assuntos
Encéfalo/diagnóstico por imagem , Espaço Extracelular/metabolismo , Imageamento Tridimensional , Animais , Movimento Celular , Corantes/metabolismo , Fenômenos Eletrofisiológicos , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Glutamatos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Neurópilo , Osmose , Sinapses/metabolismo
4.
Nat Methods ; 21(2): 342-352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191931

RESUMO

Simultaneous spatial mapping of the activity of multiple enzymes in a living system can elucidate their functions in health and disease. However, methods based on monitoring fluorescent substrates are limited. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons, for the peak shift between substrate and product. To image these reporters in real time, we developed a laser-scanning mid-infrared photothermal imaging system capable of imaging the enzymatic substrates and products at a resolution of 300 nm. We show that when combined, these tools can map the activity distribution of different enzymes and measure their relative catalytic efficiency in living systems such as cancer cells, Caenorhabditis elegans, and brain tissues, and can be used to directly visualize caspase-phosphatase interactions during apoptosis. Our method is generally applicable to a broad category of enzymes and will enable new analyses of enzymes in their native context.


Assuntos
Diagnóstico por Imagem , Nitrilas , Corantes
5.
Nat Methods ; 21(1): 132-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129618

RESUMO

Multiphoton microscopy can resolve fluorescent structures and dynamics deep in scattering tissue and has transformed neural imaging, but applying this technique in vivo can be limited by the mechanical and optical constraints of conventional objectives. Short working distance objectives can collide with compact surgical windows or other instrumentation and preclude imaging. Here we present an ultra-long working distance (20 mm) air objective called the Cousa objective. It is optimized for performance across multiphoton imaging wavelengths, offers a more than 4 mm2 field of view with submicrometer lateral resolution and is compatible with commonly used multiphoton imaging systems. A novel mechanical design, wider than typical microscope objectives, enabled this combination of specifications. We share the full optical prescription, and report performance including in vivo two-photon and three-photon imaging in an array of species and preparations, including nonhuman primates. The Cousa objective can enable a range of experiments in neuroscience and beyond.


Assuntos
Corantes , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos
6.
Nat Methods ; 21(2): 353-360, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191933

RESUMO

The structural plasticity of synapses is crucial for regulating brain functions. However, currently available methods for studying synapse organization based on split fluorescent proteins (FPs) have been limited in assessing synaptic dynamics in vivo due to the irreversible binding of split FPs. Here, we develop 'SynapShot', a method for visualizing the structural dynamics of intact synapses by combining dimerization-dependent FPs (ddFPs) with engineered synaptic adhesion molecules. SynapShot allows real-time monitoring of reversible and bidirectional changes of synaptic contacts under physiological stimulation. The application of green and red ddFPs in SynapShot enables simultaneous visualization of two distinct populations of synapses. Notably, the red-shifted SynapShot is highly compatible with blue light-based optogenetic techniques, allowing for visualization of synaptic dynamics while precisely controlling specific signaling pathways. Furthermore, we demonstrate that SynapShot enables real-time monitoring of structural changes in synaptic contacts in the mouse brain during both primitive and higher-order behaviors.


Assuntos
Neurônios , Sinapses , Animais , Camundongos , Sinapses/fisiologia , Neurônios/fisiologia , Transdução de Sinais , Células Cultivadas , Corantes , Plasticidade Neuronal
7.
Proc Natl Acad Sci U S A ; 121(3): e2309251121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194458

RESUMO

Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak-Keller-Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.


Assuntos
Fatores Quimiotáticos , Quimiotaxia , Transporte Biológico , Ácido Aspártico , Corantes
8.
Nat Methods ; 20(4): 617-622, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823329

RESUMO

In deep-tissue multiphoton microscopy, diffusion and scattering of fluorescent photons, rather than ballistic emanation from the focal point, have been a confounding factor. Here we report on a 2.17-g miniature three-photon microscope (m3PM) with a configuration that maximizes fluorescence collection when imaging in highly scattering regimes. We demonstrate its capability by imaging calcium activity throughout the entire cortex and dorsal hippocampal CA1, up to 1.2 mm depth, at a safe laser power. It also enables the detection of sensorimotor behavior-correlated activities of layer 6 neurons in the posterior parietal cortex in freely moving mice during single-pellet reaching tasks. Thus, m3PM-empowered imaging allows the study of neural mechanisms in deep cortex and subcortical structures, like the dorsal hippocampus and dorsal striatum, in freely behaving animals.


Assuntos
Hipocampo , Microscopia de Fluorescência por Excitação Multifotônica , Camundongos , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Córtex Cerebral , Corantes , Fótons
9.
Proc Natl Acad Sci U S A ; 120(34): e2306950120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590412

RESUMO

Hybrid voltage indicators (HVIs) are chemogenetic sensors that combines the superior photophysical properties of organic dyes and the genetic targetability of protein sensors to report transient membrane voltage changes. They exhibit boosted sensitivity in excitable cells such as neurons and cardiomyocytes. However, the voltage signals recorded during long-term imaging are severely diminished or distorted due to phototoxicity and photobleaching issues. To capture stable electrophysiological activities over a long time, we employ cyanine dyes conjugated with a cyclooctatetraene (COT) molecule as the fluorescence reporter of HVI. The resulting orange-emitting HVI-COT-Cy3 enables high-fidelity voltage imaging for up to 30 min in cultured primary neurons with a sensitivity of ~ -30% ΔF/F0 per action potential (AP). It also maximally preserves the signal of individual APs in cardiomyocytes. The far-red-emitting HVI-COT-Cy5 allows two-color voltage/calcium imaging with GCaMP6s in neurons and cardiomyocytes for 15 min. We leverage the HVI-COT series with reduced phototoxicity and photobleaching to evaluate the impact of drug candidates on the electrophysiology of excitable cells.


Assuntos
Dermatite Fototóxica , Miócitos Cardíacos , Humanos , Neurônios , Diagnóstico por Imagem , Corantes
10.
Proc Natl Acad Sci U S A ; 120(38): e2212949120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695908

RESUMO

Fluorescent reporters of cardiac electrophysiology provide valuable information on heart cell and tissue function. However, motion artifacts caused by cardiac muscle contraction interfere with accurate measurement of fluorescence signals. Although drugs such as blebbistatin can be applied to stop cardiac tissue from contracting by uncoupling calcium-contraction, their usage prevents the study of excitation-contraction coupling and, as we show, impacts cellular structure. We therefore developed a robust method to remove motion computationally from images of contracting cardiac muscle and to map fluorescent reporters of cardiac electrophysiological activity onto images of undeformed tissue. When validated on cardiomyocytes derived from human induced pluripotent stem cells (iPSCs), in both monolayers and engineered tissues, the method enabled efficient and robust reduction of motion artifact. As with pharmacologic approaches using blebbistatin for motion removal, our algorithm improved the accuracy of optical mapping, as demonstrated by spatial maps of calcium transient decay. However, unlike pharmacologic motion removal, our computational approach allowed direct analysis of calcium-contraction coupling. Results revealed calcium-contraction coupling to be more uniform across cells within engineered tissues than across cells in monolayer culture. The algorithm shows promise as a robust and accurate tool for optical mapping studies of excitation-contraction coupling in heart tissue.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Artefatos , Cálcio , Software , Cálcio da Dieta , Corantes
11.
Nat Methods ; 19(12): 1563-1567, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396787

RESUMO

Fluorescent in-situ hybridization (FISH)-based methods extract spatially resolved genetic and epigenetic information from biological samples by detecting fluorescent spots in microscopy images, an often challenging task. We present Radial Symmetry-FISH (RS-FISH), an accurate, fast, and user-friendly software for spot detection in two- and three-dimensional images. RS-FISH offers interactive parameter tuning and readily scales to large datasets and image volumes of cleared or expanded samples using distributed processing on workstations, clusters, or the cloud. RS-FISH maintains high detection accuracy and low localization error across a wide range of signal-to-noise ratios, a key feature for single-molecule FISH, spatial transcriptomics, or spatial genomics applications.


Assuntos
Corantes , Epigenômica , Hibridização in Situ Fluorescente , Genômica , Microscopia
12.
Nat Chem Biol ; 19(3): 346-355, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36316571

RESUMO

Coenzyme A (CoA) is one of the central cofactors of metabolism, yet a method for measuring its concentration in living cells is missing. Here we introduce the first biosensor for measuring CoA levels in different organelles of mammalian cells. The semisynthetic biosensor is generated through the specific labeling of an engineered GFP-HaloTag fusion protein with a fluorescent ligand. Its readout is based on CoA-dependent changes in Förster resonance energy transfer efficiency between GFP and the fluorescent ligand. Using this biosensor, we probe the role of numerous proteins involved in CoA biosynthesis and transport in mammalian cells. On the basis of these studies, we propose a cellular map of CoA biosynthesis that suggests how pools of cytosolic and mitochondrial CoA are maintained.


Assuntos
Técnicas Biossensoriais , Proteínas , Animais , Ligantes , Corantes , Homeostase , Técnicas Biossensoriais/métodos , Coenzima A , Mamíferos
13.
PLoS Comput Biol ; 20(2): e1011774, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422112

RESUMO

Dendritic spines are the seat of most excitatory synapses in the brain, and a cellular structure considered central to learning, memory, and activity-dependent plasticity. The quantification of dendritic spines from light microscopy data is usually performed by humans in a painstaking and error-prone process. We found that human-to-human variability is substantial (inter-rater reliability 82.2±6.4%), raising concerns about the reproducibility of experiments and the validity of using human-annotated 'ground truth' as an evaluation method for computational approaches of spine identification. To address this, we present DeepD3, an open deep learning-based framework to robustly quantify dendritic spines in microscopy data in a fully automated fashion. DeepD3's neural networks have been trained on data from different sources and experimental conditions, annotated and segmented by multiple experts and they offer precise quantification of dendrites and dendritic spines. Importantly, these networks were validated in a number of datasets on varying acquisition modalities, species, anatomical locations and fluorescent indicators. The entire DeepD3 open framework, including the fully segmented training data, a benchmark that multiple experts have annotated, and the DeepD3 model zoo is fully available, addressing the lack of openly available datasets of dendritic spines while offering a ready-to-use, flexible, transparent, and reproducible spine quantification method.


Assuntos
Benchmarking , Espinhas Dendríticas , Humanos , Reprodutibilidade dos Testes , Encéfalo , Corantes
14.
Methods ; 223: 35-44, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228195

RESUMO

A highly efficient sensor has been successfully developed using quinoline-based BODIPY compounds (8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazaindacene (C1) and 7-hydroxy-8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazindacene (C2) to detect Hg2+ ions. The sensor C1 exhibits remarkable selectivity in detecting Hg2+ with a limit of detection 3.06 × 10-8 mol/L. The developed chemical sensors have shown stability, cost-effectiveness, ease of preparation, and remarkable selectivity towards Hg2+ ions compared to other commonly occurring metal ions. The total recovery of the sensor C1 can be achieved by using a 0.1 mol/L solution of KI. The proposed sensor C1 has been applied to determine Hg2+ in tap and distilled water, yielding excellent results. In addition, the binding mode of C1-Hg2+ and C2-Hg2+ complexes was a 1:1 ratio confirmed by mass spectra, Job's plot, and DFT study. Moreover, the sensor C1 successfully applied for the biological studies results in negligible cytotoxicity, which demonstrates it can be used to determine Hg2+ in HT22 cells.


Assuntos
Compostos de Boro , Mercúrio , Quinolinas , Corantes , Íons
15.
Methods ; 223: 95-105, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301751

RESUMO

DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described. The fluorescent human RPA described here will enable high-resolution structure-function analysis of RPA-ssDNA interactions.


Assuntos
DNA , Proteína de Replicação A , Humanos , Proteína de Replicação A/genética , DNA/genética , DNA de Cadeia Simples/genética , Aminoácidos , Bioensaio , Corantes
16.
Semin Immunol ; 57: 101506, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34711490

RESUMO

The earliest reported observations on neutrophils date from 1879 to 1880, when Paul Ehrlich utilized a set of coal tar dyes to interrogate differential staining properties of the granules from white blood cells. While acidic and basic dyes identified eosinophils and basophils respectively, neutrophils were revealed by neutral dyes. Unknowingly, his work staining blood films set the stage for one of the most exciting features of immune cells discovered in the last decade, myeloid heterogeneity. Since then, advances in live imaging and high-resolution sequencing technologies have revolutionized how we analyze and envision those cells that Ehrich fixed in blood smears. Neutrophil plasticity and heterotypic interactions with immune and non-immune compartments are increasingly appreciated as an important part of their biology. In this review, we highlight early and recent work that will help the reader to appreciate our current view of the neutrophil life cycle -from maturation to elimination-, and how neutrophils behave and dynamically modulate tissue immunity, both in steady-state and in disease.


Assuntos
Eosinófilos , Neutrófilos , Corantes , Humanos
17.
Nano Lett ; 24(11): 3432-3440, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391135

RESUMO

Uricase-catalyzed uric acid (UA) degradation has been applied for hyperuricemia therapy, but this medication is limited by H2O2 accumulation, which can cause oxidative stress of cells, resulting in many other health issues. Herein, we report a robust cubic hollow nanocage (HNC) system based on polyvinylpyrrolidone-coated PdPt3 and PdIr3 to serve as highly efficient self-cascade uricase/peroxidase mimics to achieve the desired dual catalysis for both UA degradation and H2O2 elimination. These HNCs have hollow cubic shape with average wall thickness of 1.5 nm, providing desired synergy to enhance catalyst's activity and stability. Density functional theory calculations suggest the PdIr3 HNC surface tend to promote OH*/O* desorption for better peroxidase-like catalysis, while the PdPt3 HNC surface accelerates the UA oxidation by facilitating O2-to-H2O2 conversion. The dual catalysis power demonstrated by these HNCs in cell studies suggests their great potential as a new type of nanozyme for treating hyperuricemia.


Assuntos
Hiperuricemia , Peroxidase , Humanos , Peroxidase/uso terapêutico , Urato Oxidase/uso terapêutico , Povidona/uso terapêutico , Hiperuricemia/tratamento farmacológico , Peróxido de Hidrogênio , Ácido Úrico/metabolismo , Oxirredutases , Corantes
18.
Pflugers Arch ; 476(1): 39-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37798555

RESUMO

Low-affinity fluorescent indicators for Ca2+ or Na+ allow measuring the dynamics of intracellular concentration of these ions with little perturbation from physiological conditions because they are weak buffers. When using synthetic indicators, which are small molecules with fast kinetics, it is also possible to extract spatial and temporal information on the sources of ion transients, their localization, and their disposition. This review examines these important aspects from the biophysical point of view, and how they have been recently exploited in neurophysiological studies. We first analyze the environment where Ca2+ and Na+ indicators are inserted, highlighting the interpretation of the two different signals. Then, we address the information that can be obtained by analyzing the rising phase and the falling phase of the Ca2+ and Na+ transients evoked by different stimuli, focusing on the kinetics of ionic currents and on the spatial interpretation of these measurements, especially on events in axons and dendritic spines. Finally, we suggest how Ca2+ or Na+ imaging using low-affinity synthetic fluorescent indicators can be exploited in future fundamental or applied research.


Assuntos
Cálcio , Sódio , Neurônios , Corantes
19.
J Cell Biochem ; 125(2): e30499, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38009594

RESUMO

The Goldview dyeing of the natural multiplasmid system of Lactobacillus plantarum PC518 was affected by temperature. The article want to identify the specific molecules that cause temperature sensitivity, then experiment on the universality of temperature sensitivity, and finally preliminarily analyze the influencing factors. At 5°C and 25°C, single pDNA, multiplasmid system, and linear DNA samples were electrophoretic on agarose gel prestained by Goldview 1, 2, 3, and acridine orange (AO), respectively. Eighteen vectors of Escherichia coli and two vectors shortened by cloning were mixed into multiplasmid systems with different member numbers, and then electrophoresis with AO staining was performed within the range of 5°C-45°C, with a linearized multiplasmid system as the control. The lane profiles (peaks) were captured with Image Lab 5.1 software. After electrophoresis, the nine-plasmid-2 system was dyed with AO solutions of different ionic strengths to detect the effect of ionic strength on temperature sensitivity. It was measured that the UV-visible absorption spectra of the nine-plasmid-2 system dissolved in AO solutions with different ionic strengths and pH. Further, a response surface model was constructed using Design-Expert.V8.0.6 software. The electrophoresis result showed that the multiplasmid system from L. plantarum PC518 stained by AO staining showed a weak band at 5°C and five bands at 25°C, which was similar to the result of staining with Goldview 1, 2, and 3. The synthetic nine-plasmid-1 system and nine-plasmid-2 system displayed different band numbers on the electrophoresis gel in the electrophoresis temperature range of 5°C-45°C, namely 3, 4, 6, 4, and 2 bands, as well as 2, 6, 7, 8, and 5 bands. Using the 1× Tris-acetate-EDTA (TAE)-AO solution, the poststaining results of the nine-plasmid-2 system in the temperature range of 5°C-45°C were 4, 6, 9, 9, and 7 bands, respectively. Further, using 5×, 10×, or 25× TAE buffer, the AO poststaining results at 5°C were 4, 2, and 1 bands, respectively. The ultraviolet spectral results from 5°C to 25°C showed that there was a significant difference (3.5 times) in the fluctuation amplitude at the absorption peak of 261.2 nm between 0× and 1-10× TAE-AO solution containing the nine-plasmid-2 system. Specifically, the fluctuation amplitudes of 0×, 1×, 5×, and 10× samples were 0.032, 0.109, 0.112, and 0.110, respectively. At the same time, using 1× and 10× TAE buffer, the AO-stained linear nine-plasmid-2 system remained stable and did not display temperature sensitivity. The response surface models of the AO-stained nine-plasmid-2 system intuitively displayed that the absorbance of the 1× TAE samples increased significantly with increasing temperature compared to the 0× TAE samples, regardless of the pH value. The findings confirmed a temperature-dependent effect in AO staining of natural or synthetic multiplasmid systems, with the optimum staining result occurring at 25°C. Ion strength was a necessary condition for the temperature sensitivity mechanism. This study layed the groundwork for further investigation into the reasons or underlying mechanisms of temperature sensitivity in AO staining of multiplasmid systems.


Assuntos
Acetatos , Laranja de Acridina , Corantes , Etilenodiaminas , Laranja de Acridina/química , Temperatura , Plasmídeos/genética , Ácido Edético
20.
J Am Chem Soc ; 146(15): 10478-10488, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578196

RESUMO

During biomedical applications, nanozymes, exhibiting enzyme-like characteristics, inevitably come into contact with biological fluids in living systems, leading to the formation of a protein corona on their surface. Although it is acknowledged that molecular adsorption can influence the catalytic activity of nanozymes, there is a dearth of understanding regarding the impact of the protein corona on nanozyme activity and its determinant factors. In order to address this gap, we employed the AuNR@Pt@PDDAC [PDDAC, poly(diallyldimethylammonium chloride)] nanorod (NR) as a model nanozyme with multiple activities, including peroxidase, oxidase, and catalase-mimetic activities, to investigate the inhibitory effects of the protein corona on the catalytic activity. After the identification of major components in the plasma protein corona on the NR, we observed that spherical proteins and fibrous proteins induced distinct inhibitory effects on the catalytic activity of nanozymes. To elucidate the underlying mechanism, we uncovered that the adsorbed proteins assembled on the surface of the nanozymes, forming protein networks (PNs). Notably, the PNs derived from fibrous proteins exhibited a screen mesh-like structure with smaller pore sizes compared to those formed by spherical proteins. This structural disparity resulted in a reduced efficiency for the permeation of substrate molecules, leading to a more robust inhibition in activity. These findings underscore the significance of the protein shape as a crucial factor influencing nanozyme activity. This revelation provides valuable insights for the rational design and application of nanozymes in the biomedical fields.


Assuntos
Nanoestruturas , Coroa de Proteína , Escleroproteínas , Peroxidase , Adsorção , Corantes , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA