Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(10): 102453, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063996

RESUMO

The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5'-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.


Assuntos
Criptococose , Cryptococcus neoformans , Hidroximetil e Formil Transferases , Fosforribosilaminoimidazolcarboxamida Formiltransferase , Animais , Humanos , Camundongos , Antifúngicos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Descoberta de Drogas , Inosina Monofosfato , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Purinas , Criptococose/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(7): 3551-3559, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015121

RESUMO

Cryptococcus neoformans is an opportunistic fungal pathogen that infects ∼280,000 people every year, causing >180,000 deaths. The human immune system recognizes chitin as one of the major cell-wall components of invading fungi, but C. neoformans can circumvent this immunosurveillance mechanism by instead exposing chitosan, the partly or fully deacetylated form of chitin. The natural production of chitosans involves the sequential action of chitin synthases (CHSs) and chitin deacetylases (CDAs). C. neoformans expresses four putative CDAs, three of which have been confirmed as functional enzymes that act on chitin in the cell wall. The fourth (CnCda4/Fpd1) is a secreted enzyme with exceptional specificity for d-glucosamine at its -1 subsite, thus preferring chitosan over chitin as a substrate. We used site-specific mutagenesis to reduce the subsite specificity of CnCda4 by converting an atypical isoleucine residue in a flexible loop region to the bulkier or charged residues tyrosine, histidine, and glutamic acid. We also investigated the effect of CnCda4 deacetylation products on human peripheral blood-derived macrophages, leading to a model explaining the function of CnCda4 during infection. We propose that CnCda4 is used for the further deacetylation of chitosans already exposed on the C. neoformans cell wall (originally produced by CnChs3 and CnCda1 to 3) or released from the cell wall as elicitors by human chitinases, thus making the fungus less susceptible to host immunosurveillance. The absence of CnCda4 during infection could therefore promote the faster recognition and elimination of this pathogen.


Assuntos
Amidoidrolases/metabolismo , Quitosana/metabolismo , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/metabolismo , Amidoidrolases/genética , Parede Celular/enzimologia , Parede Celular/genética , Quitina/química , Quitina/metabolismo , Quitosana/química , Criptococose/microbiologia , Cryptococcus neoformans/química , Cryptococcus neoformans/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Especificidade por Substrato
3.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687052

RESUMO

Secretory phospholipase B1 (PLB1) and biofilms act as microbial virulence factors and play an important role in pulmonary cryptococcosis. This study aims to formulate the ethanolic extract of propolis-loaded niosomes (Nio-EEP) and evaluate the biological activities occurring during PLB1 production and biofilm formation of Cryptococcus neoformans. Some physicochemical characterizations of niosomes include a mean diameter of 270 nm in a spherical shape, a zeta-potential of -10.54 ± 1.37 mV, and 88.13 ± 0.01% entrapment efficiency. Nio-EEP can release EEP in a sustained manner and retains consistent physicochemical properties for a month. Nio-EEP has the capability to permeate the cellular membranes of C. neoformans, causing a significant decrease in the mRNA expression level of PLB1. Interestingly, biofilm formation, biofilm thickness, and the expression level of biofilm-related genes (UGD1 and UXS1) were also significantly reduced. Pre-treating with Nio-EEP prior to yeast infection reduced the intracellular replication of C. neoformans in alveolar macrophages by 47%. In conclusion, Nio-EEP mediates as an anti-virulence agent to inhibit PLB1 and biofilm production for preventing fungal colonization on lung epithelial cells and also decreases the intracellular replication of phagocytosed cryptococci. This nano-based EEP delivery might be a potential therapeutic strategy in the prophylaxis and treatment of pulmonary cryptococcosis in the future.


Assuntos
Antifúngicos , Biofilmes , Cryptococcus neoformans , Proteínas Fúngicas , Lisofosfolipase , Macrófagos Alveolares , Própole , Humanos , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Criptococose/prevenção & controle , Criptococose/terapia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Etanol/química , Proteínas Fúngicas/antagonistas & inibidores , Lipossomos , Pneumopatias Fúngicas/prevenção & controle , Pneumopatias Fúngicas/terapia , Lisofosfolipase/antagonistas & inibidores , Macrófagos Alveolares/microbiologia , Própole/química , Própole/farmacologia , Virulência/efeitos dos fármacos , Fatores de Virulência/antagonistas & inibidores , Antifúngicos/química , Antifúngicos/farmacologia
4.
J Biol Chem ; 297(4): 101091, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34416230

RESUMO

Cryptococcus neoformans is a fungus that causes life-threatening systemic mycoses. During infection of the human host, this pathogen experiences a major change in the availability of purines; the fungus can scavenge the abundant purines in its environmental niche of pigeon excrement, but must employ de novo biosynthesis in the purine-poor human CNS. Eleven sequential enzymatic steps are required to form the first purine base, IMP, an intermediate in the formation of ATP and GTP. Over the course of evolution, several gene fusion events led to the formation of multifunctional purine biosynthetic enzymes in most organisms, particularly the higher eukaryotes. In C. neoformans, phosphoribosyl-glycinamide synthetase (GARs) and phosphoribosyl-aminoimidazole synthetase (AIRs) are fused into a bifunctional enzyme, while the human ortholog is a trifunctional enzyme that also includes GAR transformylase. Here we functionally, biochemically, and structurally characterized C. neoformans GARs and AIRs to identify drug targetable features. GARs/AIRs are essential for de novo purine production and virulence in a murine inhalation infection model. Characterization of GARs enzymatic functional parameters showed that C. neoformans GARs/AIRs have lower affinity for substrates glycine and PRA compared with the trifunctional metazoan enzyme. The crystal structure of C. neoformans GARs revealed differences in the glycine- and ATP-binding sites compared with the Homo sapiens enzyme, while the crystal structure of AIRs shows high structural similarity compared with its H. sapiens ortholog as a monomer but differences as a dimer. The alterations in functional and structural characteristics between fungal and human enzymes could potentially be exploited for antifungal development.


Assuntos
Antifúngicos/química , Carbono-Nitrogênio Ligases , Criptococose , Cryptococcus neoformans , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/química , Proteínas Fúngicas , Animais , Antifúngicos/uso terapêutico , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Criptococose/tratamento farmacológico , Criptococose/enzimologia , Criptococose/genética , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Cristalografia por Raios X , Inibidores Enzimáticos/uso terapêutico , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Camundongos , Domínios Proteicos
5.
J Biol Chem ; 296: 100391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33567338

RESUMO

Cryptococcus neoformans is an opportunistic fungal pathogen whose pathogenic lifestyle is linked to its ability to cope with fluctuating levels of copper (Cu), an essential metal involved in multiple virulence mechanisms, within distinct host niches. During lethal cryptococcal meningitis in the brain, C. neoformans senses a Cu-deficient environment and is highly dependent on its ability to scavenge trace levels of Cu from its host and adapt to Cu scarcity to successfully colonize this niche. In this study, we demonstrate for this critical adaptation, the Cu-sensing transcription factor Cuf1 differentially regulates the expression of the SOD1 and SOD2 superoxide dismutases in novel ways. Genetic and transcriptional analysis reveals Cuf1 specifies 5'-truncations of the SOD1 and SOD2 mRNAs through specific binding to Cu responsive elements within their respective promoter regions. This results in Cuf1-dependent repression of the highly abundant SOD1 and simultaneously induces expression of two isoforms of SOD2, the canonical mitochondrial targeted isoform and a novel alternative cytosolic isoform, from a single alternative transcript produced specifically under Cu limitation. The generation of cytosolic Sod2 during Cu limitation is required to maintain cellular antioxidant defense against superoxide stress both in vitro and in vivo. Further, decoupling Cuf1 regulation of Sod2 localization compromises the ability of C. neoformans to colonize organs in murine models of cryptococcosis. Our results provide a link between transcription factor-mediated alteration of protein localization and cell proliferation under stress, which could impact tissue colonization by a fungal pathogen.


Assuntos
Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cobre/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/isolamento & purificação , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Masculino , Camundongos , Isoformas de Proteínas , Frações Subcelulares/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
6.
Proc Natl Acad Sci U S A ; 115(41): E9649-E9658, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249642

RESUMO

The increased prevalence of drug-resistant human pathogenic fungal diseases poses a major threat to global human health. Thus, new drugs are urgently required to combat these infections. Here, we demonstrate that acetohydroxyacid synthase (AHAS), the first enzyme in the branched-chain amino acid biosynthesis pathway, is a promising new target for antifungal drug discovery. First, we show that several AHAS inhibitors developed as commercial herbicides are powerful accumulative inhibitors of Candida albicans AHAS (Ki values as low as 800 pM) and have determined high-resolution crystal structures of this enzyme in complex with several of these herbicides. In addition, we have demonstrated that chlorimuron ethyl (CE), a member of the sulfonylurea herbicide family, has potent antifungal activity against five different Candida species and Cryptococcus neoformans (with minimum inhibitory concentration, 50% values as low as 7 nM). Furthermore, in these assays, we have shown CE and itraconazole (a P450 inhibitor) can act synergistically to further improve potency. Finally, we show in Candida albicans-infected mice that CE is highly effective in clearing pathogenic fungal burden in the lungs, liver, and spleen, thus reducing overall mortality rates. Therefore, in view of their low toxicity to human cells, AHAS inhibitors represent a new class of antifungal drug candidates.


Assuntos
Acetolactato Sintase , Antifúngicos , Candida albicans/enzimologia , Candidíase , Criptococose , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Candidíase/enzimologia , Criptococose/tratamento farmacológico , Criptococose/enzimologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Herbicidas/química , Herbicidas/farmacologia , Humanos , Camundongos
7.
Mol Microbiol ; 111(4): 898-917, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30536975

RESUMO

Ppz Ser/Thr protein phosphatases (PPases) are found only in fungi and have been proposed as potential antifungal targets. In Saccharomyces cerevisiae Ppz1 (ScPpz1) is involved in regulation of monovalent cation homeostasis. ScPpz1 is inhibited by two regulatory proteins, Hal3 and Vhs3, which have moonlighting properties, contributing to the formation of an unusual heterotrimeric PPC decarboxylase (PPCDC) complex crucial for CoA biosynthesis. Here we report the functional characterization of CnPpz1 (CNAG_03673) and two possible Hal3-like proteins, CnHal3a (CNAG_00909) and CnHal3b (CNAG_07348) from the pathogenic fungus Cryptococcus neoformans. Deletion of CnPpz1 or CnHal3b led to phenotypes unrelated to those observed in the equivalent S. cerevisiae mutants, and the CnHal3b-deficient strain was less virulent. CnPpz1 is a functional PPase and partially replaced endogenous ScPpz1. Both CnHal3a and CnHal3b interact with ScPpz1 and CnPpz1 in vitro but do not inhibit their phosphatase activity. Consistently, when expressed in S. cerevisiae, they poorly reproduced the Ppz1-regulatory properties of ScHal3. In contrast, both proteins were functional monogenic PPCDCs. The CnHal3b isoform was crystallized and, for the first time, the 3D-structure of a fungal PPCDC elucidated. Therefore, our work provides the foundations for understanding the regulation and functional role of the Ppz1-Hal3 system in this important pathogenic fungus.


Assuntos
Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Fosfoproteínas Fosfatases/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
PLoS Pathog ; 14(6): e1007144, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29906292

RESUMO

Cryptococcus neoformans is a facultative intracellular pathogen and its interaction with macrophages is a key event determining the outcome of infection. Urease is a major virulence factor in C. neoformans but its role during macrophage interaction has not been characterized. Consequently, we analyzed the effect of urease on fungal-macrophage interaction using wild-type, urease-deficient and urease-complemented strains of C. neoformans. The frequency of non-lytic exocytosis events was reduced in the absence of urease. Urease-positive C. neoformans manifested reduced and delayed intracellular replication with fewer macrophages displaying phagolysosomal membrane permeabilization. The production of urease was associated with increased phagolysosomal pH, which in turn reduced growth of urease-positive C. neoformans inside macrophages. Interestingly, the ure1 mutant strain grew slower in fungal growth medium which was buffered to neutral pH (pH 7.4). Mice inoculated with macrophages carrying urease-deficient C. neoformans had lower fungal burden in the brain than mice infected with macrophages carrying wild-type strain. In contrast, the absence of urease did not affect survival of yeast when interacting with amoebae. Because of the inability of the urease deletion mutant to grow on urea as a sole nitrogen source, we hypothesize urease plays a nutritional role involved in nitrogen acquisition in the environment. Taken together, our data demonstrate that urease affects fitness within the mammalian phagosome, promoting non-lytic exocytosis while delaying intracellular replication and thus reducing phagolysosomal membrane damage, events that could facilitate cryptococcal dissemination when transported inside macrophages. This system provides an example where an enzyme involved in nutrient acquisition modulates virulence during mammalian infection.


Assuntos
Encéfalo/patologia , Criptococose/patologia , Cryptococcus neoformans/enzimologia , Macrófagos/patologia , Fagossomos/patologia , Urease/metabolismo , Virulência , Animais , Encéfalo/enzimologia , Encéfalo/microbiologia , Células Cultivadas , Criptococose/microbiologia , Feminino , Concentração de Íons de Hidrogênio , Macrófagos/enzimologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagossomos/enzimologia , Urease/genética , Fatores de Virulência/metabolismo
9.
PLoS Pathog ; 14(6): e1007126, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29864141

RESUMO

The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the ß-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.


Assuntos
Parede Celular/enzimologia , Criptococose/imunologia , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Parede Celular/imunologia , Células Cultivadas , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/patogenicidade , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Proteínas Fúngicas/genética , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transporte Proteico , beta-Glucanas/imunologia
10.
FEMS Yeast Res ; 20(4)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490521

RESUMO

Cryptococcal urease is believed to be important for the degradation of exogenous urea that the yeast encounters both in its natural environment and within the human host. Endogenous urea produced by the yeast's own metabolic reactions, however, may also serve as a substrate for the urease enzyme. Using wild-type, urease-deletion mutant and urease-reconstituted strains of Cryptococcus neoformans H99, we studied reactions located up- and downstream from endogenous urea. We demonstrated that urease is important for cryptococcal growth and that, compared to nutrient-rich conditions at 26°C, urease activity is higher under nutrient-limited conditions at 37°C. Compared to cells with a functional urease enzyme, urease-deficient cells had significantly higher intracellular urea levels and also showed more arginase activity, which may act as a potential source of endogenous urea. Metabolic reactions linked to arginase were also affected, since urease-positive and urease-negative cells differed with respect to agmatinase activity, polyamine synthesis, and intracellular levels of proline and reactive oxygen species. Lastly, urease-deficient cells showed higher melanin levels at 26°C than wild-type cells, while the inverse was observed at 37°C. These results suggest that cryptococcal urease is associated with the functioning of key metabolic pathways within the yeast cell.


Assuntos
Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Redes e Vias Metabólicas , Ureia/metabolismo , Urease/genética , Fatores de Virulência/metabolismo , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/metabolismo , Humanos , Viabilidade Microbiana , Urease/metabolismo , Virulência
11.
Med Mycol ; 58(8): 1138-1148, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32246714

RESUMO

Members of the C. neoformans/C. gattiii species complex are an important cause of serious humans infections, including meningoencephalitis. We describe here a 45 kDa extracellular cellulase purified from culture supernatants of C. neoformans var. neoformans. The N-terminal sequence obtained from the purified protein was used to isolate a clone containing the full-length coding sequence from a C. neoformans var. neoformans (strain B-3501A) cDNA library. Bioinformatics analysis indicated that this gene is present, with variable homology, in all sequenced genomes of the C. neoformans/C. gattii species complex. The cDNA clone was used to produce a recombinant 45 kDa protein in E. coli that displayed the ability to convert carboxymethyl cellulose and was therefore designated as NG-Case (standing for Neoformans Gattii Cellulase). To explore its potential use as a vaccine candidate, the recombinant protein was used to immunize mice and was found capable of inducing T helper type 1 responses and delayed-type hypersensitivity reactions, but not immune protection against a highly virulent C. neoformans var grubii strain. These data may be useful to better understand the mechanisms underlying the ability C. neoformans/C. gattii to colonize plant habitats and to interact with the human host during infection.


Assuntos
Celulase/imunologia , Cryptococcus/enzimologia , Proteínas Fúngicas/imunologia , Animais , Carboximetilcelulose Sódica/metabolismo , Celulase/química , Celulase/genética , Celulase/metabolismo , Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus/genética , Cryptococcus/imunologia , Cryptococcus/metabolismo , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/metabolismo , Meios de Cultivo Condicionados , Citocinas/imunologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Imunização , Camundongos , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Células Th1/imunologia
12.
Bioorg Chem ; 86: 39-43, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30684862

RESUMO

There is an urgent need for new chemotherapic agents to treat human fungal infections due to emerging and spreading globally resistance mechanisms. Among the new targets that have been recently investigated for the development of antifungal drugs there are the metallo-enzymes Carbonic Anhydrases (CAs, EC 4.2.1.1). The inhibition of the ß-CAs identified in many pathogenic fungi leads to an impairment of parasite growth and virulence, which in turn leads to a significant anti-infective effect. Based on antifungal nucleoside antibiotics, the inhibition of the ß-CAs from the resistance-showing fungi Candida glabrata (CgNce103), Cryptococcus neoformans (Can2) and Malasszia globosa (MgCA) with a series of benzenesulfonamides bearing nitrogenous bases, such as uracil and adenine, is here reported. Many such compounds display low nanomolar (<100 nM) inhibitory potency against Can2 and CgNce103, whereas the activity of MgCA is considerably less affected (inhibition constants in the range 138.8-5601.5 nM). The ß-CAs inhibitory data were compared with those against α-class human ubiquitous isoforms. Interesting selective inhibitory activities for the target fungal CAs over hCA I and II were reported, which make nitrogenous base benzenesulfonamides interesting tools and leads for further investigations in search of new antifungal with innovative mechanisms of action.


Assuntos
Antifúngicos/farmacologia , Candida glabrata/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Malassezia/efeitos dos fármacos , Sulfonamidas/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Candida glabrata/enzimologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Cryptococcus neoformans/enzimologia , Relação Dose-Resposta a Droga , Malassezia/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nitrogênio/química , Nitrogênio/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Benzenossulfonamidas
13.
Proc Natl Acad Sci U S A ; 113(26): 7148-53, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27307435

RESUMO

Trehalose is a disaccharide essential for the survival and virulence of pathogenic fungi. The biosynthesis of trehalose requires trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. Here, we report the structures of the N-terminal domain of Tps2 (Tps2NTD) from Candida albicans, a transition-state complex of the Tps2 C-terminal trehalose-6-phosphate phosphatase domain (Tps2PD) bound to BeF3 and trehalose, and catalytically dead Tps2PD(D24N) from Cryptococcus neoformans bound to trehalose-6-phosphate (T6P). The Tps2NTD closely resembles the structure of Tps1 but lacks any catalytic activity. The Tps2PD-BeF3-trehalose and Tps2PD(D24N)-T6P complex structures reveal a "closed" conformation that is effected by extensive interactions between each trehalose hydroxyl group and residues of the cap and core domains of the protein, thereby providing exquisite substrate specificity. Disruption of any of the direct substrate-protein residue interactions leads to significant or complete loss of phosphatase activity. Notably, the Tps2PD-BeF3-trehalose complex structure captures an aspartyl-BeF3 covalent adduct, which closely mimics the proposed aspartyl-phosphate intermediate of the phosphatase catalytic cycle. Structures of substrate-free Tps2PD reveal an "open" conformation whereby the cap and core domains separate and visualize the striking conformational changes effected by substrate binding and product release and the role of two hinge regions centered at approximately residues 102-103 and 184-188. Significantly, tps2Δ, tps2NTDΔ, and tps2D705N strains are unable to grow at elevated temperatures. Combined, these studies provide a deeper understanding of the substrate recognition and catalytic mechanism of Tps2 and provide a structural basis for the future design of novel antifungal compounds against a target found in three major fungal pathogens.


Assuntos
Candida albicans/enzimologia , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/química , Monoéster Fosfórico Hidrolases/química , Biocatálise , Candida albicans/química , Candida albicans/genética , Candida albicans/metabolismo , Cryptococcus neoformans/química , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Especificidade por Substrato , Fosfatos Açúcares/química , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/química , Trealose/metabolismo
14.
J Biol Chem ; 292(28): 11829-11839, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28559277

RESUMO

There is significant clinical need for new antifungal agents to manage infections with pathogenic species such as Cryptococcus neoformans Because the purine biosynthesis pathway is essential for many metabolic processes, such as synthesis of DNA and RNA and energy generation, it may represent a potential target for developing new antifungals. Within this pathway, the bifunctional enzyme adenylosuccinate (ADS) lyase plays a role in the formation of the key intermediates inosine monophosphate and AMP involved in the synthesis of ATP and GTP, prompting us to investigate ADS lyase in C. neoformans. Here, we report that ADE13 encodes ADS lyase in C. neoformans. We found that an ade13Δ mutant is an adenine auxotroph and is unable to successfully cause infections in a murine model of virulence. Plate assays revealed that production of a number of virulence factors essential for dissemination and survival of C. neoformans in a host environment was compromised even with the addition of exogenous adenine. Purified recombinant C. neoformans ADS lyase shows catalytic activity similar to its human counterpart, and its crystal structure, the first fungal ADS lyase structure determined, shows a high degree of structural similarity to that of human ADS lyase. Two potentially important amino acid differences are identified in the C. neoformans crystal structure, in particular a threonine residue that may serve as an additional point of binding for a fungal enzyme-specific inhibitor. Besides serving as an antimicrobial target, C. neoformans ADS lyase inhibitors may also serve as potential therapeutics for metabolic disease; rather than disrupt ADS lyase, compounds that improve the stability the enzyme may be used to treat ADS lyase deficiency disease.


Assuntos
Adenilossuccinato Liase/antagonistas & inibidores , Antifúngicos/farmacologia , Cryptococcus neoformans/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Modelos Moleculares , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Sequência de Aminoácidos , Animais , Antifúngicos/química , Antifúngicos/uso terapêutico , Sítios de Ligação , Criptococose/tratamento farmacológico , Criptococose/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Feminino , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Camundongos Endogâmicos BALB C , Conformação Molecular , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Análise de Sobrevida , Virulência/efeitos dos fármacos
15.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29712729

RESUMO

The genus Cryptococcus includes several species pathogenic for humans. Until recently, the two major pathogenic species were recognized to be Cryptococcus neoformans and Cryptococcus gattii We compared the interaction of murine macrophages with three C. gattii species complex strains (WM179, R265, and WM161, representing molecular types VGI, VGIIa, and VGIII, respectively) and one C. neoformans species complex strain (H99, molecular type VNI) to ascertain similarities and differences in the yeast intracellular pathogenic strategy. The parameters analyzed included nonlytic exocytosis frequency, phagolysosomal pH, intracellular capsular growth, phagolysosomal membrane permeabilization, and macrophage transcriptional response, assessed using time-lapse microscopy, fluorescence microscopy, flow cytometry, and gene expression microarray analysis. The most striking result was that the intracellular pathogenic strategies of C. neoformans and C. gattii species complex strains were qualitatively similar, despite the species having separated an estimated 100 million years ago. Macrophages exhibited a leaky phagolysosomal membrane phenotype and nonlytic exocytosis when infected with either C. gattii or C. neoformans Conservation of the intracellular strategy among species that separated long ago suggests that it is ancient and possibly maintained by similar selection pressures through eons.


Assuntos
Cryptococcus gattii/patogenicidade , Cryptococcus neoformans/patogenicidade , Animais , Apoptose , Cápsulas Bacterianas/fisiologia , Cryptococcus gattii/enzimologia , Cryptococcus gattii/imunologia , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/imunologia , Exocitose , Feminino , Macrófagos/fisiologia , Camundongos , Fagocitose , Fagossomos/fisiologia , Urease/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-29891599

RESUMO

Cryptococcal meningitis (CM), caused primarily by Cryptococcus neoformans, is uniformly fatal if not treated. Treatment options are limited, especially in resource-poor geographical regions, and mortality rates remain high despite current therapies. Here we evaluated the in vitro and in vivo activity of several compounds, including APX001A and its prodrug, APX001, currently in clinical development for the treatment of invasive fungal infections. These compounds target the conserved Gwt1 enzyme that is required for the localization of glycosylphosphatidylinositol (GPI)-anchored cell wall mannoproteins in fungi. The Gwt1 inhibitors had low MIC values, ranging from 0.004 µg/ml to 0.5 µg/ml, against both C. neoformans and C. gattii APX001A and APX2020 demonstrated in vitro synergy with fluconazole (fractional inhibitory concentration index, 0.37 for both). In a CM model, APX001 and fluconazole each alone reduced the fungal burden in brain tissue (0.78 and 1.04 log10 CFU/g, respectively), whereas the combination resulted in a reduction of 3.52 log10 CFU/g brain tissue. Efficacy, as measured by a reduction in the brain and lung tissue fungal burden, was also observed for another Gwt1 inhibitor prodrug, APX2096, where dose-dependent reductions in the fungal burden ranged from 5.91 to 1.79 log10 CFU/g lung tissue and from 7.00 and 0.92 log10 CFU/g brain tissue, representing the nearly complete or complete sterilization of lung and brain tissue at the higher doses. These data support the further clinical evaluation of this new class of antifungal agents for the treatment of CM.


Assuntos
Amidoidrolases/antagonistas & inibidores , Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Proteínas Fúngicas/antagonistas & inibidores , Isoxazóis/farmacologia , Meningite Criptocócica/tratamento farmacológico , Organofosfatos/farmacologia , Pró-Fármacos/farmacologia , Administração Oral , Amidoidrolases/genética , Amidoidrolases/metabolismo , Aminopiridinas/síntese química , Aminopiridinas/farmacocinética , Animais , Antifúngicos/síntese química , Antifúngicos/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/microbiologia , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus gattii/enzimologia , Cryptococcus gattii/genética , Cryptococcus gattii/crescimento & desenvolvimento , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Sinergismo Farmacológico , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Injeções Intraperitoneais , Isoxazóis/síntese química , Isoxazóis/farmacocinética , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Masculino , Meningite Criptocócica/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Organofosfatos/síntese química , Organofosfatos/farmacocinética , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética
17.
Fungal Genet Biol ; 113: 42-51, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29357302

RESUMO

Cryptococcus neoformans is the most common cause of deadly fungal meningitis. This fungus has a complex inositol acquisition and utilization system, and our previous studies have shown the importance of inositol utilization in cryptococcal development and virulence. However, how inositol utilization is regulated in this fungus remains unknown. In this study, we found that inositol, irrespective of the presence of glucose in the media, represses the expression of C. neoformans genes involved in inositol pyrophosphate biosynthesis, including the gene encoding inositol hexakisphosphate kinase Kcs1. Kcs1 was recently reported to regulate inositol metabolism in Saccharomyces cerevisiae and to impact virulence in C. neoformans. To examine the potential role of Kcs1 in inositol regulation in C. neoformans, we generated the kcs1Δ mutant and compared its phenotype with the wild type strain. We found that Kcs1 negatively regulates inositol uptake and catabolism in C. neoformans, but, in contrast to Kcs1 function in S. cerevisiae, does not appear to regulate inositol biosynthesis. Together, these results show that Kcs1 functions to fine-tune inositol acquisition to maintain inositol homeostasis in C. neoformans.


Assuntos
Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Cryptococcus neoformans/genética , Difosfatos/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Glucose/química , Homeostase , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Virulência
18.
PLoS Pathog ; 12(12): e1006051, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977806

RESUMO

The opportunistic fungal pathogen Cryptococcus neoformans is a major cause of mortality in immunocompromised individuals, resulting in more than 600,000 deaths per year. Many human fungal pathogens secrete peptidases that influence virulence, but in most cases the substrate specificity and regulation of these enzymes remains poorly understood. The paucity of such information is a roadblock to our understanding of the biological functions of peptidases and whether or not these enzymes are viable therapeutic targets. We report here an unbiased analysis of secreted peptidase activity and specificity in C. neoformans using a mass spectrometry-based substrate profiling strategy and subsequent functional investigations. Our initial studies revealed that global peptidase activity and specificity are dramatically altered by environmental conditions. To uncover the substrate preferences of individual enzymes and interrogate their biological functions, we constructed and profiled a ten-member gene deletion collection of candidate secreted peptidases. Through this deletion approach, we characterized the substrate specificity of three peptidases within the context of the C. neoformans secretome, including an enzyme known to be important for fungal entry into the brain. We selected a previously uncharacterized peptidase, which we term Major aspartyl peptidase 1 (May1), for detailed study due to its substantial contribution to extracellular proteolytic activity. Based on the preference of May1 for proteolysis between hydrophobic amino acids, we screened a focused library of aspartyl peptidase inhibitors and identified four high-affinity antagonists. Finally, we tested may1Δ strains in a mouse model of C. neoformans infection and found that strains lacking this enzyme are significantly attenuated for virulence. Our study reveals the secreted peptidase activity and specificity of an important human fungal pathogen, identifies responsible enzymes through genetic tests of their function, and demonstrates how this information can guide the development of high affinity small molecule inhibitors.


Assuntos
Ácido Aspártico Proteases/metabolismo , Criptococose/enzimologia , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/metabolismo , Animais , Cryptococcus neoformans/enzimologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Immunoblotting , Espectrometria de Massas , Camundongos , Peptídeo Hidrolases/metabolismo , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Virulência , Fatores de Virulência/metabolismo
19.
Bioorg Med Chem ; 26(20): 5408-5419, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322754

RESUMO

Fungi cause serious life-threatening infections in immunocompromised individuals and current treatments are now complicated by toxicity issues and the emergence of drug resistant strains. Consequently, there is a need for development of new antifungal drugs. Inosine monophosphate dehydrogenase (IMPDH), a key component of the de novo purine biosynthetic pathway, is essential for growth and virulence of fungi and is a potential drug target. In this study, a high-throughput screen of 114,000 drug-like compounds against Cryptococcus neoformans IMPDH was performed. We identified three 3-((5-substituted)-1,3,4-oxadiazol-2-yl)thio benzo[b]thiophene 1,1-dioxides that inhibited Cryptococcus IMPDH and also possessed whole cell antifungal activity. Analogs were synthesized to explore the SAR of these hits. Modification of the fifth substituent on the 1,3,4-oxadiazole ring yielded compounds with nanomolar in vitro activity, but with associated cytotoxicity. In contrast, two analogs generated by substituting the 1,3,4-oxadiazole ring with imidazole and 1,2,4-triazole gave reduced IMPDH inhibition in vitro, but were not cytotoxic. During enzyme kinetic studies in the presence of DTT, nucleophilic attack of a free thiol occurred with the benzo[b]thiophene 1,1-dioxide. Two representative compounds with substitution at the 5 position of the 1,3,4-oxadiazole ring, showed mixed inhibition in the absence of DTT. Incubation of these compounds with Cryptococcus IMPDH followed by mass spectrometry analysis showed non-specific and covalent binding with IMPDH at multiple cysteine residues. These results support recent reports that the benzo[b]thiophene 1,1-dioxides moiety as PAINS (pan-assay interference compounds) contributor.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Proteínas Fúngicas/antagonistas & inibidores , IMP Desidrogenase/antagonistas & inibidores , Tiofenos/química , Tiofenos/farmacologia , Criptococose/tratamento farmacológico , Criptococose/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/metabolismo , Células HEK293 , Células Hep G2 , Humanos , IMP Desidrogenase/metabolismo , Modelos Moleculares , Oxidiazóis/química , Oxidiazóis/farmacologia
20.
J Enzyme Inhib Med Chem ; 33(1): 1537-1544, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30284487

RESUMO

Infections caused by pathogens resistant to the available antimicrobial treatments represent nowadays a threat to global public health. Recently, it has been demonstrated that carbonic anhydrases (CAs) are essential for the growth of many pathogens and their inhibition leads to growth defects. Principal drawbacks in using CA inhibitors (CAIs) as antimicrobial agents are the side effects due to the lack of selectivity toward human CA isoforms. Herein we report a new class of CAIs, which preferentially interacts with microbial CA active sites over the human ones. The mechanism of action of these inhibitors was investigated against an important fungal pathogen, Cryptococcus neoformans, revealing that they are also able to inhibit CA in microbial cells growing in vitro. At our best knowledge, this is the first report on newly designed synthetic compounds selectively targeting ß-CAs and provides a proof of concept of microbial CAs suitability as an antimicrobial drug target.


Assuntos
Antifúngicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/enzimologia , Descoberta de Drogas , Piridinas/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Cryptococcus neoformans/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA