Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 859
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 72(6): 1201-1214, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482950

RESUMO

Microglia play an important protective role in the healthy nervous tissue, being able to react to a variety of stimuli that induce different intracellular cascades for specific tasks. Ca2+ signaling can modulate these pathways, and we recently reported that microglial functions depend on the endoplasmic reticulum as a Ca2+ store, which involves the Ca2+ transporter SERCA2b. Here, we investigated whether microglial functions may also rely on the Golgi, another intracellular Ca2+ store that depends on the secretory pathway Ca2+/Mn2+-transport ATPase isoform 1 (SPCA1). We found upregulation of SPCA1 upon lipopolysaccharide stimulation of microglia BV2 cells and primary microglia, where alterations of the Golgi ribbon were also observed. Silencing and overexpression experiments revealed that SPCA1 affects cell morphology, Golgi apparatus integrity, and phagocytic functions. Since SPCA1 is also an efficient Mn2+ transporter and considering that Mn2+ excess causes manganism in the brain, we addressed the role of microglial SPCA1 in Mn2+ toxicity. Our results revealed a clear effect of Mn2+ excess on the viability and morphology of microglia. Subcellular analysis showed Golgi fragmentation and subsequent alteration of SPCA1 distribution from early stages of toxicity. Removal of Mn2+ by washing improved the culture viability, although it did not effectively reverse Golgi fragmentation. Interestingly, pretreatment with curcumin maintained microglia cultures viable, prevented Mn2+-induced Golgi fragmentation, and preserved SPCA Ca2+-dependent activity, suggesting curcumin as a potential protective agent against Mn2+-induced Golgi alterations in microglia.


Assuntos
Adenosina Trifosfatases , Curcumina , Adenosina Trifosfatases/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Via Secretória , Curcumina/metabolismo , Regulação para Cima , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Membrana Transportadoras/metabolismo , Isoformas de Proteínas/metabolismo , Cálcio/metabolismo
2.
Biochem Biophys Res Commun ; 694: 149392, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38142581

RESUMO

Thioredoxin interacting protein (TXNIP) has emerged as a significant regulator of ß-cell mass and loss, rendering it an attractive target for treating diabetes. We previously showed that Shiga-Y6, a fluorinated curcumin derivative, inhibited TXNIP mRNA and protein expression in vitro, raising the question of whether the same effect could be translated in vivo. Herein, we examined the effect of Shiga-Y6 on TNXIP levels and explored its therapeutic potential in a mouse model of diabetes, Akita mice. We intraperitoneally injected Shiga-Y6 (SY6; 30 mg/kg of body weight) or vehicle into 8-week-old Akita mice for 28 consecutive days. On day 29, the mice were euthanized, following which the serum levels of glucose, insulin, and glucagon were measured using ELISA, the expression of TXNIP in pancreatic tissue lysates was determined using western blotting, and the level of ß-cell apoptosis was assessed using the TUNEL assay. TXNIP levels in the pancreatic tissue of Akita mice were significantly elevated compared with wild-type (WT) mice. Shiga-Y6 administration for 28 days significantly lowered those levels compared with Akita mice that received vehicle to a level comparable to WT mice. In immunohistochemical analysis, both α- to ß-cell ratio and the number of apoptotic ß-cells were significantly reduced in SY6-treated Akita mice, compared with vehicle-treated Akita mice. Findings from the present study suggest a potential of Shiga-Y6 as an antidiabetic agent through lowering TXNIP protein levels and ameliorating pancreatic ß-cells apoptosis.


Assuntos
Curcumina , Diabetes Mellitus , Células Secretoras de Insulina , Camundongos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Modelos Animais de Doenças , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
3.
Metab Eng ; 82: 286-296, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387678

RESUMO

Curcumin is a polyphenolic natural product from the roots of turmeric (Curcuma longa). It has been a popular coloring and flavoring agent in food industries with known health benefits. The conventional phenylpropanoid pathway is known to proceed from phenylalanine via p-coumaroyl-CoA intermediate. Although hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) plays a key catalysis in the biosynthesis of phenylpropanoid products at the downstream of p-coumaric acid, a recent discovery of caffeoyl-shikimate esterase (CSE) showed that an alternative pathway exists. Here, the biosynthetic efficiency of the conventional and the alternative pathway in producing feruloyl-CoA was examined using curcumin production in yeast. A novel modular multiplex genome-edit (MMG)-CRISPR platform was developed to facilitate rapid integrations of up to eight genes into the yeast genome in two steps. Using this MMG-CRISPR platform and metabolic engineering strategies, the alternative CSE phenylpropanoid pathway consistently showed higher titers (2-19 folds) of curcumin production than the conventional pathway in engineered yeast strains. In shake flask cultures using a synthetic minimal medium without phenylalanine, the curcumin production titer reached up to 1.5 mg/L, which is three orders of magnitude (∼4800-fold) improvement over non-engineered base strain. This is the first demonstration of de novo curcumin biosynthesis in yeast. Our work shows the critical role of CSE in improving the metabolic flux in yeast towards the phenylpropanoid biosynthetic pathway. In addition, we showcased the convenience and reliability of modular multiplex CRISPR/Cas9 genome editing in constructing complex synthetic pathways in yeast.


Assuntos
Curcumina , Saccharomyces cerevisiae , Ácido Chiquímico/análogos & derivados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esterases/metabolismo , Curcumina/metabolismo , Ácido Chiquímico/metabolismo , Reprodutibilidade dos Testes , Fenilalanina
4.
Inorg Chem ; 63(17): 7955-7965, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38634659

RESUMO

Curcuminoids and their complexes continue to attract attention in medicinal chemistry, but little attention has been given to their metabolic derivatives. Here, the first examples of (arene)Ru(II) complexes with curcuminoid metabolites, tetrahydrocurcumin (THcurcH), and tetrahydrobisdesmethoxycurcumin (THbdcurcH) were prepared and characterized. The neutral complexes [Ru(arene)(THcurc)Cl] and [Ru(arene)(THbdcurc)Cl] (arene = cymene, benzene, or hexamethylbenzene) were characterized by NMR spectroscopy and ESI mass spectrometry, and the crystal structures of the three complexes were determined by X-ray diffraction analysis. Compared to curcuminoids, these metabolites lose their conjugated double bond system responsible for their planarity, showing unique closed conformation structures. Both closed and open conformations have been analyzed and rationalized by using density functional theory (DFT). The cytotoxicity of the complexes was evaluated in vitro against human ovarian carcinoma cells (A2780 and A2780cisR), human breast adenocarcinoma cells (MCF-7 and MCF-7CR), as well as against non-tumorigenic human embryonic kidney cells (HEK293) and human breast (MCF-10A) cells and compared to the free ligands, cisplatin, and RAPTA-C. There is a correlation between cellular uptake and the cytotoxicity of the compounds, suggesting that cellular uptake and binding to nuclear DNA may be the major pathway for cytotoxicity. However, the levels of complex binding to DNA do not strictly correlate with the cytotoxic potency, indicating that other mechanisms are also involved. In addition, treatment of MCF-7 cells with [Ru(cym)(THcurc)Cl] showed a significant decrease in p62 protein levels, which is generally assumed as a noncisplatin-like mechanism of action involving autophagy. Hence, a cisplatin- and a noncisplatin-like concerted mechanism of action, involving both apoptosis and autophagy, is possible.


Assuntos
Antineoplásicos , Complexos de Coordenação , Curcumina , Ensaios de Seleção de Medicamentos Antitumorais , Rutênio , Humanos , Curcumina/farmacologia , Curcumina/química , Curcumina/análogos & derivados , Curcumina/metabolismo , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Diarileptanoides/química , Diarileptanoides/farmacologia , Diarileptanoides/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Modelos Moleculares , Teoria da Densidade Funcional , Sobrevivência Celular/efeitos dos fármacos , Células HEK293
5.
Mol Biol Rep ; 51(1): 261, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302805

RESUMO

BACKGROUND: The cardioprotective properties of mesenchymal stem cells and the therapeutic potential of curcumin (CUR) have been explored. Combining these approaches may enhance stem cell effectiveness and expedite healing. This study aimed to investigate the synergistic effects of co-treating bone marrow mesenchymal stem cells (BMSCs) with curcumin on vascular endothelial growth factor (VEGF) levels, in a rat model of myocardial ischemia (MI). METHODS AND RESULTS: Sixty-five male rats were divided into four groups: G1 (healthy control), G2 (MI induced by isoproterenol hydrochloride), G3 (treated with BMSCs), and G4 (co-treated with curcumin and BMSCs). Blood and tissue samples were collected at specific time points (day 1, 7, 15 and 21) after MI induction. Serum levels of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac troponin I (cTnI), aspartate aminotransferase (AST), CK-MB and VEGF were measured. VEGF mRNA and protein expression were evaluated using RT-qPCR and Western blot techniques. Histopathological assessments were performed using H&E staining and CD31 immunofluorescence staining. VEGF expression significantly increased on days 7 and 15 in the CUR-BMSCs group, peaking on day 7. Western blot analysis confirmed elevated VEGF protein expression on days 7 and 15 post-MI. ELISA results demonstrated increased serum VEGF levels on days 7 and 15, reaching the highest level on day 7 in CUR-BMSCs-treated animals. Treated groups showed lower levels of LDH, AST, CK, CK-MB and cTnI compared to the untreated MI group. H&E staining revealed improved myocardial structure, increased formation of new capillaries, in both treatment groups compared to the MI group. CONCLUSION: Combining curcumin with BMSCs promotes angiogenesis in the infarcted myocardium after 15 days of MI induction. These findings suggest the potential of this combined therapy approach for enhancing cardiac healing and recovery.


Assuntos
Doença da Artéria Coronariana , Curcumina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Isquemia Miocárdica , Ratos , Masculino , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Curcumina/farmacologia , Curcumina/metabolismo , Medula Óssea/metabolismo , Angiogênese , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Doença da Artéria Coronariana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células da Medula Óssea
6.
J Cell Biochem ; 124(11): 1764-1778, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909649

RESUMO

Curcumin, a kind of natural compound, has been previously proven to inhibit the autophagy in hepatic stellate cells (HSCs) and induce their apoptosis. However, it is not clear whether the enhanced apoptosis of activated HSCs (aHSCs) caused by curcumin depends on autophagy inhibition. We aim to verify this hypothesis and explore the potential mechanisms in this study. Immortalized human HSC line LX-2 was used as an experimental specimen and pretreated with transforming growth factor ß1(TGF-ß1) for 24 h to activate it before drug application. The levels of autophagy, apoptosis, cell activity, lipid metabolism, and the activity of the PI3K/Akt/mTOR signal pathway were evaluated by multiple methods, such as Western blotting, mcherry-EGFP-LC3B adenoviruses transfection, immunofluorescence, Nile Red staining, flow cytometry among others. Our results showed that rapamycin, an autophagy activator, could partly offset the effects of curcumin on autophagy and apoptosis of LX-2 cells, while 3-Methyladenine (3-MA), an autophagy inhibitor, could enhance these effects. Furthermore, curcumin could promote the activity of the PI3K/Akt/mTOR signal pathway in LX-2 cells, while PI3K inhibitor could partly offset this effect and increase the autophagy level. Overall, we demonstrated that curcumin could inhibit the activity and promote LX-2 cells apoptosis by suppressing autophagy by activating the PI3K/Akt/mTOR signal pathway. In addition, lipid recovery and energy deprivation due to autophagy inhibition may be the exact mechanism by which curcumin attenuates the pro-fibrotic activity of LX-2.


Assuntos
Curcumina , Células Estreladas do Fígado , Humanos , Células Estreladas do Fígado/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Cirrose Hepática/metabolismo
7.
Biochem Biophys Res Commun ; 660: 13-20, 2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37058843

RESUMO

The protein-protein interaction (PPI) network analysis of specific genes identified for biofilm production and virulence/secretion system mediated by quorum sensing. The PPI depicted 13 hub proteins (namely rhlR, lasR, pscU, vfr, exsA, lasI, gacA, toxA, pilJ, pscC, fleQ, algR, and chpA) out of 160 nodes involving 627 edges. The PPI network analysis based on topographical features depicted pcrD with the highest degree value and vfr gene with the greatest betweenness centrality and closeness centrality (BC and CC) values. Based on in silico results, curcumin used as an Acyl homo-serine lactone (AHL) mimicker in P. aeruginosa, was also found effective in suppressing the quorum sensing regulated virulence factors such as elastase and pyocyanin. Based on in vitro experiment, curcumin suppressed biofilm formation at 62 µg/ml concentration. Host-pathogen interaction experiment showed that curcumin was also proved to be efficient in saving C. elegans from paralysis and killing effects of P. aeruginosa PAO1.


Assuntos
Curcumina , Percepção de Quorum , Animais , Percepção de Quorum/genética , Virulência/genética , Pseudomonas aeruginosa/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Caenorhabditis elegans/metabolismo , Biofilmes , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Biologia
8.
BMC Plant Biol ; 23(1): 47, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36670371

RESUMO

BACKGROUND: As one of the ten most famous flowers in China, the chrysanthemum has rich germplasm with a variety of flowering induction pathways, most of which are photoperiod-induced. After treatment with DNA methylation inhibitors, it was found that DNA methylation plays an important role in flowering regulation, but the mechanism of action remains unclear. Therefore, in this study, curcumin, 5-azaC, their mixed treatment, and MET1-RNAi lines were used for transcriptome sequencing to find out how different treatments affected gene expression in chrysanthemums at different stages of flowering. RESULTS: Genomic DNA methylation levels were measured using HPLC technology. The methylation level of the whole genome in the vegetative growth stage was higher than that in the flowering stage. The methylation level of DNA in the vegetative growth stage was the lowest in the curcumin and mixed treatment, and the methylation level of DNA in the transgenic line, mixed treatment, and curcumin treatment was the lowest in the flowering stage. The flowering rate of mixed treatment and curcumin treatment was the lowest. Analysis of differentially expressed genes in transcriptomes showed that 5-azaC treatment had the most differentially expressed genes, followed by curcumin and transgenic lines, and mixed treatment had the fewest. In addition, 5-azaC treatment resulted in the differential expression of multiple DNA methylation transferases, which led to the differential expression of many genes. Analysis of differentially expressed genes in different treatments revealed that different treatments had gene specificity. However, the down-regulated GO pathway in all 4 treatments was involved in the negative regulation of the reproductive process, and post-embryonic development, and regulation of flower development. Several genes associated with DNA methylation and flowering regulation showed differential expression in response to various treatments. CONCLUSIONS: Both DNA methylase reagent treatment and targeted silencing of the MET1 gene can cause differential expression of the genes. The operation of the exogenous application is simple, but the affected genes are exceedingly diverse and untargeted. Therefore, it is possible to construct populations with DNA methylation phenotypic diversity and to screen genes for DNA methylation regulation.


Assuntos
Chrysanthemum , Curcumina , Transcriptoma , Metilação de DNA , Curcumina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores , Regulação da Expressão Gênica de Plantas
9.
Vet Res ; 54(1): 25, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918933

RESUMO

Pseudorabies virus (PRV) causes viral encephalitis, a devastating disease with high mortality worldwide. Curcumin (CUR) can reduce inflammatory damage by altering the phenotype of microglia; however, whether and how these changes mediate resistance to PRV-induced encephalitis is still unclear. In this study, BV2 cells were infected with/without PRV for 24 h and further treated with/without CUR for 24 h. The results indicated that CUR promoted the polarization of PRV-infected BV2 cells from the M1 phenotype to the M2 phenotype and reversed PRV-induced mitochondrial dysfunction. Furthermore, M1 BV2 cell secretions induced signalling pathways leading to apoptosis in PC-12 neuronal cells, and this effect was abrogated by the secretions of M2 BV2 cells. RNA sequencing and bioinformatics analysis predicted that this phenotypic shift may be due to changes in energy metabolism. Furthermore, Western blot analysis showed that CUR inhibited the increase in AMP-activated protein kinase (AMPK) phosphorylation, glycolysis, and triacylglycerol synthesis and the reduction in oxidative phosphorylation induced by PRV infection. Moreover, the ATP levels in M2 BV2 cells were higher than those in M1 cells. Furthermore, CUR prevented the increase in mortality, elevated body temperature, slowed growth, nervous system excitation, brain tissue congestion, vascular cuffing, and other symptoms of PRV-induced encephalitis in vivo. Thus, this study demonstrated that CUR protected against PRV-induced viral encephalitis by switching the phenotype of BV2 cells, thereby protecting neurons from inflammatory injury, and this effect was mediated by improving mitochondrial function and the AMPK/NF-κB p65-energy metabolism-related pathway.


Assuntos
Curcumina , Encefalite Viral , Encefalite , Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Curcumina/efeitos adversos , Curcumina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Microglia/metabolismo , Encefalite/induzido quimicamente , Encefalite/metabolismo , Encefalite/veterinária , Fenótipo , Encefalite Viral/metabolismo , Encefalite Viral/veterinária
10.
Mol Biol Rep ; 50(12): 9745-9753, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658929

RESUMO

BACKGROUND: Curcuminoids are the phenolic compounds found exclusively in turmeric. Their presence is known to increase immunity and resistance against certain cancers and neurological disorders in humans also, protecting the plant itself against salinity stress. METHODS: In this experiment, we studied the expression levels of MAPK1 and DCS genes, their curcuminoid biosynthesis under salinity stress conditions so that the impact of individual genes can be understood using semi- quantitative PCR. RESULTS: The expressions of the genes with respect to curcuminoid biosynthesis showed fluctuations in their band intensity values due to the production of curcuminoids, which is initiated first in the leaves followed by the rhizomes. Not all the genes responsible for the curcuminoid biosynthesis show positive regulation under salt stress conditions which is observed in response to the severity of the stress imposed on the cultivars. CONCLUSIONS: In our findings, both the genes MAPK1 and DCS were down-regulated for curcuminoid biosynthesis compared to their controls in both the cultivars Vallabh Sharad and Selection 1.


Assuntos
Curcumina , Diarileptanoides , Humanos , Curcumina/metabolismo , Curcuma/genética , Curcuma/metabolismo , Reação em Cadeia da Polimerase , Perfilação da Expressão Gênica
11.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 102-105, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158681

RESUMO

The objective of this study was to analyze the effect of curcumin (Cur) on pulmonary fibrosis (PF), so as to provide new clinical evidence for future PF treatment. To achieve these goals, the researchers set up bought human lung fibroblasts MRC-5 as a control group without treatment, a model group for PF cell modeling, and an intervention group for Cur intervention after PF modeling. Cell proliferation capacity and cellular TGF-ß1, α-SMA, Collagen I, Collagen III, Bax, N-cadherin and E-cadherin protein expression were determined. The results show that markedly enhanced cell proliferation capacity and TGF-ß1, α-SMA, Collagen I and Collagen III protein levels were observed in the model group, while the cell activity and fibrosis degree in the intervention group were significantly decreased compared with the model group (P<0.05). In addition, the intervention group exhibited lower N-cadherin and Bax with higher E-cadherin than the model group (P<0.05). In addition, the team found that the inflammatory response and oxidative stress were also more significantly improved in the intervention group (P<0.05). These experimental results tell us that Cur can ameliorate the fibrotic process of PF by inhibiting the activity of MRC-5.


Assuntos
Curcumina , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Proteína X Associada a bcl-2/metabolismo , Fibrose , Pulmão/patologia , Colágeno/metabolismo , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacologia , Colágeno Tipo I/uso terapêutico , Caderinas/metabolismo
12.
J Endocrinol Invest ; 46(6): 1103-1113, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781592

RESUMO

PURPOSE: Orbital fibroblasts (OF) are considered the central target cells in the pathogenesis of thyroid-associated orbitopathy (TAO), which comprises orbital inflammation, orbital tissue edema, adipogenesis, fibrosis, oxidative stress and autophagy. Certain active ingredients of traditional Chinese medicine (TCM) demonstrated inhibition of TAO-OF in pre-clinical studies and they could be translated into novel therapeutic strategies. METHODS: The pertinent and current literature of pre-clinical studies on TAO investigating the effects of active ingredients of TCM was reviewed using the NCBI PubMed database. RESULTS: Eleven TCM compounds demonstrated inhibition of TAO-OF in-vitro and three of them (polydatin, curcumin, and gypenosides) resulted in improvement in TAO mouse models. Tanshinone IIA reduced inflammation, oxidative stress and adipogenesis. Both resveratrol and its precursor polydatin displayed anti-oxidative and anti-adipogenic properties. Celastrol inhibited inflammation and triptolide prevented TAO-OF activation, while icariin inhibited autophagy and adipogenesis. Astragaloside IV reduced inflammation via suppressing autophagy and inhibited fat accumulation as well as collagen deposition. Curcumin displayed multiple actions, including anti-inflammatory, anti-oxidative, anti-adipogenic, anti-fibrotic and anti-angiogenic effects via multiple signaling pathways. Gypenosides reduced inflammation, oxidative stress, tissue fibrosis, as well as oxidative stress mediated autophagy and apoptosis. Dihydroartemisinin inhibited OF proliferation, inflammation, hyaluronan (HA) production, and fibrosis. Berberine attenuated inflammation, HA production, adipogenesis, and fibrosis. CONCLUSIONS: Clinical trials of different phases with adequate power and sound methodology will be warranted to evaluate the appropriate dosage, safety and efficacy of these compounds in the management of TAO.


Assuntos
Curcumina , Oftalmopatia de Graves , Animais , Camundongos , Oftalmopatia de Graves/patologia , Curcumina/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Medicina Tradicional Chinesa , Fibrose , Inflamação/metabolismo , Fibroblastos
13.
Planta Med ; 89(4): 364-376, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36130709

RESUMO

Numerous preclinical studies provide evidence that curcumin, a polyphenolic phytochemical extracted from Curcuma longa (turmeric) has neuroprotective, anti-inflammatory and antioxidant properties against various neurological disorders. Curcumin neuroprotective effects have been reported in different animal models of epilepsy, but its potential effect attenuating brain glucose hypometabolism, considered as an early marker of epileptogenesis that occurs during the silent period following status epilepticus (SE), still has not been addressed. To this end, we used the lithium-pilocarpine rat model to induce SE. Curcumin was administered orally (300 mg/kg/day, for 17 days). Brain glucose metabolism was evaluated in vivo by 2-deoxy-2-[18F]Fluoro-D-Glucose ([18F]FDG) positron emission tomography (PET). In addition, hippocampal integrity, neurodegeneration, microglia-mediated neuroinflammation, and reactive astrogliosis were evaluated as markers of brain damage. SE resulted in brain glucose hypometabolism accompanied by body weight (BW) loss, hippocampal neuronal damage, and neuroinflammation. Curcumin did not reduce the latency time to the SE onset, nor the mortality rate associated with SE. Nevertheless, it reduced the number of seizures, and in the surviving rats, curcumin protected BW and attenuated the short-term glucose brain hypometabolism as well as the signs of neuronal damage and neuroinflammation induced by the SE. Overall, our results support the potential adaptogen-like effects of curcumin attenuating key features of SE-induced brain damage.


Assuntos
Curcumina , Estado Epiléptico , Ratos , Animais , Curcumina/farmacologia , Curcumina/metabolismo , Ratos Sprague-Dawley , Doenças Neuroinflamatórias , Encéfalo , Hipocampo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Glucose/farmacologia , Pilocarpina/metabolismo , Pilocarpina/farmacologia , Modelos Animais de Doenças
14.
J Obstet Gynaecol Res ; 49(1): 128-140, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36288911

RESUMO

AIM: Preeclampsia (PE) is a common medical complication of pregnancy characterized by high blood pressure and proteinuria after the 20th gestational week. This study aimed to investigate the potency of the combination of curcumin and aspirin in the treatment of PE and explore the underlying mechanisms. MATERIAL AND METHODS: The PE model was constructed in female rats by administering 0.5 mg/mL N-nitro-L-arginine methyl ester from gestational days (GDs) 6 to 16. The pregnant female rats were divided into five groups according to the drug treatment. The curcumin or aspirin was given to the rats by tail vein injection (0.36 mg/kg) or gavage treatment (1.5 mg/kg BW/day) from GD4 to GD18. RESULTS: Treatment with curcumin and aspirin combination significantly reduced the systolic blood pressure and proteinuria in the PE rats. Meanwhile, in comparison to the PE rats treated with single-dose curcumin or aspirin, the rats treated with combined curcumin and aspirin showed significantly decreased sFlt-1, increased placental growth factor, and alleviated oxidative stress in both blood and placental tissues, which are abnormal in no-treated PE rats. Furthermore, dramatically decreased inflammatory cytokines secretion and TLR4 and NF-κB p65 expression in placental tissues were also observed in the PE rats with combined treatment compared to those of no-treated, signal-dose curcumin or aspirin-treated PE rats. CONCLUSIONS: Our results suggested that the combined treatment of curcumin and aspirin significantly ameliorates the symptoms of PE in rats, which is most likely due to the inhibition of the placental TLR4/NF-κB p65 signaling pathway.


Assuntos
Curcumina , Pré-Eclâmpsia , Humanos , Ratos , Feminino , Gravidez , Animais , Aspirina/farmacologia , Aspirina/uso terapêutico , NF-kappa B/metabolismo , Placenta/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Curcumina/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Fator de Crescimento Placentário/metabolismo , Transdução de Sinais , Proteinúria/tratamento farmacológico
15.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674976

RESUMO

We evaluated the small molecules (AFM) caffeine, curcumin and pirfenidone to find non-toxic concentrations reducing the transformation of activated human corneal stromal keratocytes (aCSK) to scar-inducing myofibroblasts (MYO-SF). CSK were isolated from 16 human corneas unsuitable for transplantation and expanded for three passages in control medium (0.5% FBS). Then, aCSK were exposed to concentrations of caffeine of 0−500 µM, curcumin of 0−200 µM, pirfenidone of 0−2.2 nM and the profibrotic cytokine TGF-ß1 (10 ng/mL) for 48 h. Alterations in viability and gene expression were evaluated by cell viability staining (FDA/PI), real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. We found that all AFMs reduced cell counts at high concentrations. The highest concentrations with no toxic effect were 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone. The addition of TGF-ß1 to the control medium effectively transformed aCSK into myofibroblasts (MYO-SF), indicated by a 10-fold increase in α-smooth muscle actin (SMA) expression, a 39% decrease in lumican (LUM) expression and a 98% decrease in ALDH3A1 expression (p < 0.001). The concentrations of 100 µM of caffeine, 20/50 µM of curcumin and 1.1 nM of pirfenidone each significantly reduced SMA expression under TGF-ß1 stimulation (p ≤ 0.024). LUM and ALDH3A1 expression remained low under TGF-ß1 stimulation, independently of AFM supplementation. Immunocytochemistry showed that 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone reduce the conversion rate of aCSK to SMA+ MYO-SF. In conclusion, in aCSK, 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone significantly reduced SMA expression and MYO-SF conversion under TGF-ß1 stimulation, with no influence on cell counts. However, the AFMs were unable to protect aCSK from characteristic marker loss.


Assuntos
Curcumina , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Cafeína/farmacologia , Cafeína/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Actinas/genética , Actinas/metabolismo
16.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675026

RESUMO

The intracellular retention of mutant cartilage matrix proteins and pathological endoplasmic reticulum (ER) stress disrupts ossification and has been identified as a shared disease mechanism in a range of skeletal dysplasias including short limbed-dwarfism, multiple epiphyseal dysplasia type 5 (EDM5). Although targeting ER stress is an attractive avenue for treatment and has proven successful in the treatment of a related skeletal dysplasia, to date no drugs have proven successful in reducing ER stress in EDM5 caused by the retention of mutant matrilin-3. Our exciting findings show that by using our established luciferase ER stress screening assay, we can identify a "natural" chemical, curcumin, which is able to reduce pathological ER stress in a cell model of EDM5 by promoting the proteasomal degradation mutant matrilin-3. Therefore, this is an important in vitro study in which we describe, for the first time, the success of a naturally occurring chemical as a potential treatment for this currently incurable rare skeletal disease. As studies show that curcumin can be used as a potential treatment for range of diseases in vitro, current research is focused on developing novel delivery strategies to enhance its bioavailability. This is an important and exciting area of research that will have significant clinical impact on a range of human diseases including the rare skeletal disease, EDM5.


Assuntos
Condrócitos , Curcumina , Proteínas Matrilinas , Humanos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Estresse do Retículo Endoplasmático , Proteínas Matrilinas/metabolismo , Proteólise
17.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982944

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that causes lethal watery diarrhea in neonatal pigs and poses economic and public health burdens. Currently, there are no effective antiviral agents against PDCoV. Curcumin is the active ingredient extracted from the rhizome of turmeric, which has a potential pharmacological value because it exhibits antiviral properties against several viruses. Here, we described the antiviral effect of curcumin against PDCoV. At first, the potential relationships between the active ingredients and the diarrhea-related targets were predicted through a network pharmacology analysis. Twenty-three nodes and 38 edges were obtained using a PPI analysis of eight compound-targets. The action target genes were closely related to the inflammatory and immune related signaling pathways, such as the TNF signaling pathway, Jak-STAT signaling pathway, and so on. Moreover, IL-6, NR3C2, BCHE and PTGS2 were identified as the most likely targets of curcumin by binding energy and 3D protein-ligand complex analysis. Furthermore, curcumin inhibited PDCoV replication in LLC-PK1 cells at the time of infection in a dose-dependent way. In poly (I:C) pretreated LLC-PK1 cells, PDCoV reduced IFN-ß production via the RIG-I pathway to evade the host's antiviral innate immune response. Meanwhile, curcumin inhibited PDCoV-induced IFN-ß secretion by inhibiting the RIG-I pathway and reduced inflammation by inhibiting IRF3 or NF-κB protein expression. Our study provides a potential strategy for the use of curcumin in preventing diarrhea caused by PDCoV in piglets.


Assuntos
Coronavirus , Curcumina , Doenças dos Suínos , Animais , Suínos , Células LLC-PK1 , Curcumina/farmacologia , Curcumina/metabolismo , Coronavirus/genética , Antivirais/farmacologia , Antivirais/metabolismo , Diarreia
18.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108383

RESUMO

Irritable bowel syndrome (IBS), a multifactorial intestinal disorder, is often associated with a disruption in intestinal permeability as well as an increased expression of pro-inflammatory markers. The aim of this study was to first test the impact of treatment with glutamine (Gln), a food supplement containing natural curcumin extracts and polyunsaturated n-3 fatty acids (Cur); bioactive peptides from a fish protein hydrolysate (Ga); and a probiotic mixture containing Bacillus coagulans, Lactobacillus acidophilus, Lactobacillus gasseri and Lactobacillus helveticus. These compounds were tested alone on a stress-based IBS model, the chronic-restraint stress model (CRS). The combination of Gln, Cur and Ga (GCG) was also tested. Eight-week-old C57Bl/6 male mice were exposed to restraint stress for two hours every day for four days and received different compounds every day one week before and during the CRS procedure. Plasma corticosterone levels were measured as a marker of stress, and colonic permeability was evaluated ex vivo in Ussing chambers. Changes in the gene expression of tight junction proteins (occludin, claudin-1 and ZO 1) and inflammatory cytokines (IL1ß, TNFα, CXCL1 and IL10) were assessed using RT-qPCR. The CRS model led to an increase in plasma corticosterone and an increase in colonic permeability compared with unstressed animals. No change in plasma corticosterone concentrations was observed in response to CRS with the different treatments (Gln, Cur, Ga or GCG). Stressed animals treated with Gln, Cur and Ga alone and in combination showed a decrease in colonic permeability when compared to the CRS group, while the probiotic mixture resulted in an opposite response. The Ga treatment induced an increase in the expression of the anti-inflammatory cytokine IL-10, and the GCG treatment was able to decrease the expression of CXCL1, suggesting the synergistic effect of the combined mixture. In conclusion, this study demonstrated that a combined administration of glutamine, a food supplement containing curcumin and polyunsaturated n-3 fatty acids, and bioactive peptides from a fish hydrolysate was able to reduce colonic hyperpermeability and reduce the inflammatory marker CXCL1 in a stress-based model of IBS and could be of interest to patients suffering from IBS.


Assuntos
Curcumina , Ácidos Graxos Ômega-3 , Síndrome do Intestino Irritável , Animais , Camundongos , Masculino , Síndrome do Intestino Irritável/metabolismo , Glutamina/farmacologia , Glutamina/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Mucosa Intestinal/metabolismo , Corticosterona/metabolismo , Citocinas/metabolismo , Permeabilidade , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo
19.
J Fish Biol ; 103(1): 22-31, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36999384

RESUMO

Curcumin in 0.5% and 1% doses was given as a feed additive to tilapia (Oreochromis mossambicus) for 100 days to evaluate the effect of curcumin on fatty acid levels in brain, appetite and the growth axis-related gene expressions. A total of 180 fish were randomly stocked into 650 l tanks and fed with basal feed during acclimatization. Three treatment groups were established, each having three replicates and each replicate had 20 fish. They were fed twice on the experimental diets of 10% body weight ration per fish. Gas chromatography analysis revealed a significant change in the amount of total saturated fatty acids and total monounsaturated fatty acids in tilapia brain. The present study indicated an increase in n-3 (omega-3) and n-6 (omega-6) polyunsaturated fatty acids in brain. Real-time quantification of appetite-regulating neuropeptides in brain and growth-related gene expressions in muscle revealed a significant modulation in their mRNA expressions. This information obtained in the present study on the beneficial role of curcumin in the regulation of fatty acid levels and the expression of appetite-regulating neuropeptides and growth-regulating factors will contribute to research in feed intake and growth in fish.


Assuntos
Curcumina , Neuropeptídeos , Tilápia , Animais , Tilápia/genética , Curcumina/farmacologia , Curcumina/metabolismo , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/metabolismo , Apetite , Dieta/veterinária , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Encéfalo/metabolismo , Ácidos Graxos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ração Animal
20.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674546

RESUMO

We investigated the antioxidant potential of equine mesenchymal stem cells derived from muscle microbiopsies (mdMSCs), loaded by a water-soluble curcumin lysinate incorporated into hydroxypropyl-ß-cyclodextrin (NDS27). The cell loading was rapid and dependent on NDS27 dosage (14, 7, 3.5 and 1 µM). The immunomodulatory capacity of loaded mdMSCs was evaluated by ROS production, on active and total myeloperoxidase (MPO) degranulation and neutrophil extracellular trap (NET) formation after neutrophil stimulation. The intracellular protection of loaded cells was tested by an oxidative stress induced by cumene hydroperoxide. Results showed that 10 min of mdMSC loading with NDS27 did not affect their viability while reducing their metabolism. NDS27 loaded cells in presence of 14, 7 µM NDS27 inhibited more intensively the ROS production, the activity of the MPO released and bound to the NET after neutrophil stimulation. Furthermore, loaded cells powerfully inhibited intracellular ROS production induced by cumene as compared to control cells or cyclodextrin-loaded cells. Our results showed that the loading of mdMSCs with NDS27 significantly improved their antioxidant potential against the oxidative burst of neutrophil and protected them against intracellular ROS production. The improved antioxidant protective capacity of loaded mdMSCs could be applied to target inflammatory foci involving neutrophils.


Assuntos
Curcumina , Animais , Cavalos , Curcumina/farmacologia , Curcumina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Estresse Oxidativo , Músculos/metabolismo , Peroxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA