Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.455
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(19): 5357-5375.e24, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39260374

RESUMO

Genetic medicines show promise for treating various diseases, yet clinical success has been limited by tolerability, scalability, and immunogenicity issues of current delivery platforms. To overcome these, we developed a proteolipid vehicle (PLV) by combining features from viral and non-viral approaches. PLVs incorporate fusion-associated small transmembrane (FAST) proteins isolated from fusogenic orthoreoviruses into a well-tolerated lipid formulation, using scalable microfluidic mixing. Screening a FAST protein library, we identified a chimeric FAST protein with enhanced membrane fusion activity that improved gene expression from an optimized lipid formulation. Systemically administered FAST-PLVs showed broad biodistribution and effective mRNA and DNA delivery in mouse and non-human primate models. FAST-PLVs show low immunogenicity and maintain activity upon repeat dosing. Systemic administration of follistatin DNA gene therapy with FAST-PLVs raised circulating follistatin levels and significantly increased muscle mass and grip strength. These results demonstrate the promising potential of FAST-PLVs for redosable gene therapies and genetic medicines.


Assuntos
DNA , Proteolipídeos , Animais , Camundongos , DNA/metabolismo , DNA/administração & dosagem , Proteolipídeos/metabolismo , Terapia Genética/métodos , Humanos , Folistatina/metabolismo , Folistatina/genética , Técnicas de Transferência de Genes , RNA/metabolismo , RNA/administração & dosagem , Feminino , Camundongos Endogâmicos C57BL
2.
Nano Lett ; 24(26): 7833-7842, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38887996

RESUMO

Tobacco mild green mosaic virus (TMGMV)-like nanocarriers were designed for gene delivery to plant cells. High aspect ratio TMGMVs were coated with a polycationic biopolymer, poly(allylamine) hydrochloride (PAH), to generate highly charged nanomaterials (TMGMV-PAH; 56.20 ± 4.7 mV) that efficiently load (1:6 TMGMV:DNA mass ratio) and deliver single-stranded and plasmid DNA to plant cells. The TMGMV-PAH were taken up through energy-independent mechanisms in Arabidopsis protoplasts. TMGMV-PAH delivered a plasmid DNA encoding a green fluorescent protein (GFP) to the protoplast nucleus (70% viability), as evidenced by GFP expression using confocal microscopy and Western blot analysis. TMGMV-PAH were inactivated (iTMGMV-PAH) using UV cross-linking to prevent systemic infection in intact plants. Inactivated iTMGMV-PAH-mediated pDNA delivery and gene expression of GFP in vivo was determined using confocal microscopy and RT-qPCR. Virus-like nanocarrier-mediated gene delivery can act as a facile and biocompatible tool for advancing genetic engineering in plants.


Assuntos
Arabidopsis , Proteínas de Fluorescência Verde , Arabidopsis/virologia , Arabidopsis/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas de Transferência de Genes , Plasmídeos/genética , Poliaminas/química , Protoplastos/metabolismo , Nanoestruturas/química , DNA/química , DNA/administração & dosagem
3.
Bioconjug Chem ; 35(7): 897-911, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38924453

RESUMO

Cationic polymers offer an alternative to viral vectors in nucleic acid delivery. However, the development of polymer vehicles capable of high transfection efficiency and minimal toxicity has remained elusive, and continued exploration of the vast design space is required. Traditional single polymer syntheses with large monomer bases are very time-intensive, limiting the speed at which new formulations are identified. In this work, we present an experimental method for the quick probing of the design space, utilizing a combinatorial set of 90 polymer blends, derived from 6 statistical copolymers, to deliver pDNA. This workflow facilitated rapid screening of polyplex compositions, successfully tailoring polyplex hydrophobicity, particle size, and payload binding affinity. This workflow identified blended polyplexes with high levels of transfection efficiency and cell viability relative to single copolymer controls and commercial JetPEI, indicating synergistic benefits from copolymer blending. Polyplex composition was coupled with biological outputs to guide the synthesis of single terpolymer vehicles, with high-performing polymers P10 and M20, providing superior transfection of HEK293T cells in serum-free and serum-containing media, respectively. Machine learning coupled with SHapley Additive exPlanations (SHAP) was used to identify polymer/polyplex attributes that most impact transfection efficiency, viability, and overall effective efficiency. Subsequent transfections on ARPE-19 and HDFn cells found that P10 and M20 were surpassed in performance by M10, contrasting with results in HEK293T cells. This cell type dependency reinforced the need to evaluate transfection conditions with multiple cell models to potentially identify moieties more beneficial to delivery in certain tissues. Overall, the workflow employed can be used to expedite the exploration of the polymer design space, bypassing extensive synthesis, and to develop improved polymer delivery vehicles more readily for nucleic acid therapies.


Assuntos
DNA , Aprendizado de Máquina , Plasmídeos , Polímeros , Humanos , Polímeros/química , Células HEK293 , DNA/administração & dosagem , Plasmídeos/administração & dosagem , Plasmídeos/genética , Transfecção/métodos , Técnicas de Transferência de Genes , Sobrevivência Celular/efeitos dos fármacos
4.
Bioconjug Chem ; 35(9): 1417-1428, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39225485

RESUMO

Electrostatic self-assembly between negatively charged nucleic acids and cationic materials is the basis for the formulation of the delivery systems. Nevertheless, structural disintegration occurs because their colloidal stabilities are frequently insufficient in a hostile biological environment. To overcome the sequential biological barriers encountered during transcellular gene delivery, we attempted to use in situ polymerization onto plasmid DNA (pDNA) with a variety of functional monomers, including N-(3-aminopropyl)methacrylate, (aminopropyl)methacrylamide hydrochloride, 1-vinylimidazole, and 2-methacryloyloxyethylphosphorylcholine and N,N'-bis(acryloyl) cystamine. The covalently linked monomers could polymerize into a network structure on top of pDNA, providing excellent structural stability. Additionally, the significant proton buffering capacity of 1-vinylimidazole is expected to aid in the release of pDNA payloads from acidic and digestive endolysosomes. In addition, the redox-mediated cleavage of the disulfide bond in N,N'-bis(acryloyl)cystamine allows for the selective cleavage of the covalently linked network in the cytosolic microenvironment. This is due to the high intracellular level of glutathione, which promotes the liberation of pDNA payloads in the cell interiors. The proposed polymerization strategies resulted in well-defined nanoscale pDNA delivery systems. Excellent colloidal stabilities were observed, even when incubated in the presence of high concentrations of heparin (10 mg/mL). In contrast, the release of pDNA was confirmed upon incubation in the presence of glutathione, mimicking the intracellular microenvironment. Cell transfection experiments verified their efficient cellular uptake and gene expression activities in the hard-transfected MCF-7 cells. Hence, the polymerization strategy used in the fabrication of covalently linked nonviral gene delivery systems shows promise in creating high-performance gene delivery systems with diverse functions. This could open new avenues in cellular microenvironment engineering.


Assuntos
DNA , Plasmídeos , Polimerização , Humanos , DNA/administração & dosagem , DNA/química , Plasmídeos/administração & dosagem , Técnicas de Transferência de Genes , Metacrilatos/química , Transfecção/métodos , Células MCF-7 , Fosforilcolina/química , Fosforilcolina/análogos & derivados
5.
Nat Methods ; 17(5): 481-494, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32251396

RESUMO

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.


Assuntos
DNA/administração & dosagem , Eucariotos/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Biologia Marinha , Modelos Biológicos , Transformação Genética , Biodiversidade , Ecossistema , Meio Ambiente , Eucariotos/classificação , Especificidade da Espécie
6.
Mol Ther ; 29(2): 838-847, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290725

RESUMO

We recently reported the antisense properties of a DNA/RNA heteroduplex oligonucleotide consisting of a phosphorothioate DNA-gapmer antisense oligonucleotide (ASO) strand and its complementary phosphodiester RNA/phosphorothioate 2'-O-methyl RNA strand. When α-tocopherol was conjugated with the complementary strand, the heteroduplex oligonucleotide silenced the target RNA more efficiently in vivo than did the parent single-stranded ASO. In this study, we designed a new type of the heteroduplex oligonucleotide, in which the RNA portion of the complementary strand was replaced with phosphodiester DNA, yielding an ASO/DNA double-stranded structure. The ASO/DNA heteroduplex oligonucleotide showed similar activity and liver accumulation as did the original ASO/RNA design. Structure-activity relationship studies of the complementary DNA showed that optimal increases in the potency and the accumulation were seen when the flanks of the phosphodiester DNA complement were protected using 2'-O-methyl RNA and phosphorothioate modifications. Furthermore, evaluation of the degradation kinetics of the complementary strands revealed that the DNA-complementary strand as well as the RNA strand were completely cleaved in vivo. Our results expand the repertoire of chemical modifications that can be used with the heteroduplex oligonucleotide technology, providing greater design flexibility for future therapeutic applications.


Assuntos
DNA/genética , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Oligodesoxirribonucleotídeos/genética , Células Cultivadas , DNA/administração & dosagem , Inativação Gênica , Oligodesoxirribonucleotídeos/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética
7.
Bull Exp Biol Med ; 174(1): 104-108, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36437316

RESUMO

We studied the relationship between the level of cytokines in the lymph of the thoracic duct and the morphometric parameters of the mesenteric lymph nodes after surgical treatment of breast cancer, chemotherapy, and administration of fragmented (double-stranded, dsDNA) human DNA. In comparison with surgical treatment and with chemotherapy alone, administration of a human dsDNA has a stimulating effect on the T-cell link of the immune response. In the paracortical zone, the relationship between the chemokine MCP-1 and increased content of small lymphocytes in this zone was revealed. Interrelations of IL-2 cytokines with small lymphocytes and of IL-4 with medium lymphocytes were revealed in germinal centers. We also observed interrelations of IL-7 with small lymphocytes and IL-4 with macrophages in the medullary cords, chemokine MIP-1α with immature and mature plasma cells (the number of these cells is reduced), and of MCP-1 with immunoblasts (the number of which is also reduced) in the medullary sinuses.


Assuntos
Adjuvantes Imunológicos , Neoplasias da Mama , Citocinas , DNA , Linfonodos , Neoplasias Mamárias Animais , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/cirurgia , Neoplasias da Mama/terapia , Quimiocinas/metabolismo , Citocinas/metabolismo , DNA/administração & dosagem , Interleucina-4/metabolismo , Linfa/metabolismo , Linfonodos/metabolismo , Animais , Ratos , Ratos Wistar , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/cirurgia , Neoplasias Mamárias Animais/terapia , Adjuvantes Imunológicos/administração & dosagem , Linfócitos T/imunologia
8.
Mol Pharm ; 18(7): 2556-2573, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34110176

RESUMO

Cyclo-(D-Trp-Tyr) peptide nanotubes (PNTs) were reported to be potential carriers for oral gene delivery in our previous study; however, the effect of the aspect ratio (AR) of these PNTs on gene delivery in vivo could affect penetration or interception in biological environments. The aim of this study was to assess the feasibility of cyclo-(D-Trp-Tyr) PNTs with two ARs as carriers for oral pMBP-bcl-xL-hRluc delivery to the spinal cord to treat spinal cord injury (SCI). We evaluated the biodistribution of oligodendrocyte (OLG)-specific myelin basic protein gene promoter-driven antiapoptotic DNA (pMBP-bcl-xL) to the brain and spinal cord delivered with cyclo-(D-Trp-Tyr) PNTs with large (L) and small (S) PNTs with two ARs. After complex formation, the length, width, and AR of the L-PNTs/DNA were 77.86 ± 3.30, 6.51 ± 0.28, and 13.75 ± 7.29 µm, respectively, and the length and width of the S-PNTs/DNA were 1.17 ± 0.52 and 0.17 ± 0.05 µm, respectively, giving an AR of 7.12 ± 3.17 as detected by scanning electron microscopy. Each of these three parameters exhibited significant differences (p < 0.05) between L-PNTs/DNA and S-PNTs/DNA. However, there were no significant differences (p > 0.05) between the L-PNTs and S-PNTs for either their DNA encapsulation efficiency (29.72 ± 14.19 and 34.31 ± 16.78%, respectively) or loading efficiency (5.15 ± 2.58 and 5.95 ± 2.91%). The results of the in vitro analysis showed that the S-PNT/DNA complexes had a significantly higher DNA release rate and DNA permeation in the duodenum than the L-PNT/DNA complexes. Using Cy5 and TM-rhodamine to individually and chemically conjugate the PNTs with plasmid DNA, we observed, using laser confocal microscopy, that the PNTs and DNA colocalized in complexes. We further confirmed the complexation between DNA and the PNTs using fluorescence resonance energy transfer (FRET). Data from an in vivo imaging system (IVIS) showed that there was no significant difference (p > 0.05) in PNT distribution between L-PNTs/DNA and S-PNTs/DNA within 4 h. However, the S-PNT/DNA group had a significantly higher DNA distribution (p < 0.05) in several organs, including the ilium, heart, lungs, spleen, kidneys, testes, brain, and spinal cord. Finally, we determined the bcl-xL protein expression levels in the brain and spinal cord regions for the L-PNT/DNA and S-PNT/DNA complex formulations. These results suggested that either L-PNTs or S-PNTs may be used as potential carriers for oral gene delivery to treat SCI.


Assuntos
Encéfalo/metabolismo , DNA/farmacocinética , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Nanotubos de Peptídeos/química , Peptídeos Cíclicos/química , Medula Espinal/metabolismo , Proteína bcl-X/metabolismo , Administração Oral , Animais , DNA/administração & dosagem , DNA/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Distribuição Tecidual , Proteína bcl-X/administração & dosagem , Proteína bcl-X/genética
9.
Mol Pharm ; 18(7): 2803-2822, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34086466

RESUMO

Polyethyleneimine (PEI) has a good spongy proton effect and is an excellent nonviral gene vector, but its high charge density leads to the instability and toxicity of PEI/DNA complexes. Cell membrane (CM) capsules provide a universal and natural solution for this problem. Here, CM-coated PEI/DNA capsules (CPDcs) were prepared through extrusion, and the extracellular matrix was coated on CPDcs (ECM-CPDcs) for improved targeting. The results showed that compared with PEI/DNA complexes, CPDcs had core-shell structures (PEI/DNA complexes were coated by a 6-10 nm layer), lower cytotoxicity, and obvious homologous targeting. The internalization and transfection efficiency of 293T-CM-coated PEI70k/DNA capsules (293T-CP70Dcs) were 91.8 and 74.5%, respectively, which were higher than those of PEI70k/DNA complexes. Then, the internalization and transfection efficiency of 293T-CP70Dcs were further improved by ECM coating, which were 94.7 and 78.9%, respectively. Then, the internalization and transfection efficiency of 293T-CP70Dcs were further improved by ECM coating, which were 94.7 and 78.9%, respectively. Moreover, the homologous targeting of various CPDcs was improved by ECM coating, and other CPDcs also showed similar effects as 293T-CP70Dcs after ECM coating. These findings suggest that tumor-targeted CPDcs may have considerable advantages in gene delivery.


Assuntos
Membrana Celular/química , DNA/administração & dosagem , Matriz Extracelular/química , Técnicas de Transferência de Genes/estatística & dados numéricos , Terapia Genética , Neoplasias/terapia , Polietilenoimina/química , Proliferação de Células , DNA/química , DNA/genética , Células HeLa , Células Hep G2 , Humanos , Técnicas In Vitro , Neoplasias/genética , Neoplasias/patologia
10.
Mol Pharm ; 18(3): 878-888, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33492961

RESUMO

This study describes the development of lipid nanoparticles (LNPs) for the efficient and selective delivery of plasmid DNA (pDNA) to the lungs. The GALA peptide was used as a ligand to target the lung endothelium and as an endosomal escape device. Transfection activity in the lungs was significantly improved when pDNA was encapsulated in double-coated LNPs. The inner coat was composed of dioleoylphsophoethanolamine and a stearylated octaarginine (STR-R8) peptide, while the outer coat was largely a cationic lipid, di-octadecenyl-trimethylammonium propane, mixed with YSK05, a pH-sensitive lipid, and cholesterol. Optimized amounts of YSK05 and GALA were used to achieve an efficient and lung-selective system. The optimized system produced a high gene expression level in the lungs (>107 RLU/mg protein) with high lung/liver and lung/spleen ratios. GALA/R8 modification and the double-coating design were indispensable for efficient gene expression in the lungs. Despite the fact that NPs prepared with 1-step or 2-step coating have the same lipid amount and composition and the same pDNA dose, the transfection activity was dramatically higher in the lungs in the case of 2-step coating. Surprisingly, 1-step or 2-step coatings had no effect on the amount of nanoparticles that were delivered to the lungs, suggesting that the double-coating strategy substantially improved the efficiency of gene expression at the intracellular level.


Assuntos
DNA/administração & dosagem , Lipídeos/química , Pulmão/efeitos dos fármacos , Nanopartículas/química , Peptídeos/química , Plasmídeos/administração & dosagem , Animais , Linhagem Celular , Feminino , Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Humanos , Concentração de Íons de Hidrogênio , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Oligopeptídeos/administração & dosagem , Transfecção/métodos
11.
Chem Rev ; 119(10): 6459-6506, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29465222

RESUMO

Over the past decade, we have seen rapid advances in applying nanotechnology in biomedical areas including bioimaging, biodetection, and drug delivery. As an emerging field, DNA nanotechnology offers simple yet powerful design techniques for self-assembly of nanostructures with unique advantages and high potential in enhancing drug targeting and reducing drug toxicity. Various sequence programming and optimization approaches have been developed to design DNA nanostructures with precisely engineered, controllable size, shape, surface chemistry, and function. Potent anticancer drug molecules, including Doxorubicin and CpG oligonucleotides, have been successfully loaded on DNA nanostructures to increase their cell uptake efficiency. These advances have implicated the bright future of DNA nanotechnology-enabled nanomedicine. In this review, we begin with the origin of DNA nanotechnology, followed by summarizing state-of-the-art strategies for the construction of DNA nanostructures and drug payloads delivered by DNA nanovehicles. Further, we discuss the cellular fates of DNA nanostructures as well as challenges and opportunities for DNA nanostructure-based drug delivery.


Assuntos
DNA/química , Sistemas de Liberação de Medicamentos/métodos , Nanotecnologia/métodos , Animais , DNA/administração & dosagem , Humanos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Conformação de Ácido Nucleico , Oligonucleotídeos/química
12.
Mol Ther ; 28(2): 523-535, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31879189

RESUMO

The use of gene therapy may allow replacement of the defective gene. Minigenes, such as cDNAs, are often used. However, these may not express normal physiological genetic profiles due to lack of crucial endogenous regulatory elements. We constructed DNA nanoparticles (NPs) that contain either the mouse or human full-length rhodopsin genomic locus, including endogenous promoters, all introns, and flanking regulatory sequences of the 15-16 kb genomic rhodopsin DNA inserts. We transduced the NPs into primary retinal cell cultures from the rhodopsin knockout (RKO) mouse in vitro and into the RKO mouse in vivo and compared the effects on different functions to plasmid cDNA NP counterparts that were driven by ubiquitous promoters. Our results demonstrate that genomic DNA vectors resulted in long-term high levels of physiological transgene expression over a period of 5 months. In contrast, the cDNA counterparts exhibited low levels of expression with sensitivity to the endoplasmic reticulum (ER) stress mechanism using the same transgene copy number both in vitro and in vivo. This study demonstrates for the first time the transducing of the rhodopsin genomic locus using compacted DNA NPs.


Assuntos
DNA/administração & dosagem , Expressão Gênica , Terapia Genética , Nanopartículas , Degeneração Retiniana/genética , Rodopsina/genética , Animais , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Técnicas de Transferência de Genes , Humanos , Camundongos , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Retinose Pigmentar/terapia , Transgenes
13.
Mol Ther ; 28(3): 830-844, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32027843

RESUMO

The authors describe retinal reconstruction and restoration of visual function in heritably blind mice missing the rhodopsin gene using a novel method of ex vivo gene therapy and cell transplantation. Photoreceptor precursors with the same chromosomal genetic mutation were treated ex vivo using minicircle DNA, a non-viral technique that does not present the packaging limitations of adeno-associated virus (AAV) vectors. Following transplantation, genetically modified cells reconstructed a functional retina and supported vision in blind mice harboring the same founder gene mutation. Gene delivery by minicircles showed comparable long-term efficiency to AAV in delivering the missing gene, representing the first non-viral system for robust treatment of photoreceptors. This important proof-of-concept finding provides an innovative convergence of cell and gene therapies for the treatment of hereditary neurodegenerative disease and may be applied in future studies toward ex vivo correction of patient-specific cells to provide an autologous source of tissue to replace lost photoreceptors in inherited retinal blindness. This is the first report using minicircles in photoreceptor progenitors and the first to transplant corrected photoreceptor precursors to restore vision in blind animals.


Assuntos
DNA/administração & dosagem , Terapia Genética , Células-Tronco Neurais/metabolismo , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Células Cultivadas , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Camundongos , Camundongos Knockout , Plasmídeos/genética , Rodopsina/genética , Transplante de Células-Tronco/métodos , Transdução Genética , Transgenes
14.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445802

RESUMO

Osteoporosis is commonly treated via the long-term usage of anti-osteoporotic agents; however, poor drug compliance and undesirable side effects limit their treatment efficacy. The parathyroid hormone-related protein (PTHrP) is essential for normal bone formation and remodeling; thus, may be used as an anti-osteoporotic agent. Here, we developed a platform for the delivery of a single peptide composed of two regions of the PTHrP protein (1-34 and 107-139); mcPTHrP 1-34+107-139 using a minicircle vector. We also transfected mcPTHrP 1-34+107-139 into human mesenchymal stem cells (MSCs) and generated Thru 1-34+107-139-producing engineered MSCs (eMSCs) as an alternative delivery system. Osteoporosis was induced in 12-week-old C57BL/6 female mice via ovariectomy. The ovariectomized (OVX) mice were then treated with the two systems; (1) mcPTHrP 1-34+107-139 was intravenously administered three times (once per week); (2) eMSCs were intraperitoneally administered twice (on weeks four and six). Compared with the control OVX mice, the mcPTHrP 1-34+107-139-treated group showed better trabecular bone structure quality, increased bone formation, and decreased bone resorption. Similar results were observed in the eMSCs-treated OVX mice. Altogether, these results provide experimental evidence to support the potential of delivering PTHrP 1-34+107-139 using the minicircle technology for the treatment of osteoporosis.


Assuntos
Reabsorção Óssea/tratamento farmacológico , DNA/administração & dosagem , Osteogênese/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Animais , Densidade Óssea/efeitos dos fármacos , Linhagem Celular , Feminino , Células HEK293 , Humanos , Injeções Intravenosas/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/tratamento farmacológico , Ovariectomia/métodos
15.
Br J Cancer ; 123(10): 1481-1489, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839491

RESUMO

BACKGROUND: AsiDNA, a first-in-class oligonucleotide-mimicking double-stranded DNA breaks, acts as a decoy agonist to DNA damage response in tumour cells. It also activates DNA-dependent protein kinase and poly (adenosine diphosphate [ADP]-ribose) polymerase enzymes that induce phosphorylation of H2AX and protein PARylation. METHODS: The aim of this Phase 1 study was to determine dose-limiting toxicities (DLTs), maximum tolerated dose (MTD), safety and pharmacokinetics/pharmacodynamics of AsiDNA administered daily for 3 days in the first week then weekly thereafter. Twenty-two patients with advanced solid tumours were enrolled in 5 dose levels: 200, 400, 600, 900, and 1300 mg, using a 3 + 3 design. RESULTS: The MTD was not reached. IV AsiDNA was safe. Two DLTs (grade 4 and grade 3 hepatic enzymes increased at 900 and 1300 mg), and two related SAE at 900 mg (grade 3 hypotension and grade 4 hepatic enzymes increased) were reported. AsiDNA PK increased proportionally with dose. A robust activation of DNA-PK by a significant posttreatment increase of γH2AX was evidenced in tumour biopsies. CONCLUSION: The dose of 600 mg was identified as the optimal dose for further clinical development. CLINICAL TRIAL REGISTRATION: Clinical trial registration (NCT number): NCT03579628.


Assuntos
Colesterol/análogos & derivados , DNA/administração & dosagem , DNA/efeitos adversos , DNA/farmacocinética , Neoplasias/tratamento farmacológico , Administração Intravenosa , Adulto , Idoso , Bélgica , Colesterol/administração & dosagem , Colesterol/efeitos adversos , Colesterol/farmacocinética , Reparo do DNA/efeitos dos fármacos , Progressão da Doença , Relação Dose-Resposta a Droga , Feminino , França , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/metabolismo , Neoplasias/patologia
16.
J Gene Med ; 22(11): e3259, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32776410

RESUMO

BACKGROUND: pH-sensitive peptides are a relatively new strategy for conquering the poor endosomal release of cationic polymer-mediated transfection. Modification of antimicrobial peptides by exchanging positively-charged residues with negatively-charged glutamic acid residues (Glu) greatly improves its lytic activity at the endosomal pH, which could improve cationic polymer-mediated transfection. METHODS: In the present study, we investigated the effect of the number of Glu substituted for positively-charged residues on the endosomal escape activity of AR-23 and the ability of mutated AR-23 with respect to enhancing cationic polymer-mediated transfection. Three analogs were synthesized by replacing the positively-charged residues in the AR-23 sequence with Glu one-by-one. RESULTS: The pH-sensitive lysis ability of the peptides, the effect of peptides on the physicochemical characteristics, the intracellular trafficking, the transfection efficiency and the cytotoxicity of the polyplexes were determined. Increased lytic activity of peptides was observed with the increased number of Glu replacement in the AR-23 sequence at acidic pH. The number of Glu substituted for positively-charged residues of AR-23 dramatically affects its lysis ability at neutral pH. Triple-Glu substitution in the AR-23 sequence greatly improved poly(l-lysine)-mediated gene transfection efficiency at the same time as maintaining low cytotoxicity. CONCLUSIONS: The results indicate that replacement of positively-charged residues with sufficient Glu residues may be considered as a method for designing pH-sensitive peptides, which could be applied as potential enhancers for improving cationic polymer-mediated transfection.


Assuntos
DNA/administração & dosagem , Endossomos/efeitos dos fármacos , Terapia Genética , Hemólise/efeitos dos fármacos , Neoplasias/terapia , Polilisina/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Apoptose , Proliferação de Células , Técnicas de Transferência de Genes , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/genética , Neoplasias/patologia , Proteínas Citotóxicas Formadoras de Poros/química , Células Tumorais Cultivadas
17.
Soft Matter ; 16(20): 4746-4755, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32329496

RESUMO

Penetratin is a short Trojan peptide that attracts great interest in biomedical research for its capacity to translocate biological membranes. Herein, we study in detail both self-assembly and intracellular delivery of DNA by the heptamer KIWFQNR, a truncated peptide derived from Penetratin. This shortened sequence possesses a unique design with bolaamphiphilic characteristics that preserves the longest noncationic amino acid portion found in Penetratin. These features convey amphipathicity to assist self-assembly and make it a suitable model for exploring the role of hydrophobic residues for peptide interaction and cell uptake. We show that the fragment forms peptiplexes (i.e., peptide-DNA complexes), and aggregates into long nanofibers with clear ß-sheet signature. The supramolecular structure of nanofibers is likely composed of DNA cores surrounded by a peptide shell to which the double helix behaves as a template and induces fibrillization. A nucleation and growth mechanism proceeding through liquid-liquid phase separation of coacervates is proposed for describing the self-assembly of peptiplexes. We also demonstrate that peptiplexes deliver double-stranded 200 bp DNA into HeLa cells, indicating its potential for preparing non-viral vectors for oligonucleotides through noncovalent strategies. Since the main structural features of native Penetratin are conserved in this simpler fragment, our findings also highlight the role of uncharged amino acids for structuration, and thus for the ability of Penetratin to cross cell membranes.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , DNA/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Peptídeos Penetradores de Células/química , Citosol/metabolismo , DNA/química , Endocitose , Células HeLa , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química
18.
Pharm Res ; 37(7): 144, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32666411

RESUMO

PURPOSE: To formulate and characterize nanoparticles from m-7NH-m gemini surfactants, synthesized by a new improved method, for non-invasive gene delivery including optimization of composition for transfection efficiency and corneal penetration. METHODS: A one-pot, solvent-free, DMAP-free method was developed for the synthesis of m-7NH-m (m = 12-18) gemini surfactant series. Lipoplexes (LPXs) and nanoplexes (NPXs) of gemini surfactant-plasmid DNA were formulated with and without DOPE helper lipid, respectively, at various charge ratios and characterized by dynamic light scattering and zeta potential measurements. Transfection efficiency, cellular toxicity, effect of DOPE and gene expression kinetic studies were carried out in A7 astrocytes by flow cytometry and confocal microscopy. Corneal penetration studies of 18-7NH-18 NPXs were carried out using 3D EpiCorneal® tissue model. RESULTS: The new synthesis method provides a two-fold improved yield and the production of a pure species of m-7NH-m without DMAP and trimeric m-7N(m)-m surfactants as impurities. Structure and purity was confirmed by ESI-MS, 1H NMR spectroscopy and surface tension measurements. Particle size of 199.80 ± 1.83 nm ± S.D. and a zeta potential value of +30.18 ± 1.17 mV ± S.D. was obtained for 18-7NH-18 5:1 ratio NPXs showed optimum transfection efficiency (10.97 ± 0.11%) and low toxicity (92.97 ± 0.57% viability) at the 48-h peak expression. Inclusion of DOPE at 1: 0.5 and 1:1 ratios to gemini surfactant reduced transfection efficiency and increased toxicity. Treatment of EpiCorneal® tissue model showed deep penetration of up to 100 µm with 18-7NH-18 NPXs. CONCLUSION: Overall, 18-7NH-18 NPXs are potential gene delivery systems for ophthalmic gene delivery and for further in vivo studies.


Assuntos
Córnea/metabolismo , Técnicas de Transferência de Genes , Tensoativos/química , Tensoativos/farmacologia , Administração Oftálmica , Animais , Astrócitos/metabolismo , Linhagem Celular , DNA/administração & dosagem , DNA/química , Composição de Medicamentos , Expressão Gênica , Terapia Genética , Nanopartículas , Fosfatidiletanolaminas/química , Plasmídeos/química , Ratos , Tensoativos/farmacocinética
19.
Neurourol Urodyn ; 39(2): 744-753, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31945197

RESUMO

AIMS: Two phase 1 trials were performed in healthy women with the overactive bladder (OAB) syndrome and urodynamically demonstrated detrusor overactivity (DO), with the aim to demonstrate the safety and potential efficacy of URO-902, which comprises a gene therapy plasmid vector expressing the human big potassium channel α subunit. METHODS: ION-02 (intravesical instillation) and ION-03 (direct injection) were double-blind, placebo-controlled, multicenter studies without overlap in enrollment between studies. Active doses were administered and evaluated sequentially (lowest dose first) for safety. ION-02 participants received either 5000 µg or 10 000 µg URO-902, or placebo. ION-03 participants received either 16 000 or 24 000 µg URO-902, or placebo, injected directly into the bladder wall using cystoscopy. Primary outcome variables were safety parameters occurring subsequent to URO-902 administration; secondary efficacy variables also were evaluated. RESULTS: Among the safety outcomes, there were no dose-limiting toxicities or significant adverse events (AEs) preventing dose escalation during either trial, and no participants withdrew due to AEs. For efficacy, in ION-02 (N = 21), involuntary detrusor contractions on urodynamics at 24 weeks in patients receiving URO-902 (P < .0508 vs placebo) and mean urgency incontinence episodes in the 5000 µg group (P = .0812 vs placebo) each showed a downward trend. In ION-03 (N = 13), significant reduction versus placebo in urgency episodes (16 000 µg, P = .036; 24 000 µg, P = .046) and number of voids (16 000 µg, -2.16, P = .044; 24 000 µg, -2.73, P = .047) were observed 1 week after injection. CONCLUSION: Promising safety and efficacy results in these preliminary phase 1 studies suggest gene transfer may be a promising therapy for OAB/DO, warranting further investigation.


Assuntos
Terapia Genética/métodos , Bexiga Urinária Hiperativa/terapia , Administração Intravesical , Adulto , Idoso , Idoso de 80 Anos ou mais , Cistoscopia , DNA/administração & dosagem , DNA/uso terapêutico , Método Duplo-Cego , Feminino , Terapia Genética/efeitos adversos , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/uso terapêutico , Pessoa de Meia-Idade , Segurança do Paciente , Resultado do Tratamento , Urodinâmica
20.
Mol Biol Rep ; 47(8): 5879-5887, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32661869

RESUMO

Sperm-mediated gene transfer (SMGT) has a potential use for zebrafish transgenesis. However, transfection into fish sperm cells still needs to be improved. The objective was to demonstrate the feasibility of tip type electroporation in zebrafish sperm, showing a protocol that provide high transfection efficiency, with minimal side-effects. Sperm was transfected with a Cy3-labelled DNA using tip type electroporation with voltages ranging from 500 to 1500 V. Sperm kinetics parameters were assessed using Computer Assisted Semen Analysis (CASA) and cell integrity, reactive oxygen species (ROS), mitochondrial functionality and transfection rate were evaluated by flow cytometry. The transfection rates were positively affected by tip type electroporation, reaching 64.9% ± 3.6 in the lowest voltage used (500 V) and 86.6% ± 1.9 in the highest (1500 V). The percentage of overall motile sperm in the electrotransfected samples was found to decrease with increasing field strength (P < 0.05). Increase in the sperm damaged plasma membrane was observed with increasing field strength (P < 0.05). ROS and sperm mitochondrial functionality did not present a negative response after the electroporation (P > 0.05). Overall results indicate that tip type electroporation enhances the internalization of exogenous DNA into zebrafish sperm cells with minimal harmful effects to sperm cells.


Assuntos
DNA/administração & dosagem , Eletroporação/métodos , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/fisiologia , Peixe-Zebra/fisiologia , Animais , Sobrevivência Celular , Fertilização in vitro/métodos , Técnicas de Transferência de Genes , Masculino , Motilidade dos Espermatozoides , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA