Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.083
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(11): 1577-1587, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271146

RESUMO

Aberrant RNA splicing in keratinocytes drives inflammatory skin disorders. In the present study, we found that the RNA helicase DDX5 was downregulated in keratinocytes from the inflammatory skin lesions in patients with atopic dermatitis and psoriasis, and that mice with keratinocyte-specific deletion of Ddx5 (Ddx5∆KC) were more susceptible to cutaneous inflammation. Inhibition of DDX5 expression in keratinocytes was induced by the cytokine interleukin (IL)-17D through activation of the CD93-p38 MAPK-AKT-SMAD2/3 signaling pathway and led to pre-messenger RNA splicing events that favored the production of membrane-bound, intact IL-36 receptor (IL-36R) at the expense of soluble IL-36R (sIL-36R) and to the selective amplification of IL-36R-mediated inflammatory responses and cutaneous inflammation. Restoration of sIL-36R in Ddx5∆KC mice with experimental atopic dermatitis or psoriasis suppressed skin inflammation and alleviated the disease phenotypes. These findings indicate that IL-17D modulation of DDX5 expression controls inflammation in keratinocytes during inflammatory skin diseases.


Assuntos
Dermatite Atópica , Interleucina-27 , Psoríase , Camundongos , Animais , Interleucina-27/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/patologia , Queratinócitos/metabolismo , Pele/patologia , Psoríase/genética , Psoríase/patologia , Inflamação/metabolismo
2.
Hum Mol Genet ; 32(11): 1786-1796, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36637422

RESUMO

Atopic dermatitis is a chronically recurrent dermatologic disease affected by complex pathophysiology with limited therapeutic options. To identify promising biomarkers for atopic dermatitis, we conducted a Mendelian randomization (MR) study to systematically screen blood metabolome for potential causal mediators of atopic dermatitis and further predict target-mediated side effects. We selected 128 unique blood metabolites from three European-descent metabolome genome-wide association studies (GWASs) with a total of 147 827 participants. Atopic dermatitis dataset originated from a large-scale GWAS including 10 788 cases and 30 047 controls of European ancestry. MR analyses were performed to estimate the associations of blood metabolites with atopic dermatitis. We then applied a phenome-wide MR analysis to ascertain potential on-target side effects of metabolite intervention. Three metabolites were identified as potential causal mediators for atopic dermatitis, including docosahexaenoic acid (odds ratio [OR], 0.87; 95% confidence interval [CI], 0.81-0.94; P = 3.45 × 10-4), arachidonate (OR, 0.30; 95% CI, 0.17-0.53; P = 4.09 × 10-5) and 1-arachidonoylglycerophosphoethanolamine (1-arachidonoyl-GPE) (OR, 0.25; 95% CI, 0.12-0.53; P = 2.58 × 10-4). In the phenome-wide MR analysis, docosahexaenoic acid and arachidonate were also identified to have beneficial or detrimental effects on multiple diseases beyond atopic dermatitis, respectively. No adverse side effects were found for 1-arachidonoyl-GPE. In this systematic MR study, docosahexaenoic acid, arachidonate and 1-arachidonoyl-GPE were identified as potential causal and beneficial mediators in the development of atopic dermatitis. Side-effect profiles were characterized to help inform drug target prioritization, and 1-arachidonoyl-GPE was a promising target for prevention and treatment of atopic dermatitis with no predicted adverse side effects.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/genética , Estudo de Associação Genômica Ampla , Ácidos Docosa-Hexaenoicos , Biomarcadores , Fatores de Risco , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética
3.
PLoS Genet ; 18(5): e1009973, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35576187

RESUMO

Atopic dermatitis (AD) is one of the most common skin disorders among children. Disease etiology involves genetic and environmental factors, with 29 independent AD risk loci enriched for risk allele-dependent gene expression in the skin and CD4+ T cell compartments. We investigated the potential epigenetic mechanisms responsible for the genetic susceptibility of CD4+ T cells. To understand the differences in gene regulatory activity in peripheral blood T cells in AD, we measured chromatin accessibility (an assay based on transposase-accessible chromatin sequencing, ATAC-seq), nuclear factor kappa B subunit 1 (NFKB1) binding (chromatin immunoprecipitation with sequencing, ChIP-seq), and gene expression levels (RNA-seq) in stimulated CD4+ T cells from subjects with active moderate-to-severe AD, as well as in age-matched non-allergic controls. Open chromatin regions in stimulated CD4+ T cells were highly enriched for AD genetic risk variants, with almost half of the AD risk loci overlapping AD-dependent ATAC-seq peaks. AD-specific open chromatin regions were strongly enriched for NF-κB DNA-binding motifs. ChIP-seq identified hundreds of NFKB1-occupied genomic loci that were AD- or control-specific. As expected, the AD-specific ChIP-seq peaks were strongly enriched for NF-κB DNA-binding motifs. Surprisingly, control-specific NFKB1 ChIP-seq peaks were not enriched for NFKB1 motifs, but instead contained motifs for other classes of human transcription factors, suggesting a mechanism involving altered indirect NFKB1 binding. Using DNA sequencing data, we identified 63 instances of altered genotype-dependent chromatin accessibility at 36 AD risk variant loci (30% of AD risk loci) that might lead to genotype-dependent gene expression. Based on these findings, we propose that CD4+ T cells respond to stimulation in an AD-specific manner, resulting in disease- and genotype-dependent chromatin accessibility alterations involving NFKB1 binding.


Assuntos
Linfócitos T CD4-Positivos , Dermatite Atópica , Linfócitos T CD4-Positivos/metabolismo , Criança , Cromatina/genética , DNA , Dermatite Atópica/genética , Epigênese Genética , Humanos , NF-kappa B/metabolismo
4.
Genomics ; 116(4): 110870, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38821220

RESUMO

The pathophysiology of atopic dermatitis (AD) is complex. CD4+ T cells play an essential role in the development of lesions in AD. However, the underlying mechanism remains unclear. In the present study, we investigated the differentially expressed genes (DEGs) between adult AD lesioned and non-lesioned skin using two datasets from the Gene Expression Omnibus (GEO) database. 62 DEGs were shown to be related to cytokine response. Compared to non-lesioned skin, lesioned skin showed immune infiltration with increased numbers of activated natural killer (NK) cells and CD4+ T memory cells (p < 0.01). We then identified 13 hub genes with a strong association with CD4+ T cells using weighted correlation network analysis. Single-cell analysis of AD detected a novel CD4+ T subcluster, CD4+ tissue residency memory cells (TRMs), which were verified through immunohistochemistry (IHC) to be increased in the dermal area of AD. The significant relationship between CD4+ TRM and AD was assessed through further analyses. FOXO1 and SBNO2, two of the 13 hub genes, were characteristically expressed in the CD4+ TRM, but down-regulated in IFN-γ/TNF-α-induced HaCaT cells, as shown using quantitative polymerase chain reaction (qPCR). Moreover, SBNO2 expression was associated with increased Th1 infiltration in AD (p < 0.05). In addition, genes filtered using Mendelian randomization were positively correlated with CD4+ TRM and were highly expressed in IFN-γ/TNF-α-induced HaCaT cells, as determined using qPCR and western blotting. Collectively, our results revealed that the newly identified CD4+ TRM may be involved in the pathogenesis of adult AD.


Assuntos
Linfócitos T CD4-Positivos , Dermatite Atópica , Análise de Célula Única , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Humanos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Adulto , Células T de Memória/metabolismo , Células T de Memória/imunologia , Pele/metabolismo , Células HaCaT , Memória Imunológica , Masculino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
5.
J Allergy Clin Immunol ; 154(1): 1-10, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38154665

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that has wide-ranging roles, including regulation of inflammation and homeostasis. AhR is not a cell surface receptor; rather, it exists in a cytoplasmic complex that responds to a wide variety of structurally dissimilar endogenous, microbial, and environmental ligands. The ubiquitous expression of AhR, its ability to be activated by a wide range of ligands, and its capacity to act as a master regulator for gene expression and homeostasis make it a promising new therapeutic target. Clinical trials of tapinarof cream have now validated AhR agonism as a therapeutic approach that can deliver significant efficacy for treating inflammatory skin diseases, including psoriasis and atopic dermatitis. Tapinarof 1% cream is a first-in-class, nonsteroidal, topical, AhR agonist with a pharmacokinetic profile that results in localized exposure at sites of disease, avoiding systemic safety concerns, drug interactions, or off-target effects. Psoriasis and atopic dermatitis both involve epidermal inflammation, cellular immune responses, dysregulation of skin barrier protein expression, and oxidative stress. On the basis of the clinical effectiveness of tapinarof cream for treating inflammatory skin diseases, we review how targeting AhR may offer a significant opportunity in other conditions that share key aspects of pathogenesis, including asthma, inflammatory bowel disease, eosinophilic esophagitis, ophthalmic, and nervous system diseases.


Assuntos
Dermatite Atópica , Psoríase , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Dermatite Atópica/genética , Psoríase/tratamento farmacológico , Psoríase/imunologia , Animais , Resorcinóis , Estilbenos
6.
J Allergy Clin Immunol ; 153(4): 1155-1161.e4, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272373

RESUMO

BACKGROUND: Pathogenic variants in filaggrin (FLG) are associated with an increased risk of atopic dermatitis (AD). OBJECTIVE: We evaluated the influence of FLG variants on the effectiveness of dupilumab treatment in AD. METHODS: This prospective observational study included adult AD patients treated with dupilumab from the BioDay registry. FLG was analyzed with single-molecule molecular inversion probe-targeted sequencing. Novel mutations were confirmed by Sanger sequencing. Eczema Area and Severity Index (EASI), Investigator Global Assessment (IGA), numeric rating scale (NRS) pruritus, Dermatology Quality of Life Index (DLQI), and Patient-Oriented Eczema Measure (POEM) were assessed at baseline and at weeks 16 and 52. The study was registered at ClinicalTrials.gov as NCT03549416. RESULTS: Genetic analysis of the 285 included patients showed biallelic pathogenic variants (FLG-/-) in 41 (14%), monoallelic pathogenic variants (FLG-/+) in 64 (23%), and wild-type alleles (FLG+/+) in 180 patients (63%). Three novel pathogenic variants were found. We observed no clinically relevant differences in EASI, IGA, NRS pruritus, DLQI, or total POEM scores for patients with and without pathogenic FLG variants at all time points. The FLG-/- group showed significantly higher POEM flaking and dryness scores at week 16 (P < .001 and P = .002, respectively) and week 52 (P < .001 and P = .016, respectively) compared to FLG+/+ as well as significant differences compared to FLG-/+, while differences in delta scores were nonsignificant. CONCLUSION: The effectiveness of dupilumab treatment in AD patients was not influenced by pathogenic FLG variants. However, patients with biallelic pathogenic FLG variants tended to have drier skin before and during dupilumab treatment compared to patients with monoallelic pathogenic variants or wild-type alleles.


Assuntos
Anticorpos Monoclonais Humanizados , Dermatite Atópica , Eczema , Adulto , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Dermatite Atópica/patologia , Proteínas Filagrinas , Prurido/tratamento farmacológico , Prurido/genética , Qualidade de Vida , Índice de Gravidade de Doença , Resultado do Tratamento
7.
Crit Rev Eukaryot Gene Expr ; 34(4): 1-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505868

RESUMO

Keratin 6A (KRT6A) is involved in the pathogenesis of various skin diseases. However, the reports on the roles of KRT6A in atopic dermatitis (AD) are limited. This study aimed to investigate the potentials of KRT6A in AD. mRNA levels were detected by RT-PCR. Cytokine release was determined by ELISA. Protein expression was determined using Western blot. Cell viability was determined by CCK-8. Cytotoxicity was detected by LDH assay. Cell death was determined by TUNEL. The pyroptosis of keratinocytes was detected using flow cytometry. We found that KRT6A was overexpressed in AD patients. Moreover, KRT6A was stimulated after exposed to proinflammatory cytokines. Overexpressed KRT6A suppressed inflammatory response, while KRT6A knockdown exerted the opposite effects. Overexpressed KRT6A suppressed inflammation-induced pyroptosis of keratinocytes. Additionally, KRT6A negatively regulated interleukin-17a (IL-17a) expression, blocking IL-17 signaling. IL-17a overexpression antagonized the effects of KRT6A and promoted pyroptosis of keratinocytes. In conclusion, KRT6A exerted protective functions in AD via regulating IL-17 signaling. This KRT6A/IL-17 may be a novel target for AD.


Assuntos
Dermatite Atópica , Interleucina-17 , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Piroptose , Queratina-6/metabolismo , Queratina-6/farmacologia , Queratinócitos/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/metabolismo
8.
Hum Mol Genet ; 31(10): 1588-1598, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34964466

RESUMO

Skin deficiency of kinesin family member 3A causes disrupted skin barrier function and promotes development of atopic dermatitis (AD). It is not known how well Kif3aK14∆/∆ mice approximate the human AD transcriptome. To determine the skin transcriptomic profile of Kif3aK14∆/∆ mice and compare it with other murine AD models and human AD, we performed RNA-seq of full-thickness skin and epidermis from 3- and 8-week-old Kif3aK14∆/∆ mice and compared the differentially expressed genes (DEGs) with transcriptomic datasets from mite-induced NC/Nga, flaky tail (Tmem79ma/ma Flgft/ft), and filaggrin-mutant (Flgft/ft) mice, as well as human AD transcriptome datasets including meta-analysis derived atopic dermatitis [MADAD] and the pediatric atopic dermatitis [PAD]. We then interrogated the Kif3aK14∆/∆ skin DEGs using the LINCS-L1000 database to identify potential novel drug targets for AD treatment. We identified 471 and 901 DEGs at 3 and 8 weeks of age, respectively, in the absence of Kif3a. Kif3aK14∆/∆ mice had 3.5-4.5 times more DEGs that overlapped with human AD DEGs compared to the flaky tail and Flgft/ft mice. Further, 55%, 85% and 75% of 8-week Kif3aK14∆/∆ DEGs overlapped with the MADAD and PAD non-lesional and lesional gene lists, respectively. Kif3aK14∆/∆ mice spontaneously develop a human AD-like gene signature, which better represents pediatric non-lesional skin compared to other mouse models including flaky tail, Flgft/ft and NC/Nga. Thus, Kif3aK14∆/∆ mice may model pediatric skin that is a precursor to the development of lesions and inflammation, and hence may be a useful model to study AD pathogenesis.


Assuntos
Dermatite Atópica , Animais , Criança , Dermatite Atópica/genética , Dermatite Atópica/patologia , Modelos Animais de Doenças , Epiderme , Humanos , Cinesinas/genética , Camundongos , Pele/patologia , Transcriptoma/genética
9.
Clin Immunol ; 265: 110283, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880200

RESUMO

Overlapping clinical and pathomechanistic features can complicate the diagnosis and treatment of inflammatory skin diseases, including psoriasis and atopic dermatitis (AD). Spatial transcriptomics allows the identification of disease- and cell-specific molecular signatures that may advance biomarker development and future treatments. This study identified transcriptional signatures in keratinocytes and sub-basal CD4+ and CD8+ T lymphocytes from patients with psoriasis and AD. In silico prediction of ligand:receptor interactions delivered key signalling pathways (interferon, effector T cells, stroma cell and matrix biology, neuronal development, etc.). Targeted validation of selected transcripts, including CCL22, RELB, and JUND, in peripheral blood T cells suggests the chosen approach as a promising tool also in other inflammatory diseases. Psoriasis and AD are characterized by transcriptional dysregulation in T cells and keratinocytes that may be targeted therapeutically. Spatial transcriptomics is a valuable tool in the search for molecular signatures that can be used as biomarkers and/or therapeutic targets.


Assuntos
Biomarcadores , Dermatite Atópica , Psoríase , Transcriptoma , Humanos , Dermatite Atópica/genética , Dermatite Atópica/sangue , Dermatite Atópica/imunologia , Psoríase/genética , Psoríase/sangue , Biomarcadores/sangue , Masculino , Feminino , Adulto , Queratinócitos/metabolismo , Pessoa de Meia-Idade , Perfilação da Expressão Gênica/métodos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Adulto Jovem
10.
Am J Hum Genet ; 108(10): 1836-1851, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34582791

RESUMO

Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.


Assuntos
Asma/epidemiologia , Biomarcadores/metabolismo , Dermatite Atópica/epidemiologia , Leucócitos/patologia , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Locos de Características Quantitativas , Asma/genética , Asma/metabolismo , Asma/patologia , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Prognóstico , Proteoma/análise , Proteoma/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Reino Unido/epidemiologia , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma
11.
J Clin Immunol ; 44(2): 48, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231347

RESUMO

The caspase activation and recruitment domain 11 (CARD11) gene encodes a scaffold protein required for lymphocyte antigen receptor signaling. Dominant-negative, loss-of-function (LOF) pathogenic variants in CARD11 result in CARD11-associated atopy with dominant interference of NF-κB signaling (CADINS) disease. Patients with CADINS suffer with severe atopic manifestations including atopic dermatitis, food allergy, and chronic spontaneous urticaria in addition to recurrent infections and autoimmunity. We assessed the response of dupilumab in five patients and omalizumab in one patient with CADINS for the treatment of severe atopic symptoms. CARD11 mutations were validated for pathogenicity using a T cell transfection assay to assess the impact on activation-induced signaling to NF-κB. Three children and three adults with dominant-negative CARD11 LOF mutations were included. All developed atopic disease in infancy or early childhood. In five patients, atopic dermatitis was severe and recalcitrant to standard topical and systemic medications; one adult suffered from chronic spontaneous urticaria. Subcutaneous dupilumab was initiated to treat atopic dermatitis and omalizumab to treat chronic spontaneous urticaria. All six patients had rapid and sustained improvement in atopic symptoms with no complications during the follow-up period. Previous medications used to treat atopy were able to be decreased or discontinued. In conclusion, treatment with dupilumab and omalizumab for severe, refractory atopic disease in patients with CADINS appears to be effective and well tolerated in patients with CADINS with severe atopy.


Assuntos
Anticorpos Monoclonais Humanizados , Urticária Crônica , Dermatite Atópica , Pré-Escolar , Adulto , Criança , Humanos , Omalizumab/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , NF-kappa B
12.
J Transl Med ; 22(1): 64, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229087

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease whose pathophysiology involves the interplay between genetic and environmental factors, ultimately leading to dysfunction of the epidermis. While several treatments are effective in symptom management, many existing therapies offer only temporary relief and often come with side effects. For this reason, the formulation of an effective therapeutic plan is challenging and there is a need for more effective and targeted treatments that address the root causes of the condition. Here, we hypothesise that modelling the complexity of the molecular buildup of the atopic dermatitis can be a concrete means to drive drug discovery. METHODS: We preprocessed, harmonised and integrated publicly available transcriptomics datasets of lesional and non-lesional skin from AD patients. We inferred co-expression network models of both AD lesional and non-lesional skin and exploited their interactional properties by integrating them with a priori knowledge in order to extrapolate a robust AD disease module. Pharmacophore-based virtual screening was then utilised to build a tailored library of compounds potentially active for AD. RESULTS: In this study, we identified a core disease module for AD, pinpointing known and unknown molecular determinants underlying the skin lesions. We identified skin- and immune-cell type signatures expressed by the disease module, and characterised the impaired cellular functions underlying the complex phenotype of atopic dermatitis. Therefore, by investigating the connectivity of genes belonging to the AD module, we prioritised novel putative biomarkers of the disease. Finally, we defined a tailored compound library by characterising the therapeutic potential of drugs targeting genes within the disease module to facilitate and tailor future drug discovery efforts towards novel pharmacological strategies for AD. CONCLUSIONS: Overall, our study reveals a core disease module providing unprecedented information about genetic, transcriptional and pharmacological relationships that foster drug discovery in atopic dermatitis.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Pele , Perfilação da Expressão Gênica , Fenótipo , Biomarcadores
13.
J Autoimmun ; 144: 103177, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38368767

RESUMO

Psoriasis (PS) and atopic dermatitis (AD) are common skin inflammatory diseases characterized by hyper-responsive keratinocytes. Although, some cytokines have been suggested to be specific for each disease, other cytokines might be central to both diseases. Here, we show that Tumor necrosis factor superfamily member 14 (TNFSF14), known as LIGHT, is required for experimental PS, similar to its requirement in experimental AD. Mice devoid of LIGHT, or deletion of either of its receptors, lymphotoxin ß receptor (LTßR) and herpesvirus entry mediator (HVEM), in keratinocytes, were protected from developing imiquimod-induced psoriatic features, including epidermal thickening and hyperplasia, and expression of PS-related genes. Correspondingly, in single cell RNA-seq analysis of PS patient biopsies, LTßR transcripts were found strongly expressed with HVEM in keratinocytes, and LIGHT was upregulated in T cells. Similar transcript expression profiles were also seen in AD biopsies, and LTßR deletion in keratinocytes also protected mice from allergen-induced AD features. Moreover, in vitro, LIGHT upregulated a broad spectrum of genes in human keratinocytes that are clinical features of both PS and AD skin lesions. Our data suggest that agents blocking LIGHT activity might be useful for therapeutic intervention in PS as well as in AD.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Camundongos , Animais , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Queratinócitos/metabolismo , Citocinas/metabolismo , Psoríase/genética , Psoríase/metabolismo , Inflamação/metabolismo
14.
Cytokine ; 174: 156439, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38134557

RESUMO

Neuregulin (NRG)-1 plays fundamental roles in several organ systems after binding to its receptors, ErbB2 and ErbB4. This study examines the role of NRG-1 in atopic dermatitis (AD), a chronic skin disease that causes dryness, pruritus, and inflammation. In mice administered Der p 38, the skin presents AD-like symptoms including filaggrin downregulation and infiltration of neutrophils and eosinophils. Noticeably, there is an increased expression of NRG-1, ErbB2, and ErbB4 in the skin. Upregulation of these proteins is significantly correlated to the clinical skin severity score. In human keratinocyte HaCaT cells, exposure to Der p 38 decreased filaggrin expression, and NRG-1 alone had no effect on the expression. However, co-treatment of Der p 38 with NRG-1 enhanced the filaggrin expression decreased by Der p 38. Pre-treatment with AG879 (an ErbB2 inhibitor) or ErbB4 siRNA blocked the recovery of filaggrin expression in the cells after co-treatment with Der p 38 and NRG-1. Der p 38 treatment enhanced the secretion of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein-1 (MCP-1). Co-treatment of Der p 38 with NRG-1 lowered the cytokine secretion increased by Der p 38, although NRG-1 alone was not effective on cytokine alteration. Neutrophil apoptosis was not altered by NRG-1 or supernatants of cells treated with NRG-1, but the cell supernatants co-treated with Der p 38 and NRG-1 blocked the anti-apoptotic effects of Der p 38-treated supernatants on neutrophils, which was involved in the activation of caspase 9 and caspase 3. Taken together, we determined that NRG-1 has anti-inflammatory effects in AD triggered by Der p 38. These results will pave the way to understanding the functions of NRG-1 and in the future development of AD treatment.


Assuntos
Dermatite Atópica , Camundongos , Animais , Humanos , Dermatite Atópica/genética , Proteínas Filagrinas , Neuregulina-1/farmacologia , Neuregulina-1/metabolismo , Neuregulina-1/uso terapêutico , Queratinócitos/metabolismo , Pele/metabolismo , Citocinas/metabolismo , Receptor ErbB-4/metabolismo , Receptor ErbB-4/farmacologia , Anti-Inflamatórios/farmacologia
15.
Exp Dermatol ; 33(7): e15130, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38989976

RESUMO

Loss-of-function (LoF) mutations in the filaggrin gene (FLG) constitute the strongest genetic risk for atopic dermatitis (AD). A latitude-dependent difference in the prevalence of LoF FLG mutations was systematically evaluated. A systematic review and meta-analysis were performed to estimate the prevalence of LoF FLG mutations in AD patients and the general population by geography and ethnicity. Risk of bias was assessed by Newcastle-Ottawa Scale and Jadad score. StatsDirect, version 3 software was used to calculate all outcomes. PubMed and EMBASE were searched until 9th December 2021. Studies were included if they contained data on the prevalence of LoF FLG mutations in AD patients or from the general population or associations between AD and LoF FLG mutations and were authored in English. Overall, 248 studies and 229 310 AD patients and individuals of the general population were included in the quantitative analysis. The prevalence of LoF FLG mutations was 19.1% (95% CI, 17.3-21.0) in AD patients and 5.8% (95% CI, 5.3-6.2) in the general population. There was a significant positive association between AD and LoF FLG mutations in all latitudes in the Northern hemisphere, but not in all ethnicities. The prevalence of LoF FLG mutations became gradually more prevalent in populations residing farther north of the Equator but was negligible in Middle Easterners and absent in most African populations. FLG LoF mutations are common and tend to increase with northern latitude, suggesting potential clinical implications for future AD management. The existence of possible genetic fitness from FLG LoF mutations remains unknown.


Assuntos
Dermatite Atópica , Proteínas Filagrinas , Proteínas de Filamentos Intermediários , Mutação com Perda de Função , Dermatite Atópica/genética , Dermatite Atópica/epidemiologia , Humanos , Proteínas de Filamentos Intermediários/genética , Aptidão Genética , Prevalência , Predisposição Genética para Doença , Mutação
16.
Allergy ; 79(1): 80-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37577841

RESUMO

BACKGROUND: Our knowledge of etiopathogenesis of atopic dermatitis (AD) is largely derived from skin biopsies, which are associated with pain, scarring and infection. In contrast, tape-stripping is a minimally invasive, nonscarring technique to collect skin samples. METHODS: To construct a global AD skin transcriptomic profile comparing tape-strips to whole-skin biopsies, we performed RNA-seq on tape-strips and biopsies taken from the lesional skin of 20 moderate-to-severe AD patients and the skin of 20 controls. Differentially expressed genes (DEGs) were defined by fold-change (FCH) ≥2.0 and false discovery rate <0.05. RESULTS: We detected 4104 (2513 Up; 1591 Down) and 1273 (546 Up; 727 Down) DEGs in AD versus controls, in tape-strips and biopsies, respectively. Although both techniques captured dysregulation of key immune genes, tape-strips showed higher FCHs for innate immunity (IL-1B, IL-8), dendritic cell (ITGAX/CD11C, FCER1A), Th2 (IL-13, CCL17, TNFRSF4/OX40), and Th17 (CCL20, CXCL1) products, while biopsies showed higher upregulation of Th22 associated genes (IL-22, S100As) and dermal cytokines (IFN-γ, CCL26). Itch-related genes (IL-31, TRPV3) were preferentially captured by tape-strips. Epidermal barrier abnormalities were detected in both techniques, with terminal differentiation defects (FLG2, PSORS1C2) better represented by tape-strips and epidermal hyperplasia changes (KRT16, MKI67) better detected by biopsies. CONCLUSIONS: Tape-strips and biopsies capture overlapping but distinct features of the AD molecular signature, suggesting their respective utility for monitoring specific AD-related immune, itch, and barrier abnormalities in clinical trials and longitudinal studies.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/diagnóstico , Dermatite Atópica/genética , Transcriptoma , Pele/patologia , Epiderme/patologia , Biópsia
17.
Allergy ; 79(6): 1548-1559, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38477552

RESUMO

BACKGROUND: Skin tape-strips and biopsies are widely used methods for investigating the skin in atopic dermatitis (AD). Biopsies are more commonly used but can cause scarring and pain, whereas tape-strips are noninvasive but sample less tissue. The study evaluated the performance of skin tape-strips and biopsies for studying AD. METHODS: Whole-transcriptome RNA-sequencing was performed on paired tape-strips and biopsies collected from lesional and non-lesional skin from AD patients (n = 7) and non-AD controls (n = 5). RNA yield, mapping efficiency, and differentially expressed genes (DEGs) for the two methods (tape-strip/biopsy) and presence of AD (AD/non-AD) were compared. RESULTS: Tape-strips demonstrated a lower RNA yield (22 vs. 4596 ng) and mapping efficiency to known genes (28% vs. 93%) than biopsies. Gene-expression profiles of paired tape-strips and biopsies demonstrated a medium correlation (R2 = 0.431). Tape-strips and biopsies demonstrated systematic differences in measured expression levels of 6483 genes across both AD and non-AD samples. Tape-strips preferentially detected many itch (CCL3/CCL4/OSM) and immune-response (CXCL8/IL4/IL5/IL22) genes as well as markers of epidermal dendritic cells (CD1a/CD207), while certain cytokines (IL18/IL37), skin-barrier genes (KRT2/FLG2), and dermal fibroblasts markers (COL1A/COL3A) were preferentially detected by biopsies. Tape-strips identified more DEGs between AD and non-AD (3157 DEGs) then biopsies (44 DEGs). Tape-strips also detected higher levels of bacterial mRNA than biopsies. CONCLUSIONS: This study concludes that tape-strips and biopsies each demonstrate respective advantages for measuring gene-expression changes in AD. Thus, the specific skin layers and genes of interest should be considered before selecting either method.


Assuntos
Dermatite Atópica , Pele , Humanos , Dermatite Atópica/genética , Dermatite Atópica/patologia , Biópsia , Pele/patologia , Pele/metabolismo , Feminino , Análise de Sequência de RNA , Masculino , Perfilação da Expressão Gênica , Transcriptoma , Adulto , Fita Cirúrgica , Pessoa de Meia-Idade
18.
Br J Dermatol ; 191(1): 49-57, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446755

RESUMO

BACKGROUND: In the general population randomized controlled trial PreventADALL, frequent emollient bath additives from 2 weeks of age did not prevent atopic dermatitis, while the effect on skin barrier function throughout infancy is not established. OBJECTIVES: The primary aim of this exploratory substudy was to assess the effect of mineral-based oil baths on transepidermal water loss (TEWL) and dry skin through infancy, and secondarily to explore if filaggrin (FLG) mutations modified the effect. METHODS: Overall, 2153 infants were included and randomized to either the 'Skin intervention' (SI) group (n = 995) (oil bath 4 times weekly from 2 weeks through 8 months) or 'No skin intervention' (NSI) group (n = 1158), with TEWL measurements at 3, 6 and/or 12 months of age. Information on FLG mutation status was available for 1683 of these infants. Effects of the skin intervention on TEWL and dry skin through infancy were assessed by mixed-effects regression modelling. Background characteristics and protocol adherence were collected from electronic questionnaires, birth records and weekly diaries. RESULTS: The TEWL (95% confidence interval) was on average 0.42 g m-2 h-1 (0.13-0.70, P = 0.004) higher in the SI group compared with the NSI group through the first year of life, with significantly higher levels at 3 months [8.6 (8.3-9.0) vs. 7.6 (7.3-7.9)], but similar at 6 and 12 months. Dry skin was observed significantly more often in the NSI group compared with the SI group at 3 months (59% vs. 51%) and at 6 months of age (63% vs. 53%), while at 12 months of age, the difference was no longer significant. At 3 months, the TEWL of FLG mutation carriers was similar to the TEWL in the SI group. No interaction between SI and FLG mutation was found in the first year of life. CONCLUSIONS: Infants given frequent oil baths from 2 weeks of age had reduced skin barrier function through infancy compared with controls, largely attributed to higher TEWL at 3 months of age, while the skin at 3 and 6 months appeared less dry in infants subjected to the skin intervention.


Atopic dermatitis (AD) affects approximately 20% of children in industrialized countries. AD causes dry, itchy skin and can increase the chance of infections. This study was a substudy of the large Scandinavian PreventADALL trial, including 2394 infants, recruited from the general population between 2014 and 2016. Children in this trial were allocated randomly to receive either a skin intervention, food intervention, combined intervention, or no intervention. Children were examined at 3, 6 and 12 months of age. The examinations involved an investigation of the skin, to evaluate dry skin and skin barrier function by transepidermal water loss (TEWL) in the outer layers of the skin (higher TEWL suggests decreased skin barrier function). The skin intervention consisted of oil baths at least 4 times per week from 2 weeks of age through 8 months of age, and have previously not been shown to prevent AD by 1 and 3 years of age. We aimed to investigate whether frequent oil baths had any effect on TEWL and dry skin. We found that the skin intervention increased TEWL in the first year of life, especially at 3 months of age. Dry skin was less common in the skin intervention groups compared with the groups with no skin intervention. Infants with mutations in the gene coding for a skin barrier protein, called filaggrin, were associated with increased TEWL; however, in the skin intervention group, TEWL was similar among the infants with or without filaggrin mutations. Our findings suggest that oil baths several times per week from early infancy transiently decreases skin barrier function.


Assuntos
Banhos , Dermatite Atópica , Emolientes , Proteínas Filagrinas , Proteínas de Filamentos Intermediários , Mutação , Perda Insensível de Água , Humanos , Perda Insensível de Água/efeitos dos fármacos , Banhos/métodos , Lactente , Feminino , Dermatite Atópica/prevenção & controle , Dermatite Atópica/genética , Masculino , Emolientes/administração & dosagem , Proteínas de Filamentos Intermediários/genética , Recém-Nascido , Óleo Mineral/administração & dosagem , Cuidado do Lactente/métodos , Higiene da Pele/métodos , Pele/efeitos dos fármacos
19.
Immunity ; 42(4): 654-64, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25888258

RESUMO

Missense mutations in the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing family of gene 12 (Nlrp12) are associated with periodic fever syndromes and atopic dermatitis in humans. Here, we have demonstrated a crucial role for NLRP12 in negatively regulating pathogenic T cell responses. Nlrp12(-/-) mice responded to antigen immunization with hyperinflammatory T cell responses. Furthermore, transfer of CD4(+)CD45RB(hi)Nlrp12(-/-) T cells into immunodeficient mice led to more severe colitis and atopic dermatitis. NLRP12 deficiency did not, however, cause exacerbated ascending paralysis during experimental autoimmune encephalomyelitis (EAE); instead, Nlrp12(-/-) mice developed atypical neuroinflammatory symptoms that were characterized by ataxia and loss of balance. Enhanced T-cell-mediated interleukin-4 (IL-4) production promotes the development of atypical EAE disease in Nlrp12(-/-) mice. These results define an unexpected role for NLRP12 as an intrinsic negative regulator of T-cell-mediated immunity and identify altered NF-κB regulation and IL-4 production as key mediators of NLRP12-associated disease.


Assuntos
Ataxia/imunologia , Colite/imunologia , Dermatite Atópica/imunologia , Encefalomielite Autoimune Experimental/imunologia , Imunidade Celular , Interleucina-4/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Animais , Ataxia/genética , Ataxia/patologia , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Colite/genética , Colite/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Dermatite Atópica/genética , Dermatite Atópica/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Regulação da Expressão Gênica , Interleucina-4/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , Transdução de Sinais
20.
Immunity ; 42(4): 756-66, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25902485

RESUMO

Staphylococcus aureus skin colonization is universal in atopic dermatitis and common in cancer patients treated with epidermal growth factor receptor inhibitors. However, the causal relationship of dysbiosis and eczema has yet to be clarified. Herein, we demonstrate that Adam17(fl/fl)Sox9-(Cre) mice, generated to model ADAM17-deficiency in human, developed eczematous dermatitis with naturally occurring dysbiosis, similar to that observed in atopic dermatitis. Corynebacterium mastitidis, S. aureus, and Corynebacterium bovis sequentially emerged during the onset of eczematous dermatitis, and antibiotics specific for these bacterial species almost completely reversed dysbiosis and eliminated skin inflammation. Whereas S. aureus prominently drove eczema formation, C. bovis induced robust T helper 2 cell responses. Langerhans cells were required for eliciting immune responses against S. aureus inoculation. These results characterize differential contributions of dysbiotic flora during eczema formation, and highlight the microbiota-host immunity axis as a possible target for future therapeutics in eczematous dermatitis.


Assuntos
Dermatite Atópica/imunologia , Disbiose/imunologia , Eczema/imunologia , Células de Langerhans/imunologia , Pele/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Proteínas ADAM/imunologia , Proteína ADAM17 , Animais , Antibacterianos/farmacologia , Corynebacterium/imunologia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Dermatite Atópica/microbiologia , Disbiose/tratamento farmacológico , Disbiose/genética , Disbiose/microbiologia , Eczema/tratamento farmacológico , Eczema/genética , Eczema/microbiologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Integrases/genética , Integrases/imunologia , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/microbiologia , Células de Langerhans/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/imunologia , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/patologia , Staphylococcus aureus/imunologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/microbiologia , Linfócitos T Auxiliares-Indutores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA