Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 71(3): 343-355, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38861354

RESUMO

Numerous studies have demonstrated that endostatin (ES), a potent angiostatic peptide derived from collagen type XVIII α 1 chain and encoded by COL18A1, is elevated in pulmonary arterial hypertension (PAH). It is important to note that elevated ES has consistently been associated with altered hemodynamics, poor functional status, and adverse outcomes in adult and pediatric PAH. This study used serum samples from patients with Group I PAH and plasma and tissue samples derived from the Sugen/hypoxia rat pulmonary hypertension model to define associations between COL18A1/ES and disease development, including hemodynamics, right ventricle (RV) remodeling, and RV dysfunction. Using cardiac magnetic resonance imaging and advanced hemodynamic assessments with pressure-volume loops in patients with PAH to assess RV-pulmonary arterial coupling, we observed a strong relationship between circulating ES levels and metrics of RV structure and function. Specifically, RV mass and the ventricular mass index were positively associated with ES, whereas RV ejection fraction and RV-pulmonary arterial coupling were inversely associated with ES levels. Our animal data demonstrate that the development of pulmonary hypertension is associated with increased COL18A1/ES in the heart as well as the lungs. Disease-associated increases in COL18A1 mRNA and protein were most pronounced in the RV compared with the left ventricle and lung. COL18A1 expression in the RV was strongly associated with disease-associated changes in RV mass, fibrosis, and myocardial capillary density. These findings indicate that COL18A1/ES increases early in disease development in the RV and implicates COL18A1/ES in pathologic RV dysfunction in PAH.


Assuntos
Endostatinas , Disfunção Ventricular Direita , Remodelação Ventricular , Animais , Endostatinas/metabolismo , Humanos , Masculino , Feminino , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Ratos , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/patologia , Ratos Sprague-Dawley , Colágeno Tipo XVIII/metabolismo , Colágeno Tipo XVIII/genética , Pessoa de Meia-Idade , Adulto , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Progressão da Doença , Modelos Animais de Doenças , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/patologia
2.
Am J Physiol Heart Circ Physiol ; 327(2): H351-H363, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847755

RESUMO

Right ventricular (RV) function is an important prognostic indicator for pulmonary arterial hypertension (PAH), a vasculopathy that primarily and disproportionally affects women with distinct pre- and postmenopausal clinical outcomes. However, most animal studies have overlooked the impact of sex and ovarian hormones on RV remodeling in PAH. Here, we combined invasive measurements of RV hemodynamics and morphology with computational models of RV biomechanics in sugen-hypoxia (SuHx)-treated male, ovary-intact female, and ovariectomized female rats. Despite similar pressure overload levels, SuHx induced increases in end-diastolic elastance and passive myocardial stiffening, notably in male SuHx animals, corresponding to elevated diastolic intracellular calcium. Increases in end-systolic chamber elastance were largely explained by myocardial hypertrophy in male and ovary-intact female rats, whereas ovariectomized females exhibited contractility recruitment via calcium transient augmentation. Ovary-intact female rats primarily responded with hypertrophy, showing fewer myocardial mechanical alterations and less stiffening. These findings highlight sex-related RV remodeling differences in rats, affecting systolic and diastolic RV function in PAH.NEW & NOTEWORTHY Combining hemodynamic and morphological measurements from male, female, and ovariectomized female pulmonary arterial hypertension (PAH) rats revealed distinct adaptation mechanisms despite similar pressure overload. Males showed the most diastolic stiffening. Ovariectomized females had enhanced myocyte contractility and calcium transient upregulation. Ovary-intact females primarily responded with hypertrophy, experiencing milder passive myocardial stiffening and no changes in myocyte shortening. These findings suggest potential sex-specific pathways in right ventricular (RV) adaptation to PAH, with implications for targeted interventions.


Assuntos
Modelos Animais de Doenças , Ovariectomia , Hipertensão Arterial Pulmonar , Ratos Sprague-Dawley , Função Ventricular Direita , Remodelação Ventricular , Animais , Feminino , Masculino , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/etiologia , Fatores Sexuais , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Ratos , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/etiologia , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Modelos Cardiovasculares , Sinalização do Cálcio , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Hemodinâmica
3.
Basic Res Cardiol ; 119(4): 587-611, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38758338

RESUMO

The right ventricle (RV) differs developmentally, anatomically and functionally from the left ventricle (LV). Therefore, characteristics of LV adaptation to chronic pressure overload cannot easily be extrapolated to the RV. Mitochondrial abnormalities are considered a crucial contributor in heart failure (HF), but have never been compared directly between RV and LV tissues and cardiomyocytes. To identify ventricle-specific mitochondrial molecular and functional signatures, we established rat models with two slowly developing disease stages (compensated and decompensated) in response to pulmonary artery banding (PAB) or ascending aortic banding (AOB). Genome-wide transcriptomic and proteomic analyses were used to identify differentially expressed mitochondrial genes and proteins and were accompanied by a detailed characterization of mitochondrial function and morphology. Two clearly distinguishable disease stages, which culminated in a comparable systolic impairment of the respective ventricle, were observed. Mitochondrial respiration was similarly impaired at the decompensated stage, while respiratory chain activity or mitochondrial biogenesis were more severely deteriorated in the failing LV. Bioinformatics analyses of the RNA-seq. and proteomic data sets identified specifically deregulated mitochondrial components and pathways. Although the top regulated mitochondrial genes and proteins differed between the RV and LV, the overall changes in tissue and cardiomyocyte gene expression were highly similar. In conclusion, mitochondrial dysfuntion contributes to disease progression in right and left heart failure. Ventricle-specific differences in mitochondrial gene and protein expression are mostly related to the extent of observed changes, suggesting that despite developmental, anatomical and functional differences mitochondrial adaptations to chronic pressure overload are comparable in both ventricles.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca , Mitocôndrias Cardíacas , Animais , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Masculino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/genética , Proteômica , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/patologia , Função Ventricular Direita , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/patologia , Ratos , Função Ventricular Esquerda , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/genética , Transcriptoma , Ratos Sprague-Dawley , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
4.
J Cardiovasc Pharmacol ; 83(6): 612-620, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547510

RESUMO

ABSTRACT: Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), imposing overload on the right ventricle (RV) and imbalance of the redox state. Our study investigated the influence of treatment with sulforaphane (SFN), found in cruciferous vegetables, on RV remodeling and redox homeostasis in monocrotaline (MCT)-induced PAH. Male Wistar rats were separated into 4 groups: control (CTR); CTR + SFN; MCT; and MCT + SFN. PAH induction was implemented by a single dose of MCT (60 mg/kg intraperitoneally). Treatment with SFN (2.5 mg/kg/day intraperitoneally) started on the seventh day after the MCT injection and persisted for 2 weeks. After 21 days of PAH induction, echocardiographic, hemodynamic, and oxidative stress evaluation was performed. The MCT group showed an increase in RV hypertrophy, RV systolic area, RV systolic, mean pulmonary artery pressure, and PVR and exhibited a decrease in the RV outflow tract acceleration time/ejection time ratio, RV fractional shortening, and tricuspid annular plane systolic excursion compared to CTR ( P < 0.05). SFN-treated PAH attenuated detrimental changes in tricuspid annular plane systolic excursion, mean pulmonary artery pressure, and PVR parameters. Catalase levels and the glutathione/Glutathione disulfide (GSSG) ratio were diminished in the MCT group compared to CTR ( P < 0.05). SFN increased catalase levels and normalized the glutathione/GSSG ratio to control levels ( P < 0.05). Data express the benefit of SFN treatment on the cardiac function of rats with PAH associated with the cellular redox state.


Assuntos
Modelos Animais de Doenças , Isotiocianatos , Monocrotalina , Oxirredução , Estresse Oxidativo , Ratos Wistar , Sulfóxidos , Função Ventricular Direita , Animais , Sulfóxidos/farmacologia , Isotiocianatos/farmacologia , Masculino , Função Ventricular Direita/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/tratamento farmacológico , Homeostase/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Ratos , Pressão Arterial/efeitos dos fármacos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/tratamento farmacológico , Disfunção Ventricular Direita/metabolismo
5.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892401

RESUMO

Increased mitochondrial reactive oxygen species (ROS) formation is important for the development of right ventricular (RV) hypertrophy (RVH) and failure (RVF) during pulmonary hypertension (PH). ROS molecules are produced in different compartments within the cell, with mitochondria known to produce the strongest ROS signal. Among ROS-forming mitochondrial proteins, outer-mitochondrial-membrane-located monoamine oxidases (MAOs, type A or B) are capable of degrading neurotransmitters, thereby producing large amounts of ROS. In mice, MAO-B is the dominant isoform, which is present in almost all cell types within the heart. We analyzed the effect of an inducible cardiomyocyte-specific knockout of MAO-B (cmMAO-B KO) for the development of RVH and RVF in mice. Right ventricular hypertrophy was induced by pulmonary artery banding (PAB). RV dimensions and function were measured through echocardiography. ROS production (dihydroethidium staining), protein kinase activity (PamStation device), and systemic hemodynamics (in vivo catheterization) were assessed. A significant decrease in ROS formation was measured in cmMAO-B KO mice during PAB compared to Cre-negative littermates, which was associated with reduced activity of protein kinases involved in hypertrophic growth. In contrast to littermates in which the RV was dilated and hypertrophied following PAB, RV dimensions were unaffected in response to PAB in cmMAO-B KO mice, and no decline in RV systolic function otherwise seen in littermates during PAB was measured in cmMAO-B KO mice. In conclusion, cmMAO-B KO mice are protected against RV dilatation, hypertrophy, and dysfunction following RV pressure overload compared to littermates. These results support the hypothesis that cmMAO-B is a key player in causing RV hypertrophy and failure during PH.


Assuntos
Hipertensão Pulmonar , Hipertrofia Ventricular Direita , Monoaminoxidase , Espécies Reativas de Oxigênio , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Ventrículos do Coração/patologia , Ventrículos do Coração/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/patologia , Camundongos Knockout , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Monoaminoxidase/deficiência , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/patologia
6.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445625

RESUMO

BACKGROUND: Right ventricular (RV) dysfunction remains a major problem after heart transplantation and may be associated with brain death (BD) in a donor. A calcineurin inhibitor tacrolimus was recently found to have beneficial effects on heart function. Here, we examined whether tacrolimus might prevent BD-induced RV dysfunction and the associated pathobiological changes. METHODS: After randomized tacrolimus (n = 8; 0.05 mg·kg-1·day-1) or placebo (n = 9) pretreatment, pigs were assigned to a BD procedure and hemodynamically investigated 1, 3, 5, and 7 h after the Cushing reflex. After euthanasia, myocardial tissue was sampled for pathobiological evaluation. Seven pigs were used as controls. RESULTS: Calcineurin inhibition prevented increases in pulmonary vascular resistance and RV-arterial decoupling induced by BD. BD was associated with an increased RV pro-apoptotic Bax-to-Bcl2 ratio and RV and LV apoptotic rates, which were prevented by tacrolimus. BD induced increased expression of the pro-inflammatory IL-6-to-IL-10 ratio, their related receptors, and vascular cell adhesion molecule-1 in both the RV and LV. These changes were prevented by tacrolimus. RV and LV neutrophil infiltration induced by BD was partly prevented by tacrolimus. BD was associated with decreased RV expression of the ß-1 adrenergic receptor and sarcomere (myosin heavy chain [MYH]7-to-MYH6 ratio) components, while ß-3 adrenergic receptor, nitric oxide-synthase 3, and glucose transporter 1 expression increased. These changes were prevented by tacrolimus. CONCLUSIONS: Brain death was associated with isolated RV dysfunction. Tacrolimus prevented RV dysfunction induced by BD through the inhibition of apoptosis and inflammation activation.


Assuntos
Disfunção Ventricular Direita , Animais , Morte Encefálica , Miocárdio/metabolismo , Suínos , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Resistência Vascular , Disfunção Ventricular Direita/tratamento farmacológico , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/metabolismo
7.
Pharmacol Res ; 180: 106151, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35247601

RESUMO

For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle (RV) dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated disks and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.


Assuntos
Cardiomiopatias , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Conexina 43 , Modelos Animais de Doenças , Eucaliptol/uso terapêutico , Ventrículos do Coração/metabolismo , Homeostase , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Disfunção Ventricular Direita/metabolismo
8.
Circulation ; 142(15): 1464-1484, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32698630

RESUMO

BACKGROUND: Right ventricular (RV) function is the major determinant for both functional capacity and survival in patients with pulmonary arterial hypertension (PAH). Despite the recognized clinical importance of preserving RV function, the subcellular mechanisms that govern the transition from a compensated to a decompensated state remain poorly understood and as a consequence there are no clinically established treatments for RV failure and a paucity of clinically useful biomarkers. Accumulating evidence indicates that long noncoding RNAs are powerful regulators of cardiac development and disease. Nonetheless, their implication in adverse RV remodeling in PAH is unknown. METHODS: Expression of the long noncoding RNA H19 was assessed by quantitative PCR in plasma and RV from patients categorized as control RV, compensated RV or decompensated RV based on clinical history and cardiac index. The impact of H19 suppression using GapmeR was explored in 2 rat models mimicking RV failure, namely the monocrotaline and pulmonary artery banding. Echocardiographic, hemodynamic, histological, and biochemical analyses were conducted. In vitro gain- and loss-of-function experiments were performed in rat cardiomyocytes. RESULTS: We demonstrated that H19 is upregulated in decompensated RV from PAH patients and correlates with RV hypertrophy and fibrosis. Similar findings were observed in monocrotaline and pulmonary artery banding rats. We found that silencing H19 limits pathological RV hypertrophy, fibrosis and capillary rarefaction, thus preserving RV function in monocrotaline and pulmonary artery banding rats without affecting pulmonary vascular remodeling. This cardioprotective effect was accompanied by E2F transcription factor 1-mediated upregulation of enhancer of zeste homolog 2. In vitro, knockdown of H19 suppressed cardiomyocyte hypertrophy induced by phenylephrine, while its overexpression has the opposite effect. Finally, we demonstrated that circulating H19 levels in plasma discriminate PAH patients from controls, correlate with RV function and predict long-term survival in 2 independent idiopathic PAH cohorts. Moreover, H19 levels delineate subgroups of patients with differentiated prognosis when combined with the NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels or the risk score proposed by both REVEAL (Registry to Evaluate Early and Long-Term PAH Disease Management) and the 2015 European Pulmonary Hypertension Guidelines. CONCLUSIONS: Our findings identify H19 as a new therapeutic target to impede the development of maladaptive RV remodeling and a promising biomarker of PAH severity and prognosis.


Assuntos
Insuficiência Cardíaca/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , RNA Longo não Codificante/metabolismo , Remodelação Vascular , Disfunção Ventricular Direita/metabolismo , Animais , Biomarcadores/metabolismo , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/patologia , Humanos , Peptídeo Natriurético Encefálico/metabolismo , Fragmentos de Peptídeos/metabolismo , Hipertensão Arterial Pulmonar/mortalidade , Hipertensão Arterial Pulmonar/patologia , Ratos , Disfunção Ventricular Direita/mortalidade , Disfunção Ventricular Direita/patologia
9.
Am J Physiol Heart Circ Physiol ; 320(3): H1021-H1036, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481696

RESUMO

Pulmonary hypertension (PH) causes cardiac hypertrophy in the right ventricle (RV) and eventually leads to RV failure due to persistently elevated ventricular afterload. We hypothesized that the mechanical stress on the RV associated with increased afterload impairs vasodilator function of the right coronary artery (RCA) in PH. Coronary vascular response was assessed using microangiography with synchrotron radiation (SR) in two well-established PH rat models, monocrotaline injection or the combined exposure to chronic hypoxia and vascular endothelial growth factor receptor blockade with Su5416 (SuHx model). In the SuHx model, the effect of the treatment with the nonselective endothelin-1 receptor antagonist (ERA), macitentan, was also examined. Myocardial viability was determined in SuHx model rats, using 18F-FDG Positron emission tomography (PET) and magnetic resonance imaging (MRI). Endothelium-dependent and endothelium-independent vasodilator responses were significantly attenuated in the medium and small arteries of severe PH rats. ERA treatment significantly improved RCA vascular function compared with the untreated group. ERA treatment improved both the decrease in ejection fraction and the increased glucose uptake, and reduced RV remodeling. In addition, the upregulation of inflammatory genes in the RV was almost suppressed by ERA treatment. We found impairment of vasodilator responses in the RCA of severe PH rat models. Endothelin-1 activation in the RCA plays a major role in impaired vascular function in PH rats and is partially restored by ERA treatment. Treatment of PH with ERA may improve RV function in part by indirectly attenuating right heart afterload and in part by associated improvements in right coronary endothelial function.NEW & NOTEWORTHY We demonstrated for the first time the impairment of vascular responses in the right coronary artery (RCA) of the dysfunctional right heart in pulmonary hypertensive rats in vivo. Treatment with an endothelin-1 receptor antagonist ameliorated vascular dysfunction in the RCA, enabled tissue remodeling of the right heart, and improved cardiac function. Our results suggest that impaired RCA function might also contribute to the early progression to heart failure in patients with severe pulmonary arterial hypertension (PAH). The endothelium of the coronary vasculature might be considered as a potential target in treatments to prevent heart failure in severe patients with PAH.


Assuntos
Angiografia Coronária , Vasos Coronários/diagnóstico por imagem , Hipertrofia Ventricular Direita/diagnóstico por imagem , Hipertensão Arterial Pulmonar/diagnóstico por imagem , Síncrotrons , Vasodilatação , Disfunção Ventricular Direita/diagnóstico por imagem , Animais , Anti-Hipertensivos/farmacologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Antagonistas dos Receptores de Endotelina/farmacologia , Endotelina-1/genética , Endotelina-1/metabolismo , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/complicações , Indóis , Monocrotalina , Valor Preditivo dos Testes , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Pirimidinas/farmacologia , Pirróis , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Sulfonamidas/farmacologia , Vasodilatação/efeitos dos fármacos , Disfunção Ventricular Direita/tratamento farmacológico , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita , Remodelação Ventricular
10.
Microvasc Res ; 135: 104129, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33385381

RESUMO

Microcirculation disturbance is a crucial pathological basis of heart damage; however, microcirculation alterations induced by hypoxic pulmonary hypertension (HPH) remain unknown, and the left ventricle (LV) in HPH is conventionally ignored. Herein, we investigated the changes in the cardiac structure, function and microcirculation after HPH and further compared the differences between the right ventricle (RV) and LV. Using a neonatal rat model of HPH, we found RV myocardial hypertrophy, dysfunction and poor myocardial perfusion in HPH rats. Additionally, RV microcirculation disturbance manifested as the abnormal expression of endothelin-1/eNOS and increased expression of intercellular cell adhesion molecule-1 (ICAM-1) or E-selectin 3 days after hypoxia, followed by vascular inflammation, coronary arterial remodeling and microvascular sparseness. Impairment in LV vasodilation was detected in rats after 3 days of hypoxia; however, no obvious microvascular rarefaction or inflammatory reaction was observed in the LV. In conclusion, our results suggest that HPH mainly triggers RV microcirculation disturbances, causing low myocardial perfusion damage and cardiac dysfunction. Despite the differences in the RV and LV, their impaired microvascular function, mediated by endothelial cells, occurs almost simultaneously after HPH, earlier than cardiac functional or structural abnormalities.


Assuntos
Circulação Coronária , Vasos Coronários/fisiopatologia , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Microcirculação , Microvasos/fisiopatologia , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Direita/etiologia , Animais , Animais Recém-Nascidos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Microvasos/metabolismo , Microvasos/patologia , Ratos Wistar , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Esquerda , Função Ventricular Direita , Remodelação Ventricular
11.
Clin Sci (Lond) ; 135(21): 2467-2481, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34676402

RESUMO

Pulmonary hypertension (PH) is a life-threatening disease characterized by vascular remodeling. Exploring new therapy target is urgent. The purpose of the present study is to investigate whether and how spliced x-box binding protein 1 (xbp1s), a key component of endoplasmic reticulum stress (ERS), contributes to the pathogenesis of PH. Forty male SD rats were randomly assigned to four groups: Control, Monocrotaline (MCT), MCT+AAV-CTL (control), and MCT+AAV-xbp1s. The xbp1s protein levels were found to be elevated in lung tissues of the MCT group. Intratracheal injection of adeno-associated virus serotype 1 carrying xbp1s shRNA (AAV-xbp1s) to knock down the expression of xbp1s effectively ameliorated the MCT-induced elevation of right ventricular systolic pressure (RVSP), total pulmonary resistance (TPR), right ventricular hypertrophy and medial wall thickness of muscularized distal pulmonary arterioles. The abnormally increased positive staining rates of proliferating cell nuclear antigen (PCNA) and Ki67 and decreased positive staining rates of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) in pulmonary arterioles were also reversed in the MCT+AAV-xbp1s group. For mechanistic exploration, bioinformatics prediction of the protein network was performed on the STRING database, and further verification was performed by qRT-PCR, Western blots and co-immunoprecipitation (Co-IP). DNA damage-inducible transcript 3 (Ddit3) was identified as a downstream protein that interacted with xbp1s. Overexpression of Ddit3 restored the decreased proliferation, migration and cell viability caused by silencing of xbp1s. The protein level of Ddit3 was also highly consistent with xbp1s in the animal model. Taken together, our study demonstrated that xbp1s-Ddit3 may be a potential target to interfere with vascular remodeling in PH.


Assuntos
Pressão Arterial , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator de Transcrição CHOP/metabolismo , Remodelação Vascular , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Apoptose , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Monocrotalina , Músculo Liso Vascular/fisiopatologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Transcrição CHOP/genética , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita , Proteína 1 de Ligação a X-Box/genética
12.
Circ Res ; 125(10): 884-906, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31556812

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling with aberrant pulmonary artery smooth muscle cells (PASMCs) proliferation, endothelial dysfunction, and extracellular matrix remodeling. OBJECTIVE: Right ventricular (RV) failure is an important prognostic factor in PAH. Thus, we need to elucidate a novel therapeutic target in both PAH and RV failure. METHODS AND RESULTS: We performed microarray analysis in PASMCs from patients with PAH (PAH-PASMCs) and controls. We found a ADAMTS8 (disintegrin and metalloproteinase with thrombospondin motifs 8), a secreted protein specifically expressed in the lung and the heart, was upregulated in PAH-PASMCs and the lung in hypoxia-induced pulmonary hypertension (PH) in mice. To elucidate the role of ADAMTS8 in PH, we used vascular smooth muscle cell-specific ADAMTS8-knockout mice (ADAMTSΔSM22). Hypoxia-induced PH was attenuated in ADAMTSΔSM22 mice compared with controls. ADAMTS8 overexpression increased PASMC proliferation with downregulation of AMPK (AMP-activated protein kinase). In contrast, deletion of ADAMTS8 reduced PASMC proliferation with AMPK upregulation. Moreover, deletion of ADAMTS8 reduced mitochondrial fragmentation under hypoxia in vivo and in vitro. Indeed, PASMCs harvested from ADAMTSΔSM22 mice demonstrated that phosphorylated DRP-1 (dynamin-related protein 1) at Ser637 was significantly upregulated with higher expression of profusion genes (Mfn1 and Mfn2) and improved mitochondrial function. Moreover, recombinant ADAMTS8 induced endothelial dysfunction and matrix metalloproteinase activation in an autocrine/paracrine manner. Next, to elucidate the role of ADAMTS8 in RV function, we developed a cardiomyocyte-specific ADAMTS8 knockout mice (ADAMTS8ΔαMHC). ADAMTS8ΔαMHC mice showed ameliorated RV failure in response to chronic hypoxia. In addition, ADAMTS8ΔαMHC mice showed enhanced angiogenesis and reduced RV ischemia and fibrosis. Finally, high-throughput screening revealed that mebendazole, which is used for treatment of parasite infections, reduced ADAMTS8 expression and cell proliferation in PAH-PASMCs and ameliorated PH and RV failure in PH rodent models. CONCLUSIONS: These results indicate that ADAMTS8 is a novel therapeutic target in PAH.


Assuntos
Proteínas ADAMTS/deficiência , Insuficiência Cardíaca/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Disfunção Ventricular Direita/metabolismo , Proteínas ADAMTS/antagonistas & inibidores , Proteínas ADAMTS/genética , Adulto , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos/tendências , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Humanos , Masculino , Mebendazol/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/patologia , Distribuição Aleatória , Disfunção Ventricular Direita/tratamento farmacológico , Disfunção Ventricular Direita/patologia
13.
J Cardiovasc Pharmacol ; 77(1): 69-78, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33060546

RESUMO

ABSTRACT: Pulmonary artery hypertension (PAH) imposes right heart and lung detrimental remodeling which impairs cardiac contractility, physical effort tolerance, and survival. The effects of an early moderate-intensity continuous aerobic exercise training on the right ventricle and lung structure, and on contractility and the calcium (Ca2+) transient in isolated myocytes from rats with severe PAH induced by monocrotaline were analyzed. Rats were divided into control sedentary (CS), control exercise (CE), monocrotaline sedentary (MS), and monocrotaline exercise (ME) groups. Animals from control exercise and ME groups underwent a moderate-intensity aerobic exercise on a treadmill (60 min/d; 60% intensity) for 32 days, after a monocrotaline (60 mg/kg body weight i.p.) or saline injection. The pulmonary artery resistance was higher in MS than in control sedentary (1.36-fold) and was reduced by 39.39% in ME compared with MS. Compared with MS, the ME group presented reduced alveolus (17%) and blood vessel (46%) wall, fibrosis (25.37%) and type I collagen content (55.78%), and increased alveolus (52.96%) and blood vessel (146.97%) lumen. In the right ventricle, the ME group exhibited diminished hypertrophy index (25.53%) and type I collagen content (40.42%) and improved myocyte contraction [ie, reduced times to peak (29.27%) and to 50% relax (13.79%)] and intracellular Ca2+ transient [ie, decreased times to peak (16.06%) and to 50% decay (7.41%)] compared with MS. Thus, early moderate-intensity continuous aerobic exercise prevents detrimental remodeling in the right heart and lung increases in the pulmonary artery resistance and dysfunction in single myocyte contraction and Ca2+ cycling in this model.


Assuntos
Sinalização do Cálcio , Terapia por Exercício , Hipertrofia Ventricular Direita/prevenção & controle , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Hipertensão Arterial Pulmonar/terapia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita , Remodelação Ventricular , Remodelação das Vias Aéreas , Animais , Pressão Arterial , Modelos Animais de Doenças , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Miócitos Cardíacos/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Ratos Wistar , Resistência Vascular , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia
14.
J Cardiovasc Magn Reson ; 23(1): 22, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33678188

RESUMO

BACKGROUND: In pulmonary arterial hypertension (PAH), progressive right ventricular (RV) dysfunction is believed to be largely secondary to RV ischaemia. A recent pilot study has demonstrated the feasibility of Oxygen-sensitive (OS) cardiovascular magnetic resonance (CMR) to detect in-vivo RV myocardial oxygenation. The aims of the present study therefore, were to assess the prevalence of RV myocardial ischaemia and relationship with RV myocardial interstitial changes in PAH patients with non-obstructive coronaries, and corelate with functional and haemodynamic parameters. METHODS: We prospectively recruited 42 patients with right heart catheter (RHC) proven PAH and 11 healthy age matched controls. The CMR examination involved standard functional imaging, OS-CMR imaging and native T1 mapping. An ΔOS-CMR signal intensity (SI) index (stress/rest signal intensity) was acquired at RV anterior, RV free-wall and RV inferior segments. T1 maps were acquired using Shortened Modified Look-Locker Inversion recovery (ShMOLLI) at the inferior RV segment. RESULTS: The inferior RV ΔOS-CMR SI index was significantly lower in PAH patients compared with healthy controls (9.5 (- 7.4-42.8) vs 12.5 (9-24.6)%, p = 0.02). The inferior RV ΔOS-CMR SI had a significant correlation to RV inferior wall thickness (r = - 0.7, p < 0.001) and RHC mean pulmonary artery pressure (mPAP) (r = - 0.4, p = 0.02). Compared to healthy controls, patients with PAH had higher native T1 in the inferior RV wall: 1303 (1107-1612) vs 1232 (1159-1288)ms, p = 0.049. In addition, there was a significant difference in the inferior RV T1 values between the idiopathic PAH and systemic sclerosis associated PAH patients: 1242 (1107-1612) vs 1386 (1219-1552)ms, p = 0.007. CONCLUSION: Blunted OS-CMR SI suggests the presence of in-vivo microvascular RV dysfunction in PAH patients. The native T1 in the inferior RV segments is significantly increased in the PAH patients, particularly among the systemic sclerosis associated PAH group.


Assuntos
Isquemia Miocárdica/etiologia , Miocárdio/metabolismo , Oxigênio/metabolismo , Hipertensão Arterial Pulmonar/complicações , Disfunção Ventricular Direita/etiologia , Função Ventricular Direita , Idoso , Estudos de Casos e Controles , Circulação Coronária , Feminino , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Microcirculação , Pessoa de Meia-Idade , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Estudos Prospectivos , Hipertensão Arterial Pulmonar/diagnóstico por imagem , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Austrália do Sul , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Esquerda
15.
J Nucl Cardiol ; 28(6): 2784-2795, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32383088

RESUMO

BACKGROUND: Reduced left ventricular (LV) function is associated with increased myocardial oxygen consumption rate (MVO2) and altered sympathetic activity, the role of which is not well described in right ventricular (RV) dysfunction. METHODS AND RESULTS: 33 patients with left heart failure were assessed for RV function/size using echocardiography. Positron emission tomography (PET) was used to measure 11C-acetate clearance rate (kmono), 11C-hydroxyephedrine (11C-HED) standardized uptake value (SUV), and retention rate. RV MVO2 was estimated from kmono. 11C-HED SUV and retention indicated sympathetic neuronal function. A composite clinical endpoint was defined as unplanned cardiac hospitalization within 5 years. Patients with (n = 10) or without (n = 23) RV dysfunction were comparable in terms of sex (male: 70.0 vs 69.5%), LV ejection fraction (39.6 ± 9.0 vs 38.6 ± 9.4%), and systemic hypertension (70.0 vs 78.3%). RV dysfunction patients were older (70.9 ± 13.5 vs 59.4 ± 11.5 years; P = .03) and had a higher prevalence of pulmonary hypertension (60.0% vs 13.0%; P = .01). RV dysfunction was associated with increased RV MVO2 (.106 ± .042 vs .068 ± .031 mL/min/g; P = .02) and decreased 11C-HED SUV and retention (6.05 ± .53 vs 7.40 ± 1.39 g/mL (P < .001) and .08 ± .02 vs .11 ± .03 mL/min/g (P < .001), respectively). Patients with an RV MVO2 above the median had a shorter event-free survival (hazard ratio = 5.47; P = .01). Patients who died within the 5-year follow-up period showed a trend (not statistically significant) for higher RV MVO2 (.120 ± .026 vs .074 ± .038 mL/min/g; P = .05). CONCLUSIONS: RV dysfunction is associated with increased oxygen consumption (also characterized by a higher risk for cardiac events) and impaired RV sympathetic function.


Assuntos
Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Consumo de Oxigênio , Disfunção Ventricular Direita/metabolismo , Remodelação Ventricular , Idoso , Idoso de 80 Anos ou mais , Feminino , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Estudos Retrospectivos , Disfunção Ventricular Direita/complicações , Disfunção Ventricular Direita/fisiopatologia
16.
Arch Toxicol ; 95(1): 179-193, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979061

RESUMO

Accidental bromine spills are common and its large industrial stores risk potential terrorist attacks. The mechanisms of bromine toxicity and effective therapeutic strategies are unknown. Our studies demonstrate that inhaled bromine causes deleterious cardiac manifestations. In this manuscript we describe mechanisms of delayed cardiac effects in the survivors of a single bromine exposure. Rats were exposed to bromine (600 ppm for 45 min) and the survivors were sacrificed at 14 or 28 days. Echocardiography, hemodynamic analysis, histology, transmission electron microscopy (TEM) and biochemical analysis of cardiac tissue were performed to assess functional, structural and molecular effects. Increases in right ventricular (RV) and left ventricular (LV) end-diastolic pressure and LV end-diastolic wall stress with increased LV fibrosis were observed. TEM images demonstrated myofibrillar loss, cytoskeletal breakdown and mitochondrial damage at both time points. Increases in cardiac troponin I (cTnI) and N-terminal pro brain natriuretic peptide (NT-proBNP) reflected myofibrillar damage and increased LV wall stress. LV shortening decreased as a function of increasing LV end-systolic wall stress and was accompanied by increased sarcoendoplasmic reticulum calcium ATPase (SERCA) inactivation and a striking dephosphorylation of phospholamban. NADPH oxidase 2 and protein phosphatase 1 were also increased. Increased circulating eosinophils and myocardial 4-hydroxynonenal content suggested increased oxidative stress as a key contributing factor to these effects. Thus, a continuous oxidative stress-induced chronic myocardial damage along with phospholamban dephosphorylation are critical for bromine-induced chronic cardiac dysfunction. These findings in our preclinical model will educate clinicians and public health personnel and provide important endpoints to evaluate therapies.


Assuntos
Bromo , Cardiomegalia/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Esquerda , Função Ventricular Direita , Remodelação Ventricular , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiotoxicidade , Diástole , Modelos Animais de Doenças , Fibrose , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/metabolismo , Miocárdio/ultraestrutura , NADPH Oxidase 2/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sístole , Fatores de Tempo , Troponina I/metabolismo , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
17.
Am J Respir Crit Care Med ; 201(2): 148-157, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31513751

RESUMO

Pulmonary arterial hypertension (PAH) is a disease characterized by progressive loss and remodeling of the pulmonary arteries, resulting in right heart failure and death. Until recently, PAH was seen as a disease restricted to the pulmonary circulation. However, there is growing evidence that patients with PAH also exhibit systemic vascular dysfunction, as evidenced by impaired brachial artery flow-mediated dilation, abnormal cerebral blood flow, skeletal myopathy, and intrinsic kidney disease. Although some of these anomalies are partially due to right ventricular insufficiency, recent data support a mechanistic link to the genetic and molecular events behind PAH pathogenesis. This review serves as an introduction to the major systemic findings in PAH and the evidence that supports a common mechanistic link with PAH pathophysiology. In addition, it discusses recent studies describing morphological changes in systemic vessels and the possible role of bronchopulmonary anastomoses in the development of plexogenic arteriopathy. On the basis of available evidence, we propose a paradigm in which metabolic abnormalities, genetic injury, and systemic vascular dysfunction contribute to systemic manifestations in PAH. This concept not only opens exciting research possibilities but also encourages clinicians to consider extrapulmonary manifestations in their management of patients with PAH.


Assuntos
Transtornos Cerebrovasculares/fisiopatologia , Doença da Artéria Coronariana/fisiopatologia , Nefropatias/fisiopatologia , Doenças Musculares/fisiopatologia , Hipertensão Arterial Pulmonar/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Artérias Brônquicas/patologia , Artérias Brônquicas/fisiopatologia , Circulação Cerebrovascular , Doença da Artéria Coronariana/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Nefropatias/metabolismo , Doenças Musculares/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Músculos Respiratórios/fisiopatologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/fisiopatologia , Vasodilatação , Disfunção Ventricular Direita/metabolismo
18.
Circulation ; 139(15): 1813-1827, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30700140

RESUMO

BACKGROUND: Titin is a giant elastic protein that spans the half-sarcomere from Z-disk to M-band. It acts as a molecular spring and mechanosensor and has been linked to striated muscle disease. The pathways that govern titin-dependent cardiac growth and contribute to disease are diverse and difficult to dissect. METHODS: To study titin deficiency versus dysfunction, the authors generated and compared striated muscle specific knockouts (KOs) with progressive postnatal loss of the complete titin protein by removing exon 2 (E2-KO) or an M-band truncation that eliminates proper sarcomeric integration, but retains all other functional domains (M-band exon 1/2 [M1/2]-KO). The authors evaluated cardiac function, cardiomyocyte mechanics, and the molecular basis of the phenotype. RESULTS: Skeletal muscle atrophy with reduced strength, severe sarcomere disassembly, and lethality from 2 weeks of age were shared between the models. Cardiac phenotypes differed considerably: loss of titin leads to dilated cardiomyopathy with combined systolic and diastolic dysfunction-the absence of M-band titin to cardiac atrophy and preserved function. The elastic properties of M1/2-KO cardiomyocytes are maintained, while passive stiffness is reduced in the E2-KO. In both KOs, we find an increased stress response and increased expression of proteins linked to titin-based mechanotransduction (CryAB, ANKRD1, muscle LIM protein, FHLs, p42, Camk2d, p62, and Nbr1). Among them, FHL2 and the M-band signaling proteins p62 and Nbr1 are exclusively upregulated in the E2-KO, suggesting a role in the differential pathology of titin truncation versus deficiency of the full-length protein. The differential stress response is consistent with truncated titin contributing to the mechanical properties in M1/2-KOs, while low titin levels in E2-KOs lead to reduced titin-based stiffness and increased strain on the remaining titin molecules. CONCLUSIONS: Progressive depletion of titin leads to sarcomere disassembly and atrophy in striated muscle. In the complete knockout, remaining titin molecules experience increased strain, resulting in mechanically induced trophic signaling and eventually dilated cardiomyopathy. The truncated titin in M1/2-KO helps maintain the passive properties and thus reduces mechanically induced signaling. Together, these findings contribute to the molecular understanding of why titin mutations differentially affect cardiac growth and have implications for genotype-phenotype relations that support a personalized medicine approach to the diverse titinopathies.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Mecanotransdução Celular , Miócitos Cardíacos/metabolismo , Proteínas Quinases/deficiência , Sarcômeros/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Direita/metabolismo , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Deleção de Genes , Masculino , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Miócitos Cardíacos/patologia , Fenótipo , Proteínas Quinases/genética , Sarcômeros/patologia , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Esquerda , Função Ventricular Direita
19.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L1-L9, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577159

RESUMO

Pulmonary hypertension (PH) is a life-threatening condition arising from the loss and obstructive remodeling of the pulmonary arteries, leading to the sustained elevation of pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR) and subsequently right ventricular (RV) failure and death. PH encompasses a group of multifactorial diseases, such as pulmonary arterial hypertension (PAH) and chronic thromboembolic PH, for which there is no treatment that can stop or reverse the progression of remodeling of the pulmonary vasculature. The identification of new molecular targets for the development of more effective drugs is thus urgently needed. In this context, macrophage migration inhibitory factor (MIF), a pleiotropic upstream proinflammatory mediator, is emerging as a promising molecular target, as it contributes to perivascular inflammation and pulmonary arterial remodeling, two key hallmarks of PAH that are not specifically targeted by currently approved therapies. The objective of this review is to summarize the scientific evidence on the pathogenic roles of MIF and its potential as a biomarker and therapeutic target in PH/PAH.


Assuntos
Hipertensão Pulmonar/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Macrófagos/metabolismo , Artéria Pulmonar/metabolismo , Animais , Humanos , Hipertensão Pulmonar/fisiopatologia , Macrófagos/fisiologia , Artéria Pulmonar/fisiopatologia , Remodelação Vascular , Resistência Vascular/fisiologia , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia
20.
Am J Physiol Heart Circ Physiol ; 319(6): H1459-H1473, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064565

RESUMO

Although women are more susceptible to pulmonary arterial hypertension (PAH) than men, their right ventricular (RV) function is better preserved. Estrogen receptor-α (ERα) has been identified as a likely mediator for estrogen protection in the RV. However, the role of ERα in preserving RV function and remodeling during pressure overload remains poorly understood. We hypothesized that loss of functional ERα removes female protection from adverse remodeling and is permissive for the development of a maladapted RV phenotype. Male and female rats with a loss-of-function mutation in ERα (ERαMut) and wild-type (WT) littermates underwent RV pressure overload by pulmonary artery banding (PAB). At 10 wk post-PAB, WT and ERαMut demonstrated RV hypertrophy. Analysis of RV pressure waveforms demonstrated RV-pulmonary vascular uncoupling and diastolic dysfunction in female, but not male, ERαMut PAB rats. Similarly, female, but not male, ERαMut exhibited increased RV fibrosis, comprised primarily of thick collagen fibers. There was an increased protein expression ratio of TIMP metallopeptidase inhibitor 1 (Timp1) to matrix metalloproteinase 9 (Mmp9) in female ERαMut compared with WT PAB rats, suggesting less collagen degradation. RNA-sequencing in female WT and ERαMut RV revealed kallikrein-related peptidase 10 (Klk10) and Jun Proto-Oncogene (Jun) as possible mediators of female RV protection during PAB. In summary, ERα in females is protective against RV-pulmonary vascular uncoupling, diastolic dysfunction, and fibrosis in response to pressure overload. ERα appears to be dispensable for RV adaptation in males. ERα may be a mediator of superior RV adaptation in female patients with PAH.NEW & NOTEWORTHY Using a novel loss-of-function mutation in estrogen receptor-α (ERα), we demonstrate that female, but not male, ERα mutant rats display right ventricular (RV)-vascular uncoupling, diastolic dysfunction, and fibrosis following pressure overload, indicating a sex-dependent role of ERα in protecting against adverse RV remodeling. TIMP metallopeptidase inhibitor 1 (Timp1), matrix metalloproteinase 9 (Mmp9), kallikrein-related peptidase 10 (Klk10), and Jun Proto-Oncogene (Jun) were identified as potential mediators in ERα-regulated pathways in RV pressure overload.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Hipertrofia Ventricular Direita/prevenção & controle , Miocárdio/metabolismo , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita , Remodelação Ventricular , Animais , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Feminino , Colágenos Fibrilares/metabolismo , Fibrose , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mutação , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos Mutantes , Ratos Sprague-Dawley , Fatores Sexuais , Transdução de Sinais , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA