RESUMO
Pathogenic variants in the Retinitis pigmentosa GTPase regulator (RPGR) gene lead to a clinically severe form of X-linked retinal dystrophy. However, it remains unclear why some variants cause a predominant rod, while others result in a cone-dominated phenotype. Post-translational glutamylation of the photoreceptor-specific RPGRORF15 isoform by the TTLL5 enzyme is essential for its optimal function in photoreceptors, and loss of TTLL5 leads to retinal dystrophy with a cone phenotype. Here we show that RPGR retinal disease, studied in a single cohort of 116 male patients, leads to a clear progressive shift from rod- to cone-dominating phenotype as the RPGRORF15 variant location approaches the distal part of the Open Reading Frame 15 (ORF15) region. The rod photoreceptor involvement on the contrary diminishes along the RGPR sequence, and the variants associated with the cone only phenotype are located predominantly in the very distal part, including the C-terminal basic domain. Moreover, these distal truncating RPGRORF15 variants disrupt the interaction with TTLL5 and lead to a significant impairment of RPGR glutamylation. Thus, consistent with the phenotype of TTLL5 pathogenic variants, our study shows that RPGRORF15 variants, which disrupt its basic domain and the interaction with TTLL5, also impair RPGR glutamylation and lead to the cone phenotype. This has implications for ongoing gene therapy clinical trials where the application of RPGR with impaired glutamylation may be less effective in treating RGPR dystrophies and may even convert a rod-cone dystrophy into a cone dystrophy phenotype.
Assuntos
Distrofias de Cones e Bastonetes , Distrofias Retinianas , Humanos , Masculino , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/fisiologia , Fenótipo , Células Fotorreceptoras Retinianas Cones/metabolismo , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Ácido Glutâmico/metabolismoRESUMO
BACKGROUND: Inherited retinal dystrophies (IRDs) are a group of debilitating visual disorders characterized by the progressive degeneration of photoreceptors, which ultimately lead to blindness. Among the causes of this condition, mutations in the PCYT1A gene, which encodes the rate-limiting enzyme responsible for phosphatidylcholine (PC) de novo synthesis via the Kennedy pathway, have been identified. However, the precise mechanisms underlying the association between PCYT1A mutations and IRDs remain unclear. To address this knowledge gap, we focused on elucidating the functions of PCYT1A in the retina. RESULTS: We found that PCYT1A is highly expressed in Müller glial (MG) cells in the inner nuclear layer (INL) of the retina. Subsequently, we generated a retina-specific knockout mouse model in which the Pcyt1a gene was targeted (Pcyt1a-RKO or RKO mice) to investigate the molecular mechanisms underlying IRDs caused by PCYT1A mutations. Our findings revealed that the deletion of Pcyt1a resulted in retinal degenerative phenotypes, including reduced scotopic electroretinogram (ERG) responses and progressive degeneration of photoreceptor cells, accompanied by loss of cells in the INL. Furthermore, through proteomic and bioinformatic analyses, we identified dysregulated retinal fatty acid metabolism and activation of the ferroptosis signalling pathway in RKO mice. Importantly, we found that PCYT1A deficiency did not lead to an overall reduction in PC synthesis within the retina. Instead, this deficiency appeared to disrupt free fatty acid metabolism and ultimately trigger ferroptosis. CONCLUSIONS: This study reveals a novel mechanism by which mutations in PCYT1A contribute to the development of IRDs, shedding light on the interplay between fatty acid metabolism and retinal degenerative diseases, and provides new insights into the treatment of IRDs.
Assuntos
Ácidos Graxos , Ferroptose , Camundongos Knockout , Retina , Animais , Camundongos , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Ácidos Graxos/metabolismo , Ferroptose/fisiologia , Ferroptose/genética , Retina/metabolismo , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismoRESUMO
Acyl-CoA-binding domain-containing protein 5-related retinal dystrophy with leukodystrophy (ACBD5) is a peroxisomal disorder due to deficiency of ACBD5. Presenting features include retinal dystrophy, progressive leukodystrophy, and ataxia. Only seven cases of ACBD5-related retinal dystrophy have been reported in the literature to date, including one other case diagnosed in adulthood. Here we report a case with novel compound heterozygous ACBD5 mutations, presenting with the common features of rod monochromatism and progressive leukodystrophy with spasticity and ataxia. Additional novel clinical features included head and neck tremor and ovarian insufficiency. The patient's symptoms were present since infancy, but a diagnosis was only reached in adulthood when whole exome sequencing was performed. This case, which reports two novel mutations and additional clinical manifestations, contributes to the emerging phenotype of ACBD5-related retinal dystrophy with leukodystrophy, and delineation of the natural history and disease progression.
Assuntos
Insuficiência Ovariana Primária , Distrofias Retinianas , Feminino , Humanos , Mutação , Linhagem , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Fenótipo , Insuficiência Ovariana Primária/diagnóstico , Insuficiência Ovariana Primária/genética , Ataxia , Proteínas de Membrana/genética , Proteínas Adaptadoras de Transdução de Sinal/genéticaRESUMO
PURPOSE: This study aims to answer a key question: is MYO7A-inherited retinal dystrophy (MYO7A-IRD) a photoreceptor-first or retinal pigment epithelium-first disease? A second aim was to determine the most useful biomarkers to monitor disease progression in pediatric patients with Usher syndrome type 1B (USH1) secondary to MYO7A mutation. METHODS: Fifty-two eyes from 26 patients with genetically-confirmed MYO7A-IRD underwent swept-source optical coherence tomography (SS-OCT). Structural abnormalities were evaluated and correlated with follow-up time and best corrected visual acuity (BCVA). All patients were evaluated at baseline and after ≥ 40 months of follow-up. RESULTS: The mean (SD) patient age was 9.92 (± 4.1) years. Mean follow-up time was 43 (± 3.2) months. At the final evaluation, the most common qualitative abnormalities in the subfoveal area were alterations in the photoreceptor outer segments (76.9% of eyes) and in the interdigitation zone (IZ) (80.8%). The presence of cystoid macular edema at baseline was independently associated with worse BCVA at the final assessment (increase in LogMAR estimate = 0.142; t(45.00) = 2.78, p = 0.009). The mean width of the ellipsoid and interdigitation zones decreased significantly (by 668 µm and 278 µm, respectively; both p < 0.001). CONCLUSION: This study shows that disruption of the photoreceptor outer segments and the IZ are the first alterations detected by SS-OCT in the early phases of MYO7A-IRD. These data highlight the potential value of measuring the width of the ellipsoid and IZ to evaluate disease progression. These findings also demonstrate the utility of monitoring for the emergence of cystic lesions as biomarkers of worse visual prognosis in patients with MYO7A-IRD.
Assuntos
Progressão da Doença , Mutação , Miosina VIIa , Tomografia de Coerência Óptica , Acuidade Visual , Humanos , Tomografia de Coerência Óptica/métodos , Masculino , Criança , Feminino , Acuidade Visual/fisiologia , Seguimentos , Adolescente , Pré-Escolar , Distrofias Retinianas/genética , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/fisiopatologia , Distrofias Retinianas/metabolismo , Biomarcadores/metabolismo , Fundo de Olho , Estudos Retrospectivos , Angiofluoresceinografia/métodos , Epitélio Pigmentado da Retina/patologia , DNA/genéticaRESUMO
INTRODUCTION: Conclusive molecular genetic diagnoses in inherited retinal diseases remains a major challenge due to the large number of variants of uncertain significance (VUS) identified in genetic testing. Here, we determined the genotypic and phenotypic spectrum of ABCA4 gene variants in a cohort of Canadian inherited retinal dystrophy subjects. METHODS: This retrospective study evaluated 64 subjects with an inherited retinal dystrophy diagnosis with variants in the ABCA4 gene. Pathogenicity of variants was assessed by comparison to genetic databases and in silico modelling. ABCA4 variants classified as VUS were further evaluated using a cryo-electron structural model of the ABCA4 protein to predict impact on protein function and were also assessed for evolutionary conservation. RESULTS: Conclusive disease-causing biallelic ABCA4 variants were detected in 52 subjects with either Stargardt's disease, cone-rod dystrophy, macular dystrophy, or pattern dystrophy. A further 14 variants were novel comprising 1 nonsense, 1 frameshift, 3 splicing, and 9 missense variants. Based on in silico modelling, protein modelling and evolutionary conservation from human to zebrafish, we re-classified 5 of these as pathogenic and a further 3 as likely pathogenic. We also added to the ABCA4 phenotypic spectrum seen with four known pathogenic variants (c.2161-2A>G; Leu296Cysfs*4; Arg1640Gln; and Pro1380Leu). CONCLUSIONS: This study expands the genotypic and phenotypic spectrum of ABCA4 disease-associated variants. By panel-based genetic testing, we identified 14 novel ABCA4 variants of which 8 were determined to be disease-causing or likely disease-causing. These methodologies could circumvent somewhat the need for labour intensive in vitro and in vivo assessments of novel ABCA4 variants.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Genótipo , Mutação , Humanos , Estudos Retrospectivos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Feminino , Masculino , Análise Mutacional de DNA , Adulto , Fenótipo , Linhagem , Distrofias Retinianas/genética , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/metabolismo , Tomografia de Coerência Óptica/métodos , Criança , Testes Genéticos/métodos , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , DNA/genética , Retina/patologia , Retina/metabolismoRESUMO
Photoreceptor degeneration leads to irreversible vision loss in humans with retinal dystrophies such as retinitis pigmentosa. Whereas photoreceptor loss is permanent in mammals, zebrafish possesses the ability to regenerate retinal neurons and restore visual function. Following acute damage, Müller glia (MG) re-enter the cell cycle and produce multipotent progenitors whose progeny differentiate into mature neurons. Both MG reprogramming and proliferation of retinal progenitor cells require reactive microglia and associated inflammatory signaling. Paradoxically, in zebrafish models of retinal degeneration, photoreceptor death does not induce the MG to reprogram and regenerate lost cells. Here, we used male and female zebrafish cep290 mutants to demonstrate that progressive cone degeneration generates an immune response but does not stimulate MG proliferation. Acute light damage triggered photoreceptor regeneration in cep290 mutants but cones were only restored to prelesion densities. Using irf8 mutant zebrafish, we found that the chronic absence of microglia reduced inflammation and rescued cone degeneration in cep290 mutants. Finally, single-cell RNA-sequencing revealed sustained expression of notch3 in MG of cep290 mutants and inhibition of Notch signaling induced MG to re-enter the cell cycle. Our findings provide new insights on the requirements for MG to proliferate and the potential for immunosuppression to prolong photoreceptor survival.SIGNIFICANCE STATEMENT Inherited retinal degenerations (IRDs) are genetic diseases that lead to the progressive loss of photoreceptors and the permanent loss of vision. Zebrafish can regenerate photoreceptors after acute injury by reprogramming Müller glia (MG) into stem-like cells that produce retinal progenitors, but this regenerative process fails to occur in zebrafish models of IRDs. Here, we show that Notch pathway inhibition can promote photoreceptor regeneration in models of progressive degeneration and that immunosuppression can prevent photoreceptor loss. These results offer insight into the pathways that promote MG-dependent regeneration and the role of inflammation in photoreceptor degeneration.
Assuntos
Degeneração Retiniana , Distrofias Retinianas , Animais , Animais Geneticamente Modificados , Proliferação de Células , Feminino , Terapia de Imunossupressão , Inflamação/metabolismo , Masculino , Mamíferos , Regeneração/fisiologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/patologia , Distrofias Retinianas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismoRESUMO
CLCN2 encodes a two-pore homodimeric chloride channel protein (CLC-2) that is widely expressed in human tissues. The association between Clcn2 and the retina is well-established in mice, as loss-of-function of CLC-2 can cause retinopathy in mice; however, the ocular phenotypes caused by CLCN2 mutations in humans and the underlying mechanisms remain unclear. The present study aimed to define the ocular features and reveal the pathogenic mechanisms of CLCN2 variants associated with retinal degeneration in humans using an in vitro overexpression system, as well as patient-induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) cells and retinal organoids (ROs). A patient carrying the homozygous c.2257C > T (p.R753X) nonsense CLCN2 mutation was followed up for > 6 years. Ocular features were comprehensively characterized with multimodality imaging and functional examination. The patient presented with severe bilateral retinal degeneration with loss of photoreceptor and RPE. In vitro, mutant CLC-2 maintained the correct subcellular localization, but with reduced channel function compared to wild-type CLC-2 in HEK293T cells. Additionally, patient iPSC-derived RPE cells carrying the CLCN2 mutation exhibited dysfunctional ClC-2 chloride channels and outer segment phagocytosis. Notably, these functions were rescued following the repair of the CLCN2 mutation using the CRISPR-Cas9 system. However, this variant did not cause significant photoreceptor degeneration in patient-derived ROs, indicating that dysfunctional RPE is likely the primary cause of biallelic CLCN2 variant-mediated retinopathy. This study is the first to establish the confirmatory ocular features of human CLCN2-related retinal degeneration, and reveal a pathogenic mechanism associated with biallelic CLCN2 variants, providing new insights into the cause of inherited retinal dystrophies.
Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofias Retinianas , Animais , Humanos , Camundongos , Canais de Cloreto/genética , Códon sem Sentido , Células HEK293 , Mutação , Fagocitose/genética , Espécies Reativas de Oxigênio/metabolismo , Distrofias Retinianas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologiaRESUMO
Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes.
Assuntos
Coroideremia , Distrofias Retinianas , Animais , Humanos , Adulto , Coroideremia/genética , Coroideremia/terapia , Coroideremia/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Retina/metabolismo , Mutação , Distrofias Retinianas/metabolismo , Plasmídeos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
The retina is a highly active metabolic organ that displays a particular vulnerability to genetic and environmental factors causing stress and homeostatic imbalance. Mitochondria constitute a bioenergetic hub that coordinates stress response and cellular homeostasis, therefore structural and functional regulation of the mitochondrial dynamic network is essential for the mammalian retina. CERKL (ceramide kinase like) is a retinal degeneration gene whose mutations cause Retinitis Pigmentosa in humans, a visual disorder characterized by photoreceptors neurodegeneration and progressive vision loss. CERKL produces multiple isoforms with a dynamic subcellular localization. Here we show that a pool of CERKL isoforms localizes at mitochondria in mouse retinal ganglion cells. The depletion of CERKL levels in CerklKD/KO(knockdown/knockout) mouse retinas cause increase of autophagy, mitochondrial fragmentation, alteration of mitochondrial distribution, and dysfunction of mitochondrial-dependent bioenergetics and metabolism. Our results support CERKL as a regulator of autophagy and mitochondrial biology in the mammalian retina.
Assuntos
Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Retina/metabolismo , Distrofias Retinianas/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Autofagia/fisiologia , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Retina/ultraestrutura , Distrofias Retinianas/genética , Distrofias Retinianas/patologia , Células Ganglionares da Retina/ultraestrutura , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologiaRESUMO
Variations in the human Crumbs homolog-1 (CRB1) gene lead to an array of retinal dystrophies including early onset of retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) in children. To investigate the physiological roles of CRB1 and CRB2 in retinal Müller glial cells (MGCs), we analysed mouse retinas lacking both proteins in MGC. The peripheral retina showed a faster progression of dystrophy than the central retina. The central retina showed retinal folds, disruptions at the outer limiting membrane, protrusion of photoreceptor nuclei into the inner and outer segment layers and ingression of photoreceptor nuclei into the photoreceptor synaptic layer. The peripheral retina showed a complete loss of the photoreceptor synapse layer, intermingling of photoreceptor nuclei within the inner nuclear layer and ectopic photoreceptor cells in the ganglion cell layer. Electroretinography showed severe attenuation of the scotopic a-wave at 1 month of age with responses below detection levels at 3 months of age. The double knockout mouse retinas mimicked a phenotype equivalent to a clinical LCA phenotype due to loss of CRB1. Localization of CRB1 and CRB2 in non-human primate (NHP) retinas was analyzed at the ultrastructural level. We found that NHP CRB1 and CRB2 proteins localized to the subapical region adjacent to adherens junctions at the outer limiting membrane in MGC and photoreceptors. Our data suggest that loss of CRB2 in MGC aggravates the CRB1-associated RP-like phenotype towards an LCA-like phenotype.
Assuntos
Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Retinose Pigmentar/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Modelos Animais de Doenças , Eletrorretinografia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/fisiopatologia , Macaca fascicularis , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/fisiologia , Neuroglia/fisiologia , Fenótipo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Distrofias Retinianas/metabolismo , Retinose Pigmentar/metabolismo , Retinose Pigmentar/fisiopatologiaRESUMO
Biallelic STX3 variants were previously reported in five individuals with the severe congenital enteropathy, microvillus inclusion disease (MVID). Here, we provide a significant extension of the phenotypic spectrum caused by STX3 variants. We report ten individuals of diverse geographic origin with biallelic STX3 loss-of-function variants, identified through exome sequencing, single-nucleotide polymorphism array-based homozygosity mapping, and international collaboration. The evaluated individuals all presented with MVID. Eight individuals also displayed early-onset severe retinal dystrophy, i.e., syndromic-intestinal and retinal-disease. These individuals harbored STX3 variants that affected both the retinal and intestinal STX3 transcripts, whereas STX3 variants affected only the intestinal transcript in individuals with solitary MVID. That STX3 is essential for retinal photoreceptor survival was confirmed by the creation of a rod photoreceptor-specific STX3 knockout mouse model which revealed a time-dependent reduction in the number of rod photoreceptors, thinning of the outer nuclear layer, and the eventual loss of both rod and cone photoreceptors. Together, our results provide a link between STX3 loss-of-function variants and a human retinal dystrophy. Depending on the genomic site of a human loss-of-function STX3 variant, it can cause MVID, the novel intestinal-retinal syndrome reported here or, hypothetically, an isolated retinal dystrophy.
Assuntos
Oftalmopatias Hereditárias/genética , Mucosa Intestinal/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Polimorfismo de Nucleotídeo Único , Proteínas Qa-SNARE/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Distrofias Retinianas/genética , Idoso , Idoso de 80 Anos ou mais , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Autopsia , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Feminino , Regulação da Expressão Gênica , Homozigoto , Humanos , Mucosa Intestinal/patologia , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Camundongos , Camundongos Knockout , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Fenótipo , Proteínas Qa-SNARE/deficiência , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Distrofias Retinianas/metabolismo , Distrofias Retinianas/patologia , Rodopsinas Sensoriais/genética , Rodopsinas Sensoriais/metabolismo , Sequenciamento do ExomaRESUMO
PURPOSE: To determine whether functional vision and visual function improvements after voretigene neparvovec (VN; Luxturna [Spark Therapeutics, Inc]) administration in patients with biallelic RPE65 mutation-associated inherited retinal disease are maintained at 3 to 4 years and to review safety outcomes. DESIGN: Open-label, randomized, controlled phase 3 trial. PARTICIPANTS: Thirty-one individuals were enrolled and randomized 2:1 to intervention (n = 21) or control (n = 10). One participant from each group withdrew before, or at, randomization. METHODS: Patients in the original intervention (OI) group received bilateral subretinal VN injections. Delayed intervention (DI) patients served as control participants for 1 year then received VN. MAIN OUTCOME MEASURES: Change from injection baseline in bilateral performance on the multiluminance mobility test (MLMT), a measure of ambulatory navigation, and change from injection baseline in full-field light sensitivity threshold white light, visual field (VF), and visual acuity (VA). RESULTS: Mean bilateral MLMT change scores at year 4 for OI patients and year 3 for DI patients were 1.7 and 2.4, respectively, with 71% of patients with a year 3 visit able to pass MLMT at the lowest light level. Mean change in full-field light sensitivity threshold white light, averaged over both eyes at year 4 for OI patients and year 3 for DI patients, was -1.90 log10(cd.s/m2) and -2.91 log10(cd.s/m2), respectively. Mean change in Goldmann kinetic VF III4e sum total degrees, averaged across both eyes, was 197.7 at year 4 for OI patients and 157.9 at year 3 for DI patients. Mean change in VA (Holladay scale), averaged across both eyes, was -0.003 logarithm of the minimum angle of resolution (logMAR) at year 4 for OI patients and -0.06 logMAR at year 3 for DI patients. One OI patient experienced retinal detachment at approximately year 4 that impacted VA for the OI group. No product-related serious adverse events (AEs) occurred, nor did any deleterious immune responses. CONCLUSIONS: Improvements in ambulatory navigation, light sensitivity, and VF were consistent in both intervention groups. Overall, improvements were maintained up to 3 to 4 years, with ongoing observation. The safety profile of VN was consistent with vitrectomy and the subretinal injection procedure and was similar between intervention groups, with no product-related serious AEs reported.
Assuntos
Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Mutação , Distrofias Retinianas/tratamento farmacológico , Acuidade Visual , cis-trans-Isomerases/administração & dosagem , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Injeções Intraoculares , Masculino , Retina , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Fatores de Tempo , Resultado do Tratamento , Campos Visuais , Adulto Jovem , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismoRESUMO
INTRODUCTION: Biallelic pathogenic RPE65 variants are related to a spectrum of clinically overlapping inherited retinal dystrophies (IRD). Most affected individuals progress to severe disease, with 50% of patients becoming legally blind by 20 years of age. Deeper knowledge of the mutational spectrum and the phenotype-genotype correlation in RPE65-related IRD is needed. PATIENTS AND METHODS: Forty-five affected subjects from 27 unrelated families with a clinical diagnosis of RPE65-related IRD were included. Clinical evaluation consisted of self-reported ophthalmological history and objective ophthalmological examination. Patients' genotype was classified according to variant class (truncating or missense) or to variant location at different protein domains. The main phenotypic outcome measure was age at onset (AAO) of symptomatic disease and a Kaplan-Meier analysis of disease symptom event-free survival was performed. RESULTS: Twenty-nine different RPE65 variants were identified in our cohort, 7 of them novel. Patients carrying two missense alleles showed a later disease onset than those with 1 or 2 truncating variants (log-rank test p <0.05). While 60% of patients carrying a missense/missense genotype presented symptoms before or during the first year of life, almost all patients with at least 1 truncating allele (91%) had an AAO ≤1 year (p <0.05). CONCLUSION: Our findings suggest an association between the type of RPE65 variant carried and AAO. These findings provide useful data on RPE65-associated IRD phenotypes and may help improve clinical and therapeutic management of these patients.
Assuntos
DNA/genética , Estudos de Associação Genética/métodos , Mutação , Distrofias Retinianas/genética , cis-trans-Isomerases/genética , Adolescente , Alelos , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Genótipo , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/metabolismo , Adulto Jovem , cis-trans-Isomerases/metabolismoRESUMO
Peroxisomes play an essential role in lipid metabolism via interaction with other intracellular organelles. The information about the role of the Acyl-CoA-binding domain containing-protein 5 (ACBD5) in these interactions in human cells is emerging. Moreover, a few patients with retinal dystrophy and leukodystrophy caused by pathogenic variants in ACBD5 have been recently introduced. Here, we present a 36-year-old female with retinal dystrophy, leukodystrophy, and psychomotor regression due to a novel homozygous variant in ACBD5. Our study adds to the growing knowledge of this peroxisomal disorder by providing phenotypic details of the first adult patient.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Predisposição Genética para Doença , Metabolismo dos Lipídeos/genética , Proteínas de Membrana/genética , Distrofias Retinianas/genética , Adulto , Feminino , Homozigoto , Humanos , Peroxissomos/genética , Peroxissomos/patologia , Distrofias Retinianas/metabolismo , Distrofias Retinianas/patologiaRESUMO
Pathogenic variants in CRB1 lead to diverse recessive retinal disorders from severe Leber congenital amaurosis to isolated macular dystrophy. Until recently, no clear phenotype-genotype correlation and no appropriate mouse models existed. Herein, we reappraise the phenotype-genotype correlation of 50 patients with regards to the recently identified CRB1 isoforms: a canonical long isoform A localized in Müller cells (12 exons) and a short isoform B predominant in photoreceptors (7 exons). Twenty-eight patients with early onset retinal dystrophy (EORD) consistently had a severe Müller impairment, with variable impact on the photoreceptors, regardless of isoform B expression. Among them, two patients expressing wild type isoform B carried one variant in exon 12, which specifically damaged intracellular protein interactions in Müller cells. Thirteen retinitis pigmentosa patients had mainly missense variants in laminin G-like domains and expressed at least 50% of isoform A. Eight patients with the c.498_506del variant had macular dystrophy. In one family homozygous for the c.1562C>T variant, the brother had EORD and the sister macular dystrophy. In contrast with the mouse model, these data highlight the key role of Müller cells in the severity of CRB1-related dystrophies in humans, which should be taken into consideration for future clinical trials.
Assuntos
Células Ependimogliais/patologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Degeneração Macular/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Distrofias Retinianas/patologia , Retinose Pigmentar/patologia , Adolescente , Idade de Início , Processamento Alternativo , Criança , Pré-Escolar , Células Ependimogliais/metabolismo , Proteínas do Olho/química , Feminino , Estudos de Associação Genética , Humanos , Lactente , Degeneração Macular/genética , Degeneração Macular/metabolismo , Masculino , Proteínas de Membrana/química , Modelos Moleculares , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Mutação Puntual , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Estudos Retrospectivos , Deleção de Sequência , Adulto JovemRESUMO
PURPOSE: To systematically and longitudinally investigate the characteristics of flecks in ABCA4-related retinopathy under different fundus autofluorescence (AF) excitation and emission spectra. METHODS: A total of 132 eyes of 66 patients with ABCA4-related retinopathy were investigated using multimodal AF imaging and spectral domain optical coherence tomography. Autofluorescence imaging with blue (BAF), green (GAF), and near-infrared (NIR-AF) excitation wavelengths obtained by a confocal scanning laser ophthalmoscope was compared with AF imaging obtained by an innovative confocal light-emitting diode-based retinal imaging system (Color-AF) that allows for separation of short (green emission fluorescent component) and long (red emission fluorescent component) autofluorescence emission components. RESULTS: Color-AF, BAF, and GAF, overall, revealed similar presentation of hyperautofluorescent flecks. Flecks that showed predominantly red emission fluorescent component matched with hyperautofluorescent flecks in NIR-AF. Over the observation time of 5 to 14 months, flecks showed a transition in the AF emission spectrum to shorter wavelengths (red emission fluorescent component to green emission fluorescent component), associated with a progressed disruption of overlaying outer retinal bands in optical coherence tomography. Newer hyperautofluorescent flecks usually revealed predominantly red emission fluorescent component. CONCLUSION: By separation of the AF spectra, the remodeling of fluorophores and associated structural changes can be monitored over time indicating a novel and susceptible surrogate marker for disease progression and potential therapeutic effects.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Lipofuscina/metabolismo , Imagem Óptica , Distrofias Retinianas/diagnóstico por imagem , Distrofias Retinianas/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Estudos Transversais , Feminino , Angiofluoresceinografia , Seguimentos , Fundo de Olho , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Oftalmoscopia , Distrofias Retinianas/genética , Tomografia de Coerência Óptica , Acuidade Visual/fisiologiaRESUMO
Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy. We recently identified mutations in REEP6, which encodes the receptor expression enhancing protein 6, in several families with autosomal recessive RP. REEP6 is related to the REEP and Yop1p family of ER shaping proteins and potential receptor accessory proteins, but the role of REEP6 in the retina is unknown. Here we characterize the disease mechanisms associated with loss of REEP6 function using a Reep6 knockout mouse generated by CRISPR/Cas9 gene editing. In control mice REEP6 was localized to the inner segment and outer plexiform layer of rod photoreceptors. The Reep6-/- mice exhibited progressive photoreceptor degeneration from P20 onwards. Ultrastructural analyses at P20 by transmission electron microscopy and 3View serial block face scanning EM revealed an expansion of the distal ER in the Reep6-/- rods and an increase in their number of mitochondria. Electroretinograms revealed photoreceptor dysfunction preceded degeneration, suggesting potential defects in phototransduction. There was no effect on the traffic of rhodopsin, Rom1 or peripherin/rds; however, the retinal guanylate cyclases GC1 and GC2 were severely affected in the Reep6 knockout animals, with almost undetectable expression. These changes correlated with an increase in C/EBP homologous protein (CHOP) expression and the activation of caspase 12, suggesting that ER stress contributes to cell death. Collectively, these data suggest that REEP6 plays an essential role in maintaining cGMP homeostasis though facilitating the stability and/or trafficking of guanylate cyclases and maintaining ER and mitochondrial homeostasis.
Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/deficiência , Distrofias Retinianas/metabolismo , Animais , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Retículo Endoplasmático/patologia , Proteínas do Olho , Edição de Genes , Guanilato Ciclase/metabolismo , Transdução de Sinal Luminoso , Proteínas de Membrana , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Distrofias Retinianas/genética , Distrofias Retinianas/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Rodopsina/metabolismoRESUMO
PURPOSE: To evaluate the clinical phenotype of autosomal recessive NR2E3-related retinal dystrophy. METHODS: We retrospectively studied 11 patients carrying out at least 2 NR2E3 mutations; they had undergone comprehensive ophthalmological examination, fundus photography, optical coherence tomography, electrophysiological testing, and visual field at the Regional Reference Center for Hereditary Retinal Degenerations of the Eye Clinic in Florence. RESULTS: Five females and six males with a diagnosis of NR2E3-related retinal dystrophy were included in the study. All patients complained of nyctalopia. Visual acuity ranged from 0.00 logMAR to hand motion. Two patients presented bull's eye maculopathy, and one of these was characterized by a triple hyper-autofluorescent ring at the fundus autofluorescence examination. Three patients showed small yellowish dots and spots at the mid-periphery. One patient was characterized by widespread subretinal drusenoid deposits (SDD) at the posterior pole. Four patients showed vitreous abnormalities. Optical coherence tomography (OCT) examinations detected variable degrees of abnormal retinal lamination and schitic changes. Seven patients were compound heterozygous and four were homozygous for mutations in NR2E3. CONCLUSIONS: Our study confirmed high variable phenotype in autosomal recessive NR2E3-related retinal dystrophy. Bull's eye maculopathy, subretinal drusenoid deposits, and foveal hypoplasia represent novel clinical findings in NR2E3-related retinal dystrophy. Macular involvement was detectable in all the patients, and the abnormal foveal avascular zone (FAZ) supports the role of NR2E3 in retinal development.
Assuntos
DNA/genética , Mutação , Receptores Nucleares Órfãos/genética , Retina/patologia , Distrofias Retinianas/diagnóstico , Adolescente , Adulto , Idoso , Criança , Análise Mutacional de DNA , Feminino , Angiofluoresceinografia , Seguimentos , Fundo de Olho , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Nucleares Órfãos/metabolismo , Fenótipo , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Estudos Retrospectivos , Tomografia de Coerência Óptica , Adulto JovemRESUMO
PURPOSE: To characterize the phenotypic variability and report the genetic defects in a cohort of Chinese patients with biallelic variants of the retinol dehydrogenase 12 (RDH12) gene. METHODS: The study included 38 patients from 38 unrelated families with biallelic pathogenic RDH12 variants. Systematic next-generation sequencing data analysis, Sanger sequencing validation, and segregation analysis were used to identify the pathogenic mutations. Detailed ophthalmic examinations, including electroretinogram, fundus photography, fundus autofluorescence and optical coherence tomography, and statistical analysis were performed to evaluate phenotype variability. RESULTS: Twenty-five different mutations of RDH12 were identified in the 38 families. Six of these variants were novel. Val146Asp was observed at the highest frequency (23.7%), and it was followed by Arg62Ter (14.5%) and Thr49Met (9.2%). Twenty-three probands were diagnosed with early-onset severe retinal dystrophy, 6 with Leber congenital amaurosis, 7 with autosomal recessive retinitis pigmentosa, and 2 with cone-rod dystrophy. Self-reported nyctalopia occurred in about a half of patients (55.3%) and was significantly more common among older patients (P < 0.01). Nyctalopia was not significantly associated with best-corrected visual acuity (P = 0.72), but older patients had significantly greater best-corrected visual acuity loss (P < 0.01). Only 15.8% of the patients had nystagmus, which was significantly more likely to occur among 36.8% of the patients with hyperopia >3D (P < 0.01) and/or in cases of reduced best-corrected visual acuity (P = 0.01), but was not associated with age (P = 0.87). CONCLUSION: Several high-frequency RDH12 variants were identified in patients with inherited retinal dystrophies, most of which were missense mutations. Variable but characteristic phenotypes of a progressive nature was observed. Overall, the findings indicated that biallelic RDH12 mutations are a common cause of early-onset retinal dystrophy and a rare cause of cone-rod dystrophy.
Assuntos
Oxirredutases do Álcool/genética , Oftalmopatias Hereditárias/genética , Mutação , Distrofias Retinianas/genética , Acuidade Visual , Adolescente , Adulto , Oxirredutases do Álcool/metabolismo , Variação Biológica da População , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletrorretinografia , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/metabolismo , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/metabolismo , Adulto JovemRESUMO
Acyl-CoA binding domain-containing 5 (ACBD5) is a peroxisomal protein that carries an acyl-CoA binding domain (ACBD) at its N-terminal region. The recent identification of a mutation in the ACBD5 gene in patients with a syndromic form of retinal dystrophy highlights the physiological importance of ACBD5 in humans. However, the underlying pathogenic mechanisms and the precise function of ACBD5 remain unclear. We herein report that ACBD5 is a peroxisomal tail-anchored membrane protein exposing its ACBD to the cytosol. Using patient-derived fibroblasts and ACBD5 knock-out HeLa cells generated via genome editing, we demonstrate that ACBD5 deficiency causes a moderate but significant defect in peroxisomal ß-oxidation of very-long-chain fatty acids (VLCFAs) and elevates the level of cellular phospholipids containing VLCFAs without affecting peroxisome biogenesis, including the import of membrane and matrix proteins. Both the N-terminal ACBD and peroxisomal localization of ACBD5 are prerequisite for efficient VLCFA ß-oxidation in peroxisomes. Furthermore, ACBD5 preferentially binds very-long-chain fatty acyl-CoAs (VLC-CoAs). Together, these results suggest a direct role of ACBD5 in peroxisomal VLCFA ß-oxidation. Based on our findings, we propose that ACBD5 captures VLC-CoAs on the cytosolic side of the peroxisomal membrane so that the transport of VLC-CoAs into peroxisomes and subsequent ß-oxidation thereof can proceed efficiently. Our study reclassifies ACBD5-related phenotype as a novel peroxisomal disorder.