Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.012
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(7): 1914-1928.e19, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33730596

RESUMO

Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Animais , Blastoderma/citologia , Blastoderma/fisiologia , Caderinas/antagonistas & inibidores , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Embrião não Mamífero/citologia , Morfolinos/metabolismo , Reologia , Viscosidade , Peixe-Zebra/crescimento & desenvolvimento
2.
Cell ; 179(4): 937-952.e18, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675500

RESUMO

Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.


Assuntos
Desenvolvimento Embrionário/genética , Mecanotransdução Celular/genética , Junções Íntimas/genética , Proteína da Zônula de Oclusão-1/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Fosfoproteínas/genética , Ligação Proteica , Junções Íntimas/fisiologia , Saco Vitelino/crescimento & desenvolvimento , Saco Vitelino/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
3.
Genes Dev ; 37(3-4): 80-85, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36801820

RESUMO

Zygotic genome activation has been extensively studied in a variety of systems including flies, frogs, and mammals. However, there is comparatively little known about the precise timing of gene induction during the earliest phases of embryogenesis. Here we used high-resolution in situ detection methods, along with genetic and experimental manipulations, to study the timing of zygotic activation in the simple model chordate Ciona with minute-scale temporal precision. We found that two Prdm1 homologs in Ciona are the earliest genes that respond to FGF signaling. We present evidence for a FGF timing mechanism that is driven by ERK-mediated derepression of the ERF repressor. Depletion of ERF results in ectopic activation of FGF target genes throughout the embryo. A highlight of this timer is the sharp transition in FGF responsiveness between the eight- and 16-cell stages of development. We propose that this timer is an innovation of chordates that is also used by vertebrates.


Assuntos
Embrião não Mamífero , Zigoto , Animais , Embrião não Mamífero/fisiologia , Zigoto/fisiologia , Genoma/genética , Desenvolvimento Embrionário/genética , Vertebrados , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos
4.
Cell ; 160(1-2): 241-52, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25594182

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) can reconstitute and sustain the entire blood system. We generated a highly specific transgenic reporter of HSPCs in zebrafish. This allowed us to perform high-resolution live imaging on endogenous HSPCs not currently possible in mammalian bone marrow. Using this system, we have uncovered distinct interactions between single HSPCs and their niche. When an HSPC arrives in the perivascular niche, a group of endothelial cells remodel to form a surrounding pocket. This structure appears conserved in mouse fetal liver. Correlative light and electron microscopy revealed that endothelial cells surround a single HSPC attached to a single mesenchymal stromal cell. Live imaging showed that mesenchymal stromal cells anchor HSPCs and orient their divisions. A chemical genetic screen found that the compound lycorine promotes HSPC-niche interactions during development and ultimately expands the stem cell pool into adulthood. Our studies provide evidence for dynamic niche interactions upon stem cell colonization. PAPERFLICK:


Assuntos
Endotélio/fisiologia , Células-Tronco Hematopoéticas/citologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Divisão Celular , Subunidades alfa de Fatores de Ligação ao Core/genética , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/fisiologia , Endotélio/citologia , Células-Tronco Hematopoéticas/fisiologia , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nicho de Células-Tronco , Células Estromais/citologia , Células Estromais/metabolismo , Peixe-Zebra/fisiologia
5.
Proc Natl Acad Sci U S A ; 121(36): e2401604121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190346

RESUMO

Synchronization of coupled oscillators is a universal phenomenon encountered across different scales and contexts, e.g., chemical wave patterns, superconductors, and the unison applause we witness in concert halls. The existence of common underlying coupling rules defines universality classes, revealing a fundamental sameness between seemingly distinct systems. Identifying rules of synchronization in any particular setting is hence of paramount relevance. Here, we address the coupling rules within an embryonic oscillator ensemble linked to vertebrate embryo body axis segmentation. In vertebrates, the periodic segmentation of the body axis involves synchronized signaling oscillations in cells within the presomitic mesoderm (PSM), from which somites, the prevertebrae, form. At the molecular level, it is known that intact Notch-signaling and cell-to-cell contact are required for synchronization between PSM cells. However, an understanding of the coupling rules is still lacking. To identify these, we develop an experimental assay that enables direct quantification of synchronization dynamics within mixtures of oscillating cell ensembles, for which the initial input frequency and phase distribution are known. Our results reveal a "winner-takes-it-all" synchronization outcome, i.e., the emerging collective rhythm matches one of the input rhythms. Using a combination of theory and experimental validation, we develop a coupling model, the "Rectified Kuramoto" (ReKu) model, characterized by a phase-dependent, nonreciprocal interaction in the coupling of oscillatory cells. Such nonreciprocal synchronization rules reveal fundamental similarities between embryonic oscillators and a class of collective behaviors seen in neurons and fireflies, where higher-level computations are performed and linked to nonreciprocal synchronization.


Assuntos
Padronização Corporal , Animais , Padronização Corporal/fisiologia , Relógios Biológicos/fisiologia , Embrião não Mamífero/fisiologia , Transdução de Sinais/fisiologia , Somitos/embriologia , Mesoderma/embriologia , Modelos Biológicos
6.
Genes Dev ; 33(13-14): 857-870, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31147388

RESUMO

Piwi proteins are important for germ cell development in most animals. These proteins are guided to specific targets by small guide RNAs, referred to as piRNAs or 21U RNAs in Caenorhabditis elegans In this organism, even though genetic screens have uncovered 21U RNA biogenesis factors, little is known about how these factors interact or what they do. Based on the previously identified 21U biogenesis factor PID-1 (piRNA-induced silencing-defective 1), we here define a novel protein complex, PETISCO (PID-3, ERH-2, TOFU-6, and IFE-3 small RNA complex), that is required for 21U RNA biogenesis. PETISCO contains both potential 5' cap and 5' phosphate RNA-binding domains and interacts with capped 21U precursor RNA. We resolved the architecture of PETISCO and revealed a second function for PETISCO in embryonic development. This essential function of PETISCO is mediated not by PID-1 but by the novel protein TOST-1 (twenty-one U pathway antagonist). In contrast, TOST-1 is not essential for 21U RNA biogenesis. Both PID-1 and TOST-1 interact directly with ERH-2 using a conserved sequence motif. Finally, our data suggest a role for TOST-1:PETISCO in SL1 homeostasis in the early embryo. Our work describes a key complex for 21U RNA processing in C. elegans and strengthens the view that 21U RNA biogenesis is built on an snRNA-related pathway.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Embrião não Mamífero/fisiologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , RNA Nucleolar Pequeno/biossíntese , Animais , RNA Nuclear Pequeno/metabolismo
7.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946588

RESUMO

Asymmetric signalling centres in the early embryo are essential for axis formation in vertebrates. These regions (e.g. amphibian dorsal morula, mammalian anterior visceral endoderm) require stabilised nuclear ß-catenin, but the role of localised Wnt ligand signalling activity in their establishment remains unclear. In Xenopus, dorsal ß-catenin is initiated by vegetal microtubule-mediated symmetry breaking in the fertilised egg, known as 'cortical rotation'. Localised wnt11b mRNA and ligand-independent activators of ß-catenin have been implicated in dorsal ß-catenin activation, but the extent to which each contributes to axis formation in this paradigm remains unclear. Here, we describe a CRISPR-mediated maternal-effect mutation in Xenopus laevis wnt11b.L. We find that wnt11b is maternally required for robust dorsal axis formation and for timely gastrulation, and zygotically for left-right asymmetry. Importantly, we show that vegetal microtubule assembly and cortical rotation are reduced in wnt11b mutant eggs. In addition, we show that activated Wnt coreceptor Lrp6 and Dishevelled lack behaviour consistent with roles in early ß-catenin stabilisation, and that neither is regulated by Wnt11b. This work thus implicates Wnt11b in the distribution of putative dorsal determinants rather than in comprising the determinants themselves. This article has an associated 'The people behind the papers' interview.


Assuntos
Proteínas Wnt , Proteínas de Xenopus , Xenopus laevis , beta Catenina , Animais , Padronização Corporal/genética , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Ligantes , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento , beta Catenina/genética
8.
Annu Rev Cell Dev Biol ; 27: 377-407, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21801015

RESUMO

Morphogens are long-range signaling molecules that pattern developing tissues in a concentration-dependent manner. The graded activity of morphogens within tissues exposes cells to different signal levels and leads to region-specific transcriptional responses and cell fates. In its simplest incarnation, a morphogen signal forms a gradient by diffusion from a local source and clearance in surrounding tissues. Responding cells often transduce morphogen levels in a linear fashion, which results in the graded activation of transcriptional effectors. The concentration-dependent expression of morphogen target genes is achieved by their different binding affinities for transcriptional effectors as well as inputs from other transcriptional regulators. Morphogen distribution and interpretation are the result of complex interactions between the morphogen and responding tissues. The response to a morphogen is dependent not simply on morphogen concentration but also on the duration of morphogen exposure and the state of the target cells. In this review, we describe the morphogen concept and discuss the mechanisms that underlie the generation, modulation, and interpretation of morphogen gradients.


Assuntos
Padronização Corporal/fisiologia , Comunicação Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais/fisiologia , Animais , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Humanos , Modelos Biológicos
9.
Annu Rev Cell Dev Biol ; 27: 409-40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21801016

RESUMO

Salamander limb regeneration is a classical model of tissue morphogenesis and patterning. Through recent advances in cell labeling and molecular analysis, a more precise, mechanistic understanding of this process has started to emerge. Long-standing questions include to what extent limb regeneration recapitulates the events observed in mammalian limb development and to what extent are adult- or salamander- specific aspects deployed. Historically, researchers studying limb development and limb regeneration have proposed different models of pattern formation. Here we discuss recent data on limb regeneration and limb development to argue that although patterning mechanisms are likely to be similar, cell plasticity and signaling from nerves play regeneration-specific roles.


Assuntos
Extremidades/fisiologia , Morfogênese/fisiologia , Regeneração/fisiologia , Urodelos/anatomia & histologia , Urodelos/fisiologia , Animais , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Extremidades/anatomia & histologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais/fisiologia
10.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34409448

RESUMO

Light-sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Animais , Drosophila/metabolismo , Drosophila/fisiologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Miosina Tipo II/metabolismo
11.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34086031

RESUMO

How force generated by the morphogenesis of one tissue impacts the morphogenesis of other tissues to achieve an elongated embryo axis is not well understood. The notochord runs along the length of the somitic compartment and is flanked on either side by somites. Vacuolating notochord cells undergo a constrained expansion, increasing notochord internal pressure and driving its elongation and stiffening. Therefore, the notochord is appropriately positioned to play a role in mechanically elongating the somitic compartment. We used multi-photon cell ablation to remove specific regions of the zebrafish notochord and quantify the impact on axis elongation. We show that anterior expansion generates a force that displaces notochord cells posteriorly relative to adjacent axial tissues, contributing to the elongation of segmented tissue during post-tailbud stages. Unexpanded cells derived from progenitors at the posterior end of the notochord provide resistance to anterior notochord cell expansion, allowing for stress generation along the anterior-posterior axis. Therefore, notochord cell expansion beginning in the anterior, and addition of cells to the posterior notochord, act as temporally coordinated morphogenetic events that shape the zebrafish embryo anterior-posterior axis.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Notocorda/fisiologia , Peixe-Zebra/fisiologia , Animais , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Morfogênese/fisiologia , Notocorda/metabolismo , Somitos/metabolismo , Somitos/fisiologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
12.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722899

RESUMO

The Hunchback (Hb) transcription factor is crucial for anterior-posterior patterning of the Drosophila embryo. The maternal hb mRNA acts as a paradigm for translational regulation due to its repression in the posterior of the embryo. However, little is known about the translatability of zygotically transcribed hb mRNAs. Here, we adapt the SunTag system, developed for imaging translation at single-mRNA resolution in tissue culture cells, to the Drosophila embryo to study the translation dynamics of zygotic hb mRNAs. Using single-molecule imaging in fixed and live embryos, we provide evidence for translational repression of zygotic SunTag-hb mRNAs. Whereas the proportion of SunTag-hb mRNAs translated is initially uniform, translation declines from the anterior over time until it becomes restricted to a posterior band in the expression domain. We discuss how regulated hb mRNA translation may help establish the sharp Hb expression boundary, which is a model for precision and noise during developmental patterning. Overall, our data show how use of the SunTag method on fixed and live embryos is a powerful combination for elucidating spatiotemporal regulation of mRNA translation in Drosophila.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/genética , Biossíntese de Proteínas/genética , RNA Mensageiro Estocado/genética , Fatores de Transcrição/genética , Animais , Padronização Corporal/genética , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Morfogênese/genética , Zigoto/fisiologia
13.
J Exp Zool B Mol Dev Evol ; 342(5): 406-411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38708813

RESUMO

Egg dehydration can kill terrestrial frog embryos, and this threat is increasing with climate change and deforestation. In several lineages that independently evolved terrestrial eggs, and retained aquatic tadpoles, embryos accelerate hatching to escape from drying eggs, entering the water earlier and less developed. However, the cues that stimulate drying-induced early hatching are unknown. Ammonia is a toxic, water-soluble metabolic waste that accumulates within eggs as embryos develop and concentrates as eggs dehydrate. Thus, increasing ammonia concentration may be a direct threat to embryos in drying eggs. We hypothesized that it could serve as a cue, stimulating embryos to hatch and escape. The embryos of red-eyed treefrogs, Agalychnis callidryas, hatch early to escape from many threats, including dehydration, and are known to use mechanosensory, hypoxia, and light cues. To test if they also use high ammonia as a cue to hatch, we exposed stage-matched pairs of hatching-competent, well-hydrated sibling embryos to ammonia and control solutions in shallow water baths and recorded their behavior. Control embryos remained unhatched while ammonia-exposed embryos showed a rapid, strong hatching response; 95% hatched, on average in under 15 min. This demonstrates that elevated ammonia can serve as a hatching cue for A. callidryas embryos. This finding is a key step in understanding the mechanisms that enable terrestrial frog embryos to escape from egg drying, opening new possibilities for integrative and comparative studies on this growing threat.


Assuntos
Amônia , Anuros , Sinais (Psicologia) , Embrião não Mamífero , Óvulo , Animais , Amônia/toxicidade , Anuros/embriologia , Anuros/fisiologia , Óvulo/fisiologia , Embrião não Mamífero/fisiologia , Desidratação , Reação de Fuga/fisiologia , Reação de Fuga/efeitos dos fármacos
14.
Glob Chang Biol ; 30(9): e17488, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39238185

RESUMO

Anthropogenically induced changes to the natural world are increasingly exposing organisms to stimuli and stress beyond that to which they are adapted. In aquatic systems, it is thought that certain life stages are more vulnerable than others, with embryos being flagged as highly susceptible to environmental stressors. Interestingly, evidence from across a wide range of taxa suggests that aquatic embryos can hatch prematurely, potentially as an adaptive response to external stressors, despite the potential for individual costs linked with underdeveloped behavioural and/or physiological functions. However, surprisingly little research has investigated the prevalence, causes and consequences of premature hatching, and no compilation of the literature exists. Here, we review what is known about premature hatching in aquatic embryos and discuss how this phenomenon is likely to become exacerbated with anthropogenically induced global change. Specifically, we (1) review the mechanisms of hatching, including triggers for premature hatching in experimental and natural systems; (2) discuss the potential implications of premature hatching at different levels of biological organisation from individuals to ecosystems; and (3) outline knowledge gaps and future research directions for understanding the drivers and consequences of premature hatching. We found evidence that aquatic embryos can hatch prematurely in response to a broad range of abiotic (i.e. temperature, oxygen, toxicants, light, pH, salinity) and biotic (i.e. predators, pathogens) stressors. We also provide empirical evidence that premature hatching appears to be a common response to rapid thermal ramping across fish species. We argue that premature hatching represents a fascinating yet untapped area of study, and the phenomenon may provide some additional resilience to aquatic communities in the face of ongoing global change.


Assuntos
Mudança Climática , Embrião não Mamífero , Animais , Embrião não Mamífero/fisiologia , Organismos Aquáticos/fisiologia , Ecossistema , Estresse Fisiológico , Desenvolvimento Embrionário
15.
Conserv Biol ; 38(4): e14266, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38578127

RESUMO

Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.


Efectos colectivos del aumento de las temperaturas promedio y los eventos de calor en embriones ovíparos Resumen La supervivencia de los embriones inmóviles en respuesta al incremento de temperatura es importante para determinar la vulnerabilidad de las especies al cambio climático. Sin embargo, los efectos colectivos de dos características térmicas claves asociadas con el cambio climático (i. e., aumento de temperatura promedio y eventos de calor agudo) sobre la supervivencia embrionaria permanecen en gran parte inexplorados. Utilizamos mediciones empíricas y modelos de nicho para investigar cómo el estrés térmico crónico y agudo influye de forma independiente y colectiva en la supervivencia embrionaria de los lagartos en todas las latitudes. Recolectamos y criamos lagartos de cinco latitudes e incubamos sus huevos en un rango de temperaturas para cuantificar las respuestas específicas de la población al estrés por calor crónico y agudo. Posteriormente, mediante un modelo de desarrollo embrionario parametrizado con mediciones de tolerancia embrionaria al calor, identificamos un impacto colectivo de las tolerancias embrionarias al calor agudo y crónico en la supervivencia embrionaria. También incorporamos la tolerancia embrionaria crónica y aguda al calor en modelos de distribución de especies híbridas para determinar los cambios de distribución de las especies bajo el cambio climático. La tolerancia embrionaria al calor crónico (T­crónico) permaneció constante, mientras que la tolerancia al calor agudo (T­agudo) fue mayor en latitudes altas que en latitudes bajas. La tolerancia al calor agudo ejerció una influencia más pronunciada que la tolerancia al calor crónico. En los modelos de distribución de especies, el cambio climático provocó la pérdida de hábitat más significativa para cada población y especie en su distribución de latitudes bajas. En consecuencia, el hábitat para poblaciones en todas las latitudes se desplazará a latitudes altas. Nuestro estudio también resalta la importancia de considerar la supervivencia embrionaria bajo estrés térmico crónico y agudo para predecir la vulnerabilidad de las especies al cambio climático.


Assuntos
Mudança Climática , Embrião não Mamífero , Temperatura Alta , Lagartos , Animais , Lagartos/fisiologia , Lagartos/embriologia , Embrião não Mamífero/fisiologia , Oviparidade , Feminino , Modelos Biológicos , Desenvolvimento Embrionário , Termotolerância
16.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544871

RESUMO

Molecular and structural facets of cell-cell adhesion have been extensively studied in monolayered epithelia. Here, we perform a comprehensive analysis of cell-cell contacts in a series of multilayered tissues in the Xenopus gastrula model. We show that intercellular contact distances range from 10 to 1,000 nm. The contact width frequencies define tissue-specific contact spectra, and knockdown of adhesion factors modifies these spectra. This allows us to reconstruct the emergence of contact types from complex interactions of the factors. We find that the membrane proteoglycan Syndecan-4 plays a dominant role in all contacts, including narrow C-cadherin-mediated junctions. Glypican-4, hyaluronic acid, paraxial protocadherin, and fibronectin also control contact widths, and unexpectedly, C-cadherin functions in wide contacts. Using lanthanum staining, we identified three morphologically distinct forms of glycocalyx in contacts of the Xenopus gastrula, which are linked to the adhesion factors examined and mediate cell-cell attachment. Our study delineates a systematic approach to examine the varied contributions of adhesion factors individually or in combinations to nondiscrete and seemingly amorphous intercellular contacts.


Assuntos
Caderinas/metabolismo , Adesão Celular , Comunicação Celular , Embrião não Mamífero/fisiologia , Gástrula/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Caderinas/genética , Embrião não Mamífero/citologia , Gástrula/citologia , Glicocálix/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis
17.
Artigo em Inglês | MEDLINE | ID: mdl-38302008

RESUMO

Eggs of oviparous reptiles are ideal models for studying evolutionary patterns of embryonic metabolism since they allow tracking of energy allocation during development. Analyzing oxygen consumption of whole eggs throughout development indicates three patterns among reptiles. Embryos initially grow and consume oxygen exponentially, but oxygen consumption slows, or drops before hatching in some species. Turtles, crocodilians, and most lizards follow curves with initial exponential increases followed by declines, whereas embryonic snakes that have been studied exhibit a consistently exponential pattern. This study measured oxygen consumption of corn snake, Pantherophis guttatus, embryos to determine if this species also exhibits an exponential increase in oxygen consumption. Individual eggs, sampled weekly from oviposition to hatching, were placed in respirometry chambers for 24-h during which oxygen consumption was recorded. Embryos were staged and carcasses and yolk were weighed separately. Results indicate steady inclines in oxygen consumption during early stages of development, with a rapid increase prior to hatching. The findings support the hypothesis that embryonic oxygen consumption of snakes differs from most other non-avian reptiles. Total energy required for development was determined based on calorimetry of initial yolk compared to hatchlings and residual yolk and by integration of the area under the curve plotting oxygen consumption versus age of embryos. The cost of development estimates based on these two methods were 6.4 and 10.0 kJ, respectively. Our results emphasize the unique physiological aspects of snake embryogenesis and illustrate how the study of physiological characteristics can contribute to the broader understanding of reptilian evolution.


Assuntos
Colubridae , Oviparidade , Zea mays , Feminino , Animais , Oviparidade/fisiologia , Embrião não Mamífero/fisiologia , Serpentes
18.
Dev Psychobiol ; 66(6): e22518, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924086

RESUMO

All terrestrial vertebrate life must transition from aquatic gas exchange in the embryonic environment to aerial or pulmonary respiration at birth. In addition to being able to breathe air, neonates must possess functional sensory feedback systems for maintaining acid-base balance. Respiratory neurons in the brainstem act as pH sensors that can adjust breathing to regulate systemic pH. The central pH sensitivity of breathing-related motor output develops over the embryonic period in the zebra finch (Taeniopygia guttata). Due to the key role of chloride ions in electrochemical stability and developmental plasticity, we tested chloride's role in the development of central pH sensitivity. We blocked gamma-aminobutyric acid-A receptors and cation-chloride cotransport that subtly modulated the low-pH effects on early breathing biorhythms. Further, chloride-free artificial cerebrospinal fluid altered the pattern and timing of breathing biorhythms and blocked the stimulating effect of acidosis in E12-14 brainstems. Early and middle stage embryos exhibited rebound plasticity in brainstem motor outputs during low-pH treatment, which was eliminated by chloride-free solution. Results show that chloride modulates low-pH sensitivity and rebound plasticity in the zebra finch embryonic brainstem, but work is needed to determine the cellular and circuit mechanisms that control functional chloride balance during acid-base disturbances.


Assuntos
Tronco Encefálico , Cloretos , Tentilhões , Plasticidade Neuronal , Respiração , Animais , Concentração de Íons de Hidrogênio , Tentilhões/fisiologia , Cloretos/metabolismo , Cloretos/farmacologia , Tronco Encefálico/fisiologia , Tronco Encefálico/efeitos dos fármacos , Respiração/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Embrião não Mamífero/fisiologia
19.
J Therm Biol ; 124: 103946, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39265502

RESUMO

Animals' thermal sensitivities have long been characterized by thermal performance curves (TPCs) or reaction norms, and TPCs may predict animals' responses to climate change. Typically, TPCs are parameterized by measuring performance at a range of constant temperatures. Yet, animals encounter a range of thermal environments, and temperature variability is an aspect of climate change that may affect animals more than gradual warming. Daily temperature variability is particularly important for eggs in most taxa because they are highly sensitive to temperature and cannot behaviorally avoid stressful temperatures. Thus, the legacy of thermal conditions experienced during incubation may carryover to subsequent life stages. Here, I factorially manipulated mean temperature (20, 25, or 30 °C) and daily temperature range (DTR; ±0, 5, or 10 °C) during incubation for eggs of the variable field cricket (Gryllus lineaticeps) to integrate the role of DTR into the established paradigm of TPCs. Low DTR (±5 °C) was not generally costly, and it even improved hatchling starvation resistance (sensu hormesis). However, high DTR (±10 °C) reduced and delayed hatching at a warm mean temperature (30 °C). The effects of high DTR carried over to accelerate hatchling development at an expense to hatchling starvation resistance-therefore, thermal conditions during incubation can shape tradeoffs among important traits related to life history and stress tolerance later in life. In sum, animals may exhibit complex responses to their increasingly warmer, more thermally variable environments.


Assuntos
Temperatura , Animais , Gryllidae/fisiologia , Gryllidae/crescimento & desenvolvimento , Mudança Climática , Embrião não Mamífero/fisiologia , Feminino , Termotolerância
20.
J Therm Biol ; 121: 103860, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38754202

RESUMO

Environmental variation experienced during early periods of development can lead to persistent phenotypic alteration, known as carryover effects. Such effects increase concern for threatened or endangered species such as the white sturgeon (Acipenser transmontanus), particularly considering expected thermal changes due to climate change. We evaluated how temperature during embryonic development affects physiological parameters such as larval and early juvenile growth and thermal tolerance. Nechako River white sturgeon embryos were incubated at different environmental temperatures (Te) of 12 °C (the natural spawning temperature of this population), 15 °C (the hatchery incubation temperature), and 18 °C (representing potential increases in river temperatures given global climate change). After hatch, fish were reared at a common 15 °C for 80 days post-hatch (dph). Individuals from each temperature treatment were tested for thermal tolerance using the critical thermal maximum method (CTmax), euthanized, and measured. Fish were examined at regular intervals from 13 to 80 dph, which bridged the time from the start of exogenous feeding through the transition into early juveniles. We found carryover effects of high embryonic Te in the short term for both thermal tolerance and growth. Fish that developed at 18 °C had the lowest thermal tolerance during the start of exogenous feeding. However, differences in thermal tolerance were small for early juveniles and were unlikely to be ecologically relevant in the longer term. Fish that developed at 18 °C were smallest over the observation period, indicating a possible cost for survival from increasing environmental temperatures during embryonic development. This research represents a window into a critical period of development during which fish are particularly vulnerable to climatic variation, and shows that cooler temperatures (12 °C) during incubation are optimal for this population. The results can inform environmental managers on the best strategies to help conserve current white sturgeon populations across their range.


Assuntos
Peixes , Temperatura , Termotolerância , Animais , Peixes/fisiologia , Peixes/crescimento & desenvolvimento , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA