Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.087
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 46, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971771

RESUMO

BACKGROUND: Microbial growth during plant tissue culture is a common problem that causes significant losses in the plant micro-propagation system. Most of these endophytic microbes have the ability to propagate through horizontal and vertical transmission. On the one hand, these microbes provide a rich source of several beneficial metabolites. RESULTS: The present study reports on the isolation of fungal species from different in vitro medicinal plants (i.e., Breynia disticha major, Breynia disticha, Duranta plumieri, Thymus vulgaris, Salvia officinalis, Rosmarinus officinalis, and Ocimum basilicum l) cultures. These species were tested for their indole acetic acid (IAA) production capability. The most effective species for IAA production was that isolated from Thymus vulgaris plant (11.16 µg/mL) followed by that isolated from sweet basil plant (8.78 µg/mL). On screening for maximum IAA productivity, medium, "MOS + tryptophan" was chosen that gave 18.02 µg/mL. The macroscopic, microscopic examination and the 18S rRNA sequence analysis indicated that the isolate that given code T4 was identified as Neopestalotiopsis aotearoa (T4). The production of IAA by N. aotearoa was statistically modeled using the Box-Behnken design and optimized for maximum level, reaching 63.13 µg/mL. Also, IAA extract was administered to sweet basil seeds in vitro to determine its effect on plant growth traits. All concentrations of IAA extract boosted germination parameters as compared to controls, and 100 ppm of IAA extract exhibited a significant growth promotion effect for all seed germination measurements. CONCLUSIONS: The IAA produced from N. aotearoa (T4) demonstrated an essential role in the enhancement of sweet basil (Ocimum basilicum) growth, suggesting that it can be employed to promote the plant development while lowering the deleterious effect of using synthetic compounds in the environment.


Assuntos
Endófitos , Germinação , Ácidos Indolacéticos , Ocimum basilicum , Sementes , Thymus (Planta) , Ocimum basilicum/microbiologia , Thymus (Planta)/química , Ácidos Indolacéticos/metabolismo , Endófitos/fisiologia , Endófitos/metabolismo , Endófitos/isolamento & purificação , Endófitos/genética , Germinação/efeitos dos fármacos , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos
2.
Appl Environ Microbiol ; 90(6): e0066524, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814060

RESUMO

Ash dieback, caused by the fungal pathogen Hymenoscyphus fraxineus (Helotiales, Ascomycota), is threatening the existence of the European ash, Fraxineus excelsior. During our search for biological control agents for this devastating disease, endophytic fungi were isolated from healthy plant tissues and co-cultivated with H. fraxineus to assess their antagonistic potential. Among the strains screened, Penicillium cf. manginii DSM 104493 most strongly inhibited the pathogen. Initially, DSM 104493 showed promise in planta as a biocontrol agent. Inoculation of DSM 104493 into axenically cultured ash seedlings greatly decreased the development of disease symptoms in seedlings infected with H. fraxineus. The fungus was thus cultivated on a larger scale in order to obtain sufficient material to identify active metabolites that accounted for the antibiosis observed in dual culture. We isolated PF1140 (1) and identified it as the main active compound in the course of a bioassay-guided isolation strategy. Furthermore, its derivative 2, the mycotoxin citreoviridin (3), three tetramic acids of the vancouverone type (4-6), and penidiamide (7) were isolated by preparative chromatography. The structures were elucidated mainly by NMR spectroscopy and high-resolution mass spectrometry (HRMS), of which compounds 2 and 6 represent novel natural products. Of the compounds tested, not only PF1140 (1) strongly inhibited H. fraxineus in an agar diffusion assay but also showed phytotoxic effects in a leaf puncture assay. Unfortunately, both the latent virulent attributes of DSM 104493 observed subsequent to these experiments in planta and the production of mycotoxins exclude strain Penicillium cf. manginii DSM 104493 from further development as a safe biocontrol agent.IMPORTANCEEnvironmentally friendly measures are urgently needed to control the causative agent of ash dieback, Hymenoscyphus fraxineus. Herein, we show that the endophyte DSM 104493 exhibits protective effects in vitro and in planta. We traced the activity of DSM 104493 to the antifungal natural product PF1140, which unfortunately also showed phytotoxic effects. Our results have important implications for understanding plant-fungal interactions mediated by secondary metabolites, not only in the context of ash dieback but also generally in plant-microbial interactions.


Assuntos
Antifúngicos , Ascomicetos , Endófitos , Fraxinus , Doenças das Plantas , Fraxinus/microbiologia , Endófitos/metabolismo , Endófitos/isolamento & purificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Antibiose , Metabolismo Secundário , Penicillium/metabolismo , Penicillium/efeitos dos fármacos , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/metabolismo
3.
BMC Microbiol ; 24(1): 293, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107684

RESUMO

There is an enormous diversity of life forms present in the extremely intricate marine environment. The growth and development of seaweeds in this particular environment are controlled by the bacteria that settle on their surfaces and generate a diverse range of inorganic and organic chemicals. The purpose of this work was to identify epiphytic and endophytic bacterial populations associated with ten common marine macroalgae from various areas along the Mediterranean Sea coast in Alexandria. This was done to target their distribution and possible functional aspects. Examine the effects of the algal habitat on the counting and phenotypic characterization of bacteria, which involves grouping bacteria based on characteristics such as shape, colour, mucoid nature, type of Gram stain, and their ability to generate spores. Furthermore, studying the physiological traits of the isolates under exploration provides insight into the optimum environmental circumstances for bacteria associated with the formation of algae. The majority of the bacterial isolates exhibited a wide range of enzyme activities, with cellulase, alginase, and caseinase being the most prevalent, according to the data. Nevertheless, 26% of the isolates displayed amylolytic activity, while certain isolates from Miami, Eastern Harbor, and Montaza lacked catalase activity. Geographical variations with the addition of algal extract may impact on the enumeration of the bacterial population, and this might have a relationship with host phylogeny. The most significant observation was that endophytic bacteria associated with green algae increased in all sites, while those associated with red algae increased in Abu Qir and Miami sites and decreased in Eastern Harbor. At the species level, the addition of algal extract led to a ninefold increase in the estimated number of epiphytic bacteria for Cladophora pellucida in Montaza. Notably, after adding algal extract, the number of presented endophytic bacteria associated with Codium sp. increased in Abu Qir while decreasing with the same species in Montaza. In addition to having the most different varieties of algae, Abu Qir has the most different bacterial isolates.


Assuntos
Bactérias , Endófitos , Filogenia , RNA Ribossômico 16S , Alga Marinha , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Egito , Alga Marinha/microbiologia , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/fisiologia , Mar Mediterrâneo , RNA Ribossômico 16S/genética , Biodiversidade , Água do Mar/microbiologia , DNA Bacteriano/genética , Ecossistema
4.
BMC Microbiol ; 24(1): 218, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902615

RESUMO

BACKGROUND: Rhizosphere bacterial community and endophytes are now known to influence plant health and response to environmental stress. Very few studies have reported the diversity of endophytic bacterial communities of Vanilla planifolia and their potential roles in promoting plant growth or contributing to aromatic quality. RESULTS: In this study, the composition and diversity of the Vanilla rhizosphere bacterial community were explored by analyzing rhizosphere soil and root tissue samples as well as green pods of three accessions of Vanilla planifolia grown on different types of substrates (compost and leaf litter). In addition, the endophytic bacterial diversity of roots and green pods as well as the evolution of endophytic bacteria after the curing process of vanilla green pods were analyzed based on a metabarcoding approach. The results showed that bacterial species richness and diversity were higher in the compost. The analysis of the soil bacterial composition displayed that Halomonas, Pseudoalteromonas, Enterobacter and Bradyrhizobium were the most abundant genera. Moreover, the results indicated that the soil bacterial community structure was linked to the host plant genotype. Regarding the roots endophytic bacteria composition, the genera Halomonas, Pseudoalteromonas, Bacillus and Carboxydocella genera were present in all samples, independently from the substrate nature. Several genera including Bacillus, Bradyrhizobium, Burkholderia and Halomonas were transmitted internally from the roots to the green pods. The curing process reduced the bacterial richness and bacterial diversity associated with the green pods. Halomonas, Pseudoalteromonas, Bacillus, and Carboxydocella are the dominant genera in the pods after the curing process. CONCLUSIONS: This study provides an overview of changes of the bacterial communities dynamics especially endophytic in the roots and the green pods. It highlighted bacterial genera (Halomonas, Pseudoalteromonas, Bacillus, and Carboxydocella) potentially implicated in the formation of aroma compounds of vanilla beans.


Assuntos
Bactérias , Biodiversidade , Endófitos , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Vanilla , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Raízes de Plantas/microbiologia , Vanilla/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Microbiota/genética , DNA Bacteriano/genética
5.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982358

RESUMO

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Assuntos
Alternaria , Endófitos , Doenças das Plantas , Folhas de Planta , Solanum tuberosum , Talaromyces , Alternaria/crescimento & desenvolvimento , Alternaria/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solanum tuberosum/microbiologia , Talaromyces/genética , Talaromyces/crescimento & desenvolvimento , Endófitos/fisiologia , Endófitos/isolamento & purificação , Endófitos/genética , Folhas de Planta/microbiologia , Hifas/crescimento & desenvolvimento , Antibiose , Quitinases/metabolismo , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos
6.
BMC Microbiol ; 24(1): 291, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097685

RESUMO

BACKGROUND: Taxol, derived from Taxus trees, is a valuable natural resource for the development of anticancer drugs. Endophytic fungi from Taxus trees are a promising alternative source of Taxol. However, the impact of plant-endophytic microbial interaction on the host's Taxol biosynthesis is largely unknown. RESULTS: In the current study, the diversity of endophytic fungi in three different Taxus species was analyzed using Internal Transcribed Spacer sequencing. A total of 271 Operational Taxonomic Units (OTUs) were identified, grouping into 2 phyla, 8 classes, 16 orders, 19 families, and 19 genera. Alpha and beta diversity analysis indicated significant differences in endophytic fungal communities among the various Taxus trees. At the genus level, Alternaria and Davidiella were predominantly found in T. mairei and T. media, respectively. By utilizing a previously published dataset, a Pearson correlation analysis was conducted to predict the taxol biosynthesis-related fungal genera. Following screening, two isolates of Alternaria (L7 and M14) were obtained. Effect of inoculation with Alternaria isolates on the gene expression and metabolite accumulation of T. mairei was determined by transcriptomic and untargeted metabolomic studies. The co-inoculation assay suggests that the two Alternaria isolates may have a negative regulatory effect on taxol biosynthesis by influencing hormone signaling pathways. CONCLUSION: Our findings will serve as a foundation for advancing the production and utilization of Taxus and will also aid in screening endophytic fungi related to taxol production.


Assuntos
Alternaria , Endófitos , Paclitaxel , Taxus , Taxus/microbiologia , Paclitaxel/biossíntese , Endófitos/genética , Endófitos/metabolismo , Endófitos/isolamento & purificação , Endófitos/classificação , Alternaria/genética , Alternaria/metabolismo , Alternaria/classificação , Alternaria/isolamento & purificação , Filogenia , Fungos/genética , Fungos/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética
7.
BMC Microbiol ; 24(1): 367, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342140

RESUMO

BACKGROUND: The plant microbiome is one of the key determinants of healthy plant growth. However, the complexity of microbial diversity in plant microenvironments in different regions, especially the relationship between subsurface and aboveground microorganisms, is not fully understood. The present study investigated the diversity of soil microorganisms in different regions and the diversity of microorganisms within different ecological niches, and compared soil microorganisms and endophytic microorganisms. METHODS: 16 S and ITS sequencing was used to sequence the soil and endophytes microbiome of honeysuckle. Alpha diversity analysis and principal component analysis (PCoA) were used to study the soil and endophyte microbial communities, and the function of endophyte bacteria and fungi was predicted based on the PICRUST2 process and FUNGuild. RESULTS: In total, there were 382 common bacterial genera and 139 common fungal genera in the soil of different producing areas of honeysuckle. There were 398 common bacterial genera and 157 common fungal genera in rhizosphere soil. More beneficial bacteria were enriched in rhizosphere soil. Endophytic bacteria were classified into 34 phyla and 770 genera. Endophytic fungi were classified into 11 phyla and 581 genera, among which there were significant differences in the dominant genera of roots, stems, leaves, and flowers, as well as in community diversity and richness. Endophytic fungal functions were mainly dominated by genes related to saprophytes, functional genes that could fight microorganisms were also found in KEGG secondary functional genes. CONCLUSION: More beneficial bacteria were enriched in rhizosphere soil of honeysuckle, and the microbial network of the rhizosphere is more complex than that of the soil. Among the tissues of honeysuckle, the flowers have the richest diversity of endophytes. The endogenous dominant core bacteria in each part of honeysuckle plant have a high degree of overlap with the dominant bacteria in soil. Functional prediction suggested that some dominant core bacteria have antibacterial effects, providing a reference for further exploring the strains with antibacterial function of honeysuckle. Understanding the interaction between honeysuckle and microorganisms lays a foundation for the study of growth promotion, quality improvement, and disease and pests control of honeysuckle from the perspective of microorganisms.


Assuntos
Bactérias , Endófitos , Fungos , Lonicera , Microbiota , Rizosfera , Microbiologia do Solo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Lonicera/microbiologia , Biodiversidade , Raízes de Plantas/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Solo/química
8.
BMC Microbiol ; 24(1): 195, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849736

RESUMO

BACKGROUND: Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS: The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS: The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.


Assuntos
Biodiversidade , Endófitos , Fungos , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Raízes de Plantas/microbiologia , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Filogenia , Micobioma
9.
BMC Microbiol ; 24(1): 200, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851702

RESUMO

There is an urgent need for new bioactive molecules with unique mechanisms of action and chemistry to address the issue of incorrect use of chemical fertilizers and pesticides, which hurts both the environment and the health of humans. In light of this, research was done for this work to isolate, identify, and evaluate the germination-promoting potential of various plant species' fungal endophytes. Zea mays L. (maize) seed germination was examined using spore suspension of 75 different endophytic strains that were identified. Three promising strains were identified through screening to possess the ability mentioned above. These strains Alternaria alternate, Aspergilus flavus, and Aspergillus terreus were isolated from the stem of Tecoma stans, Delonix regia, and Ricinus communis, respectively. The ability of the three endophytic fungal strains to produce siderophore and indole acetic acid (IAA) was also examined. Compared to both Aspergillus flavus as well as Aspergillus terreus, Alternaria alternata recorded the greatest rates of IAA, according to the data that was gathered. On CAS agar versus blue media, all three strains failed to produce siderophores. Moreover, the antioxidant and antifungal potentials of extracts from these fungi were tested against different plant pathogens. The obtained results indicated the antioxidant and antifungal activities of the three fungal strains. GC-Mass studies were carried out to determine the principal components in extracts of all three strains of fungi. The three strains' fungus extracts included both well-known and previously unidentified bioactive compounds. These results may aid in the development of novel plant growth promoters by suggesting three different fungal strains as sources of compounds that may improve seed germination. According to the study that has been given, as unexplored sources of bioactive compounds, fungal endophytes have great potential.


Assuntos
Alternaria , Aspergillus , Bioprospecção , Endófitos , Germinação , Sementes , Sideróforos , Zea mays , Endófitos/metabolismo , Endófitos/isolamento & purificação , Endófitos/fisiologia , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Alternaria/crescimento & desenvolvimento , Alternaria/fisiologia , Zea mays/microbiologia , Zea mays/crescimento & desenvolvimento , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Sideróforos/metabolismo , Bioprospecção/métodos , Ácidos Indolacéticos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Fungos/fisiologia , Antioxidantes/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo
10.
Microb Pathog ; 191: 106677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705217

RESUMO

A novel endophytic Streptomyces griseorubens CIBA-NS1 was isolated from a salt marsh plant Salicornia sp. The antagonistic effect of S. griseorubens against Vibrio campbellii, was studied both in vitro and in vivo. The strain was validated for its endophytic nature and characterized through scanning electron microscopy, morphological and biochemical studies and 16SrDNA sequencing. The salinity tolerance experiment has shown that highest antibacterial activity was at 40‰ (16 ± 1.4 mm) and lowest was at 10 ‰ salinity (6.94 ± 0.51 mm). In vivo exclusion of Vibrio by S. griseorubens CIBA-NS1 was studied in Penaeus indicus post larvae and evaluated for its ability to improve growth and survival of P. indicus. After 20 days administration of S. griseorubens CIBA-NS1, shrimps were challenged with V. campbellii. The S. griseorubens CIBA-NS1 reduced Vibrio population in test group when compared to control, improved survival (60.5 ± 6.4%) and growth, as indicated by weight gain (1.8 ± 0.05g). In control group survival and growth were 48.4 ± 3.5% and 1.4 ± 0.03 g respectively. On challenge with V. campbellii, the S. griseorubens CIBA-NS1 administered group showed better survival (85.6 ± 10%) than positive control (64.3 ± 10%). The results suggested that S. griseorubens CIBA-NS1 is antagonistic to V. campbellii, reduce Vibrio population in the culture system and improve growth and survival. This is the first report on antagonistic activity of S. griseorubens isolated from salt marsh plant Salicornia sp, as a probiotic candidate to prevent V. campbellii infection in shrimps.


Assuntos
Chenopodiaceae , Endófitos , Probióticos , Streptomyces , Vibrio , Animais , Vibrio/efeitos dos fármacos , Vibrio/fisiologia , Chenopodiaceae/microbiologia , Probióticos/farmacologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Streptomyces/fisiologia , Streptomyces/isolamento & purificação , Streptomyces/genética , Penaeidae/microbiologia , RNA Ribossômico 16S/genética , Antibiose , Vibrioses/microbiologia , Vibrioses/veterinária , Vibrioses/prevenção & controle , Salinidade , Larva/microbiologia , DNA Bacteriano/genética , Filogenia
11.
Microb Pathog ; 192: 106707, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777241

RESUMO

Bacterial wilt of tomato caused by Ralstonia solanacearum is a critical soilborne disease that drastically reduces yield. In the current study, an endophytic strain NEAU-CP5 with strong antagonistic activity against R. solanacearum was isolated from tomato seeds and characterized. The strain was identified as Bacillus velezensis based on 16S rRNA gene and whole genome sequence analysis. NEAU-CP5 can secrete amylase, protease, and cellulase, and also produce known antibacterial metabolites, including cyclo (leucylprolyl), cyclo (phenylalanyl-prolyl), cyclo (Pro-Gly), 3-benzyl-2,5-piperazinedione, pentadecanoic acid, eicosane, 2-methyoic acid, isovaleric acid, dibuty phthalate, and esters of fatty acids (HFDU), which may be responsible for its strong antibacterial activity. Fourteen gene clusters associated with antibacterial properties were also identified in the whole genome sequence of NEAU-CP5. Pot experiment demonstrated that the application of 108 CFU/mL NEAU-CP5 on tomato plants significantly reduced the incidence of tomato bacterial wilt by 68.36 ± 1.67 %. NEAU-CP5 also increased the activity of defense-related enzymes (CAT, POD, PPO, SOD, and PAL) in tomato plants. This is the first report of an effective control of bacterial wilt on tomato plants by B. velezensis and highlights the potential of NEAU-CP5 as a potential biocontrol agent for the management of tomato bacterial wilt.


Assuntos
Bacillus , Filogenia , Doenças das Plantas , RNA Ribossômico 16S , Ralstonia solanacearum , Sementes , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Bacillus/isolamento & purificação , Bacillus/genética , Bacillus/metabolismo , Bacillus/classificação , Sementes/microbiologia , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/metabolismo , Genoma Bacteriano , Sequenciamento Completo do Genoma , Antibiose , Família Multigênica , Amilases/metabolismo , Amilases/genética , DNA Bacteriano/genética
12.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647675

RESUMO

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Assuntos
Resveratrol , Estilbenos , Estilbenos/química , Estilbenos/farmacologia , Humanos , Resveratrol/farmacologia , Resveratrol/química , Fungos/efeitos dos fármacos , Endófitos/química , Endófitos/metabolismo , Endófitos/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Medicina Tradicional , Plantas/química
13.
Arch Microbiol ; 206(11): 442, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39436470

RESUMO

Streptomyces has long been considered as key sources for natural compounds discovery in medicine and agriculture. These compounds have been demonstrated to possess different biological activities, including antibiotic, antifungal, anticancer, and antiviral effects. As a result, new pharmaceuticals and antibiotics have been developed. Nevertheless, there have been only a few novel discoveries of bioactive compounds in the past decades from Streptomyces in natural habitats. There is, therefore, now a renewed search for new Streptomyces species having the potential to produce many compounds from one strain in lesser explored natural habitats that may be helpful in fighting diseases. Consequently, modern genome mining approaches are imperative for discovering structurally novel natural compounds with therapeutic applications from untapped sources. In light of these facts, endophytic Streptomyces from plants may offer new avenues for the discovery of bioactive compounds with distinctive chemical properties and activities. In the present review, we present the progress made in isolating natural compounds from endophytic Streptomyces originating from plants which have remarkable antimicrobial, cytotoxic, and antifungal properties. A different of distinct structural classes of compounds were reported from endophytic Streptomyces, such as indolosequiterpene, macrolides, flavones, peptides, naphthoquinones, and terpenoids. Further, we discussed modern genomics progress in finding biosynthetic gene clusters (BGCs) encoding compounds. Overall, this review might provide valuable insights into the potential for novel drug discovery from untapped endophytic Streptomyces in the future.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Endófitos , Família Multigênica , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Endófitos/genética , Endófitos/metabolismo , Endófitos/isolamento & purificação , Antibacterianos/farmacologia , Plantas/microbiologia , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/isolamento & purificação
14.
Arch Microbiol ; 206(9): 372, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126528

RESUMO

Endophytic bacteria found in marine macroalgae have been studied for their potential antimicrobial activity, consequently, they could serve as a valuable source of bioactive compounds to control pathogenic bacteria, yeasts, and fungi. Algae endophytic bacteria were isolated from Caulerpa sp., Ulva sp., Ahnfeltiopsis sp., and Chondracantus chamissoi from Yacila and Cangrejo Beaches (Piura, Peru). Antimicrobial assays against pathogenic bacteria were evaluated using cross-culture, over-plate, and volatile organic compound tests. Afterward, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of selected crude extracts were determined, also ITS molecular analysis, antifungal activity, and PCR of iturin, fengycin, and surfactin genes were performed for bacteria strains exhibiting better activity. Forty-six algae endophytic bacteria were isolated from algae. Ten strains inhibited gram-positive pathogenic bacteria (Enterococcus faecalis, Staphylococcus epidermidis, S. aureus, and Listeria monocytogenes), and 12 inhibited gram-negative bacteria (Escherichia coli and Salmonella enteric sv typhimurium). Bacteria with better activity belong to Bacillus sp., Kluyvera ascorbata, Pantoea agglomerans, Leclercia adecarboxylata, and Enterobacter sp., which only four showed antifungal activities against Candida albicans, C. tropicalis, Colletotrichium sp., Fusarium sp., Fusarium oxysporum, and Alternaria sp. Furthermore, K. ascorbata YAFE21 and Bacillus sp. YCFE4 exhibited iturin and fengycin genes. The results indicate that the algae endophytic bacteria found in this study, particularly K. ascorbata YAFE21, Bacillus sp. YCFR6, L. adecarboxylata CUFE2, Bacillus sp. YUFE8, Enterobacter sp. YAFL1, and P. agglomerans YAFL6, could be investigated as potential producers of antimicrobial compounds due to their broad activity against various microorganisms.


Assuntos
Endófitos , Testes de Sensibilidade Microbiana , Alga Marinha , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/metabolismo , Endófitos/química , Endófitos/classificação , Alga Marinha/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Fungos/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Ulva/microbiologia , Caulerpa/microbiologia , Bactérias Gram-Positivas/efeitos dos fármacos
15.
Adv Appl Microbiol ; 129: 171-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39389705

RESUMO

Anthropogenic activities have dramatically accelerated the release of toxic metal(loid)s into soil and water, which can be subsequently accumulated in plants and animals, threatening biodiversity, human health, and food security. Compared to physical and chemical remediation, bioremediation of metal(loid)-polluted soil using plants and/or plant symbiotic fungi is usually low-cost and environmentally friendly. Mycorrhizal fungi and endophytic fungi are two major plant fungal symbionts. Mycorrhizal fungi can immobilize metal(loid)s via constitutive mechanisms, including intracellular sequestration with vacuoles and vesicles and extracellular immobilization by cell wall components and extracellular polymeric substances such as glomalin. Mycorrhizal fungi can improve the efficacy of phytoremediation by promoting plant symplast and apoplast pathways. Endophytic fungi also use constitutive cellular components to immobilize metal(loid)s and to reduce the accumulation of metal(loid)s in plants by modifying plant physiological status. However, a specific mechanism for the removal of methylmercury pollution was recently discovered in the endophytic fungi Metarhizium, which could be acquired from bacteria via horizontal gene transfer. In contrast to mycorrhizal fungi that are obligate biotrophs, some endophytic fungi, such as Metarhizium and Trichoderma, can be massively and cost-effectively produced, so they seem to be well-placed for remediation of metal(loid)-polluted soil on a large scale.


Assuntos
Biodegradação Ambiental , Fungos , Metaloides , Micorrizas , Plantas , Poluentes do Solo , Simbiose , Plantas/microbiologia , Metaloides/metabolismo , Metaloides/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Fungos/metabolismo , Fungos/genética , Micorrizas/metabolismo , Micorrizas/fisiologia , Endófitos/metabolismo , Endófitos/fisiologia , Endófitos/isolamento & purificação , Endófitos/genética , Metais/metabolismo , Metais/toxicidade , Microbiologia do Solo
16.
Artigo em Inglês | MEDLINE | ID: mdl-38695275

RESUMO

We isolated and described a yellow-pigmented strain of bacteria (strain 9143T), originally characterized as an endohyphal inhabitant of an endophytic fungus in the Ascomycota. Although the full-length sequence of its 16S rRNA gene displays 99 % similarity to Luteibacter pinisoli, genomic hybridization demonstrated <30 % genomic similarity between 9143T and its closest named relatives, further supported by average nucleotide identity results. This and related endohyphal strains form a well-supported clade separate from L. pinisoli and other validly named species including the most closely related Luteibacter rhizovicinus. The name Luteibacter mycovicinus sp. nov. is proposed, with type strain 9143T (isolate DBL433), for which a genome has been sequenced and is publicly available from the American Type Culture Collection (ATCC TSD-257T) and from the Leibniz Institute DSMZ (DSM 112764T). The type strain reliably forms yellow colonies across diverse media and growth conditions (lysogeny broth agar, King's Medium B, potato dextrose agar, trypticase soy agar and Reasoner's 2A (R2A) agar). It forms colonies readily at 27 °C on agar with a pH of 6-8, and on salt (NaCl) concentrations up to 2 %. It lacks the ability to utilize sulphate as a sulphur source and thus only forms colonies on minimal media if supplemented with alternative sulphur sources. It is catalase-positive and oxidase-negative. Although it exhibits a single polar flagellum, motility was only clearly visible on R2A agar. Its host range and close relatives, which share the endohyphal lifestyle, are discussed.


Assuntos
Ascomicetos , Técnicas de Tipagem Bacteriana , DNA Bacteriano , Endófitos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Simbiose , RNA Ribossômico 16S/genética , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , DNA Bacteriano/genética , Endófitos/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Hibridização de Ácido Nucleico , Ácidos Graxos , Composição de Bases , Pigmentos Biológicos/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-38809239

RESUMO

Strain HUAS 3-15T was isolated from the leaves of Cathaya argyrophylla collected from Chenzhou, Hunan Province, PR China. The main fatty acids (>5.0 %) of the strain were anteiso-C15 : 0, C16 : 0, C18 : 1 ω9c, iso-C16 : 0, summed feature 5 (C18 : 2 ω6,9c/C18 : 0 ante), iso-C15 : 0 and anteiso-C17 : 0. MK-9(H6), MK-9(H8) and MK-9(H4) were detected as respiratory quinones. The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. Galactose, glucose and ribose were also present in the cell wall. The major polar lipids consisted of diphosphatidylglycerol, phosphatidyl ethanolamine, phosphatidylinositol mannosides and unidentified phospholipids. The DNA G+C content of the genome sequence, consisting of 8 860 963 bp, is 72.4 mol%. blast analysis based on 16S rRNA gene sequences revealed that the strain belongs to the genus Kitasatospora, with 99.37, 99.03, 98.95, 98.68 and 98.67 % sequence similarity to Kitasatospora aureofaciens ATCC 10762T, Kitasatospora viridis DSM 44826T, Kitasatospora xanthocidica NBRC 13469T, Kitasatospora aburaviensis NRRL B-2218T and Kitasatospora kifunensis IFO 15206T, respectively. Phylogenetic trees based on 16S rRNA gene and whole-genome sequences demonstrated that strain HUAS 3-15T formed a well-supported cluster with K. aureofaciens ATCC 10762T. Further genomic characterization through average nucleotide identity (ANIb/m) and digital DNA-DNA hybridization analysis between strain HUAS 3-15T and K. aureofaciens ATCC 10762T showed values of 90.62/92.55 % and 45.3 %, respectively, lower than the 95-96 % ANI threshold and 70.0 % cutoff used as guideline values for species delineation in bacteria. Furthermore, the differences between the strain and its phylogenomic neighbour in terms of physiological (e.g. sole carbon source growth) and chemotaxonomic (e.g. cellular fatty composition) characteristics further supported this conclusion. Consequently, we concluded that strain HUAS 3-15T represents a novel species of the genus Kitasatospora, for which the name Kitasatospora cathayae sp. nov. is proposed. The type strain is HUAS 3-15T (=MCCC 1K08542T=JCM 36274T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Endófitos , Ácidos Graxos , Fosfolipídeos , Filogenia , Folhas de Planta , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Folhas de Planta/microbiologia , DNA Bacteriano/genética , China , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/classificação , Fosfolipídeos/química , Vitamina K 2/análogos & derivados , Parede Celular/química , Ácido Diaminopimélico , Hibridização de Ácido Nucleico , Actinomycetales/isolamento & purificação , Actinomycetales/genética , Actinomycetales/classificação
18.
Artigo em Inglês | MEDLINE | ID: mdl-39212636

RESUMO

Three novel mycelium-forming actinobacteria, designated OC33-EN06T, OC33-EN07T, and OC33-EN08T, were isolated from wild orchid (Aerides multiflora Roxb), collected from a hill evergreen forest in Northern Thailand. Strains OC33-EN06T and OC33-EN07T showed the highest 16S rRNA gene similarity with Actinomycetospora lutea TT00-04T, 99.17 and 99.45%, respectively. Strain OC33-EN08T showed high similarity with four species, namely 'Actinomycetospora termitidis Odt1-22T' (99.37%), Actinomycetospora chiangmaiensis DSM 45062T (99.02%), Actinomycetospora corticicola 014-5T (99.02%), and Actinomycetospora soli SF1T (98.81%). Comparative genome analysis of OC33-EN06T, OC33-EN07T, and OC33-EN08T with the closely related type strains showed that average nucleotide identity (ANI) based on blast, ANI based on MUMmer, and average amino acid identity values were less than 95% and the digital DNA-DNA hybridization values were less than 70%, all below the thresholds for species demarcation. The digital G+C content of OC33-EN06T, OC33-EN07T, and OC33-EN08T were 74.5, 74, and 74 mol%, respectively. These three strains developed bud-like chains of non-motile cylindrical spores with a smooth surface. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The whole-cell sugars contained ribose, arabinose, and galactose. The predominant menaquinone was MK-8(H4). The phospholipid profile included phosphatidylcholine, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylinositol. Based on comparative analysis of genotypic, phenotypic and chemotaxonomic data, strains OC33-EN06T (=TBRC 18349T=NBRC 116543T), OC33-EN07T (=TBRC 18350T=NBRC 116544T), and OC33-EN08T (=TBRC 18318T=NBRC 116542T) represent the type strains of three novel species of the genus Actinomycetospora for which the names Actinomycetospora aeridis sp. nov., Actinomycetospora flava sp. nov., and Actinomycetospora aurantiaca sp. nov., are proposed.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Orchidaceae , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Tailândia , Ácidos Graxos/análise , Ácidos Graxos/química , DNA Bacteriano/genética , Orchidaceae/microbiologia , Hibridização de Ácido Nucleico , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/genética , Actinomycetales/isolamento & purificação , Actinomycetales/classificação , Actinomycetales/genética , Peptidoglicano , Florestas , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Micélio
19.
Int Microbiol ; 27(5): 1541-1556, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38472714

RESUMO

Cyamopsis tetragonoloba (L.) Taub. (guar) is a commercially important crop known for its galactomannan content in seeds. Drought stress is a significant global concern that compromises the productivity of major legumes including guar. The endophytic microbes associated with plants play a significant role in enhancing plant growth and modulating the impact of abiotic stress(s). The present study involved the isolation of 73 endophytic bacteria from the guar seeds of drought-tolerant (RGC-1002 and RGC-1066) and sensitive (Sarada and Varsha) varieties. Based on multiple PGP attributes and drought tolerance, at 50% PEG6000 w/v, 11 efficient isolates were selected and identified through 16S rRNA gene sequencing. Isolates belonging to ten different species of bacilli including Cytobacillus oceanisediminis, Mesobacillus fermenti, Peribacillus simplex from sensitive and Bacillus zanthoxyli, B. safensis, B. velezensis, B. altitudinis, B. licheniformis, B. tequilensis, and B. paralicheniformis isolated from tolerant varieties. A greenhouse experiment with a drought-sensitive guar variety demonstrated that inoculation of selected isolates showed comparatively better plant growth, higher relative water content (RWC), decreased carbon isotope discrimination ratio (Δ13C), increased chlorophyll, carotenoids, anthocyanin, and proline content, decreased malondialdehyde (MDA) and modulated defense enzymes as compared to their uninoculated controls. Tolerant variety isolates B. tequilensis NBRI14G and B. safensis NBRI10R showed the most promising results in improving plant growth and also drought stress tolerance in guar plants. This study represents for the first time that seed endophytic bacterial strains from guar can be utilized to develop the formulation for improving the productivity of guar under drought-stress conditions.


Assuntos
Cyamopsis , Secas , Endófitos , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/classificação , Endófitos/fisiologia , Endófitos/metabolismo , RNA Ribossômico 16S/genética , Bacillus/isolamento & purificação , Bacillus/genética , Bacillus/fisiologia , Bacillus/classificação , Bacillus/metabolismo , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Estresse Fisiológico , Desenvolvimento Vegetal , Filogenia , Resistência à Seca
20.
Microb Cell Fact ; 23(1): 139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750603

RESUMO

BACKGROUND: Increasing concerns about climate change and global petroleum supply draw attention to the urgent need for the development of alternative methods to produce fuels. Consequently, the scientific community must devise novel ways to obtain fuels that are both sustainable and eco-friendly. Bacterial alkanes have numerous potential applications in the industry sector. One significant application is biofuel production, where bacterial alkanes can serve as a sustainable eco-friendly alternative to fossil fuels. This study represents the first report on the production of alkanes by endophytic bacteria. RESULTS: In this study, three Bacillus species, namely Bacillus atrophaeus Camph.1 (OR343176.1), Bacillus spizizenii Camph.2 (OR343177.1), and Bacillus aerophilus Camph.3 (OR343178.1), were isolated from the leaves of C. camphora. The isolates were then screened to determine their ability to produce alkanes in different culture media including nutrient broth (NB), Luria-Bertani (LB) broth, and tryptic soy broth (TSB). Depending on the bacterial isolate and the culture media used, different profiles of alkanes ranging from C8 to C31 were detected. CONCLUSIONS: The endophytic B. atrophaeus Camph.1 (OR343176.1), B. spizizenii Camph.2 (OR343177.1), and B. aerophilus Camph.3 (OR343178.1), associated with C. camphora leaves, represent new eco-friendly approaches for biofuel production, aiming towards a sustainable future. Further research is needed to optimize the fermentation process and scale up alkane production by these bacterial isolates.


Assuntos
Alcanos , Bacillus , Biocombustíveis , Cinnamomum camphora , Bacillus/metabolismo , Bacillus/isolamento & purificação , Bacillus/classificação , Biocombustíveis/microbiologia , Cinnamomum camphora/metabolismo , Cinnamomum camphora/microbiologia , Alcanos/metabolismo , Folhas de Planta/microbiologia , Endófitos/metabolismo , Endófitos/isolamento & purificação , Meios de Cultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA