RESUMO
Alveolar echinococcosis (AE) is a highly lethal helminth infection. Current chemotherapeutic strategies for AE primarily involve the use of benzimidazoles (BZs) such as mebendazole (MDZ) and albendazole (ABZ), which exhibit limited efficacy. In a previous study, the vaccine of recombinant Echinococcus granulosus P29 (rEgP29) showed significant immunoprotection against E. granulosus in both mice and sheep. In the current study, we utilized hybridoma technology to generate five monoclonal antibodies (mAbs) against P29, among which 4G10F4 mAb exhibited the highest antigen-specific binding capacity. This mAb was selected for further investigation of anti-AE therapy, both in vivo and in vitro. In vitro, 4G10F4 inhibited a noteworthy inhibition of E. multilocularis protoscoleces and primary cells viability through complement-dependent cytotoxicity (CDC) mechanism. In vivo, two experiments were conducted. In the first experiment, mice were intraperitoneally injected with Em protoscoleces, and subsequently treated with 4G10F4 mAb (2.5/5/10 mg/kg) at 12 weeks postinfection once per week for 8 times via tail vein injection. Mice that were treated with 4G10F4 mAb only in dosage of 5mg/kg exhibited a significant lower mean parasite burden (0.89±0.97 g) compared to isotype mAb treated control mice (2.21±1.30 g). In the second experiment, mice were infected through hepatic portal vein and treated with 4G10F4 mAb (5mg/kg) at one week after surgery once per week for 8 times. The numbers of hepatic metacestode lesions of the 4G10F4 treatment group were significantly lower in comparison to the isotype control group. Pathological analysis revealed severe disruption of the inner structure of the metacestode in both experiments, particularly affecting the germinal and laminated layers, resulting in the transformation into infertile vesicles after treatment with 4G10F4. In addition, the safety of 4G10F4 for AE treatment was confirmed through assessment of mouse weight and evaluation of liver and kidney function. This study presents antigen-specific monoclonal antibody immunotherapy as a promising therapeutic approach against E. multilocularis induced AE.
Assuntos
Anticorpos Monoclonais , Equinococose , Animais , Equinococose/tratamento farmacológico , Equinococose/imunologia , Anticorpos Monoclonais/farmacologia , Camundongos , Proteínas de Helminto/imunologia , Proteínas de Helminto/farmacologia , Camundongos Endogâmicos BALB C , Echinococcus multilocularis/imunologia , Echinococcus multilocularis/efeitos dos fármacos , Feminino , Echinococcus granulosus/imunologia , Ovinos , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologiaRESUMO
Polycystic Echinococcosis (PE), a neglected life-threatening zoonotic disease caused by the cestode Echinococcus vogeli, is endemic in the Amazon. Despite being treatable, PE reaches a case fatality rate of around 29% due to late or missed diagnosis. PE is sustained in Pan-Amazonia by a complex sylvatic cycle. The hunting of its infected intermediate hosts (especially the lowland paca Cuniculus paca) enables the disease to further transmit to humans, when their viscera are improperly handled. In this study, we compiled a unique dataset of host occurrences (~86000 records) and disease infections (~400 cases) covering the entire Pan-Amazonia and employed different modeling and statistical tools to unveil the spatial distribution of PE's key animal hosts. Subsequently, we derived a set of ecological, environmental, climatic, and hunting covariates that potentially act as transmission risk factors and used them as predictors of two independent Maximum Entropy models, one for animal infections and one for human infections. Our findings indicate that temperature stability promotes the sylvatic circulation of the disease. Additionally, we show how El Niño-Southern Oscillation (ENSO) extreme events disrupt hunting patterns throughout Pan-Amazonia, ultimately affecting the probability of spillover. In a scenario where climate extremes are projected to intensify, climate change at regional level appears to be indirectly driving the spillover of E. vogeli. These results hold substantial implications for a wide range of zoonoses acquired at the wildlife-human interface for which transmission is related to the manipulation and consumption of wild meat, underscoring the pressing need for enhanced awareness and intervention strategies.
Assuntos
Equinococose , Echinococcus , Animais , Humanos , Hotspot de Doença , Equinococose/epidemiologia , Zoonoses/epidemiologia , Fatores de Risco , El Niño Oscilação SulRESUMO
Metacestodiasis is an infectious disease caused by the larval stage of cestode parasites. This disease poses a serious health hazard to wildlife, livestock, and humans, and it incurs substantial economic losses by impacting the safety of the livestock industry, the quality of meat production, and public health security. Unfortunately, there is currently no available molecular diagnostic method capable of distinguishing cysticercus- and Echinococcus-derived microRNAs (miRNAs) from other helminthes and hosts in the plasma of metacestode-infected animals. This study aims to develop a specific, sensitive, and cost-efficient molecular diagnostic method for cysticercosis and echinococcosis, particularly for early detection. The study developed a rolling circular amplification (RCA)-assisted CRISPR/Cas9 detection method based on parasite-derived miRNA let-7-5p. Using a series of dilutions of the let-7 standard, the limit of detection (LOD) of the qPCR, RCA, and RCA-assisted CRISPR/Cas9 methods was compared. The specificity of qPCR and CRISPR/Cas9 was evaluated using four artificially synthesized let-7 standards from different species. A total of 151 plasma samples were used to evaluate the diagnostic performance. Additionally, the study also assessed the correlation between plasma levels of let-7-5p, the number of Taenia pisiformis cysticerci, and the weight of Echinococcus multilocularis cysts. The results demonstrated that the RCA-assisted CRISPR/Cas9 assay could significantly distinguish let-7 from cestodes and other species, achieving a LOD of 10 aM; the diagnostic sensitivity and specificity for rabbit cysticercosis and mouse E. multilocularis were 100% and 97.67%, and 100% and 100%, respectively. Notably, let-7-5p gradually increased in the plasma of T. pisiformis-infected rabbits from 15 days post infection (dpi), peaked at 60 dpi, and persisted until 120 dpi. In E. multilocularis-infected mice, let-7-5p gradually increased from 15 dpi and persisted until 90 dpi. Furthermore, the expression of let-7-5p positively correlated with the number of cysticerci and cyst weight. These results indicated that the let-7-5p-based RCA-assisted CRISPR/Cas9 assay is a sensitive and specific detection method that can be used as a universal diagnostic method for metacestodiasis, particularly for early diagnosis (15 dpi).
Assuntos
Sistemas CRISPR-Cas , Cisticercose , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/sangue , Camundongos , Cisticercose/diagnóstico , Cisticercose/veterinária , Cisticercose/parasitologia , Equinococose/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , HumanosRESUMO
The larval stage of Echinococcus granulosus causes the chronic infection known as cystic echinococcosis, deploying strong inhibitory mechanisms on host immune responses. Using experimental intraperitoneal infection in C57BL/6 mice, we carried out an in-depth analysis of the local changes in macrophage populations associated with chronic infection. In addition, we analyzed T cells and relevant soluble mediators. Infected animals showed an increase in local cell numbers, mostly accounted for by eosinophils, T cells, and macrophages. Within macrophage populations, the largest increases in cell numbers corresponded to resident large peritoneal macrophages (LPM). Monocyte recruitment appeared to be active, as judged by the increased number of monocytes and cells in the process of differentiation towards LPM, including small (SPM) and converting peritoneal macrophages (CPM). In contrast, we found no evidence of macrophage proliferation. Infection induced the expression of M2 markers in SPM, CPM, and LPM. It also enhanced the expression of the co-inhibitor PD-L1 in LPM, SPM, and CPM and induced the co-inhibitor PD-L2 in SPM and CPM. Therefore, local macrophages acquire M2-like phenotypes with probable suppressive capacities. Regarding T cells, infection induced an increase in the percentage of CD4+ cells that are PD-1+, which represent a potential target of suppression by PD-L1+/PD-L2+ macrophages. In possible agreement, CD4+ T cells from infected animals showed blunted proliferative responses to in vitro stimulation with anti-CD3. Further evidence of immune suppression in the parasite vicinity arose from the observation of an expansion in FoxP3+ CD4+ regulatory T cells and increases in the local concentrations of the anti-inflammatory cytokines TGF-ß and IL-1Ra.
Assuntos
Equinococose , Echinococcus granulosus , Animais , Camundongos , Antígeno B7-H1/metabolismo , Infecção Persistente , Camundongos Endogâmicos C57BLRESUMO
In September 2023, a patient in Italy who had never traveled abroad was referred for testing for suspected hepatic cystic echinococcosis. Lesions were incompatible with cystic echinococcosis; instead, autochthonous alveolar echinococcosis was confirmed. Alveolar echinococcosis can be fatal, and awareness must be raised of the infection's expanding distribution.
Assuntos
Equinococose , Humanos , Equinococose/diagnóstico , Itália/epidemiologia , ViagemRESUMO
Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by larvae of the Echinococcus granulosus sensu lato (s.l.) cluster. There is an urgent need to develop new drug targets and drug molecules to treat CE. Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a serine/threonine protein kinase consisting of α, ß, and γ subunits, plays a key role in the regulation of energy metabolism. However, the role of AMPK in regulating glucose metabolism in E. granulosus s.l. and its effects on parasite viability is unknown. In this study, we found that targeted knockdown of EgAMPKα or a small-molecule AMPK inhibitor inhibited the viability of E. granulosus sensu stricto (s.s.) and disrupted the ultrastructure. The results of in vivo experiments showed that the AMPK inhibitor had a significant therapeutic effect on E. granulosus s.s.-infected mice and resulted in the loss of cellular structures of the germinal layer. In addition, the inhibition of the EgAMPK/EgGLUT1 pathway limited glucose uptake and glucose metabolism functions in E. granulosus s.s.. Overall, our results suggest that EgAMPK can be a potential drug target for CE and that inhibition of EgAMPK activation is an effective strategy for the treatment of disease.
Assuntos
Equinococose , Echinococcus granulosus , Parasitos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Equinococose/tratamento farmacológico , Equinococose/parasitologia , Zoonoses/parasitologia , Glucose , GenótipoRESUMO
Metformin, a safe biguanide derivative with antiproliferative properties, has shown antiparasitic efficacy against the Echinococcus larval stage. Hence, we assessed the efficacy of a dose of 250 mg kg-1 day-1 in experimental models of advanced CE, at 6 and 12 months post-infection with oral and intraperitoneal administration, respectively. At this high dose, metformin reached intracystic concentrations between 0.7 and 1.7 mM and triggered Eg-TOR inhibition through AMPK activation by AMP-independent and -dependent mechanisms, which are dependent on drug dose. Cystic metformin uptake was controlled by increased expression of organic cation transporters in the presence of the drug. In both experimental models, metformin reduced the weight of parasite cysts, altered the ultrastructural integrity of their germinal layers, and reduced the intracystic availability of glucose, limiting the cellular carbon and energy charge and the proliferative capacity of metacestodes. This glucose depletion in the parasite was associated with a slight increase in cystic uptake of 2-deoxiglucose and the transcriptional induction of GLUT genes in metacestodes. In this context, drastic glycogen consumption led to increased lactate production and altered intermediary metabolism in treated metacestodes. Specifically, the fraction of reducing soluble sugars decreased twofold, and the levels of non-reducing soluble sugars, such as sucrose and trehalose, were modified in both cystic fluid and germinal cells. Taken together, our findings highlight the relevance of metformin as a promising candidate for CE treatment and warrant further research to improve the therapeutic conditions of this chronic zoonosis in humans.
Assuntos
Equinococose , Metformina , Metformina/farmacologia , Animais , Equinococose/tratamento farmacológico , Equinococose/parasitologia , Camundongos , Carbono , Glucose/metabolismo , Echinococcus granulosus/efeitos dos fármacos , Echinococcus granulosus/metabolismo , Feminino , Larva/efeitos dos fármacosRESUMO
OBJECTIVES: Alveolar echinococcosis (AE) represents one of the deadliest helminthic infections, characterized by an insidious onset and high lethality. METHODS: This study utilized the Gene Expression Omnibus (GEO) database, applied Weighted Correlation Network Analysis (WGCNA) and Differential Expression Analysis (DEA), and employed the Matthews Correlation Coefficient (MCC) to identify CCL17 and CCL19 as key genes in AE. Immunohistochemistry and immunofluorescence co-localization techniques were used to examine the expression of CCL17 and CCL19 in liver tissue lesions of AE patients. Additionally, a mouse model of multilocular echinococcus larvae infection was developed to study the temporal expression patterns of these genes, along with liver fibrosis and inflammatory responses. RESULTS: The in vitro model simulating echinococcal larva infection mirrored the hepatic microenvironment post-infection with multilocular echinococcal tapeworms. Quantitative RT-PCR analysis showed that liver fibrosis occurred in AE patients, with proximal activation and increased expression of CCL17 and CCL19 over time post-infection. Notably, expression peaked during the late stages of infection. Similarly, F4/80, a macrophage marker, exhibited corresponding trends in expression. Upon stimulation of normal hepatocytes by vesicular larvae in cellular experiments, there was a significant increase in CCL17 and CCL19 expression at 12 h post-infection, mirroring the upregulation observed with F4/80. CONCLUSION: CCL17 and CCL19 facilitate macrophage aggregation via the chemokine pathway and their increased expression correlates with the progression of infection, suggesting their potential as biomarkers for AE progression.
Assuntos
Biomarcadores , Quimiocina CCL17 , Quimiocina CCL19 , Progressão da Doença , Animais , Humanos , Camundongos , Biomarcadores/metabolismo , Quimiocina CCL19/metabolismo , Quimiocina CCL17/metabolismo , Quimiocina CCL17/genética , Equinococose/metabolismo , Cirrose Hepática/parasitologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Modelos Animais de Doenças , Fígado/parasitologia , Fígado/metabolismo , Fígado/patologia , Equinococose Hepática/metabolismo , Equinococose Hepática/parasitologia , Feminino , Masculino , Hepatócitos/metabolismo , Hepatócitos/parasitologiaRESUMO
Echinococcus granulosus (Eg) and Echinococcus multilocularis (Em) are the two most widely prevalent types of echinococcosis. Several diagnostic methods have been developed for detecting Eg and Em. However, some limitations, such as being time-consuming, needing expensive instruments, or exhibiting low sensitivity, make these methods unsuitable for on-site detection. In this study, a dual-RPA assay was established to detect and differentiate Eg and Em. The primer concentration ratio, reaction time, and reaction temperature of the dual-RPA were optimized. The result showed that the primer concentration ratio of Eg:Em was 400 nM:400 nM, and the best amplification efficiency was obtained by reacting at 38 °C for 20 min. The sensitivity, specificity, and repeatability of the assay were also tested. The assay's detection limit for both Eg and Em was 10 copies/µL. The assay showed reasonable specificity by testing ten parasitic nucleic acids. The assay's intra- and inter-batch coefficients of variation were below 10%, which indicates robust reproducibility of the assay. Finally, to validate the performance of the dual-RPA assay, it was compared with real-time PCR by using 86 clinical nucleic acid samples. The coincidence rate of Eg between dual-RPA and TaqMan real-time PCR was 96.51%, and the coincidence rate of Em between dual-RPA and TaqMan real-time PCR was 98.84%, indicating its potential for accurate clinical diagnosis. Therefore, this study established a rapid and sensitive dual-RPA assay that can rapidly detect and differentiate Eg and Em in one reaction tube and provided a new assay for the detection of echinococcosis in the field.
Assuntos
Equinococose , Echinococcus granulosus , Animais , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Equinococose/diagnóstico , Echinococcus granulosus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Recombinases , Técnicas de Amplificação de Ácido Nucleico/métodosRESUMO
Alveolar echinococcosis (AE) is a lethal helminthic liver disease caused by persistent infection with Echinococcus multilocularis (E. multilocularis). Although more and more attention has been paid to the macrophages in E. multilocularis infection, the mechanism of macrophage polarization, a critical player in liver immunity, is seldom studied. NOTCH signaling is involved in cell survival and macrophage-mediated inflammation, but the role of NOTCH signaling in AE has been equally elusive. In this study, liver tissue samples from AE patients were collected and an E. multilocularis infected mouse model with or without blocking NOTCH signaling was established to analyze the NOTCH signaling, fibrotic and inflammatory response of the liver after E. multilocularis infection. Changes in polarization and origin of hepatic macrophages were analyzed by flow cytometry. In vitro qRT-PCR and Western blot assays were performed to analyze key receptors and ligands in NOTCH signaling. Our data demonstrated that hepatic fibrosis develops after AE, and the overall blockade of NOTCH signaling caused by DAPT treatment exacerbates the levels of hepatic fibrosis and alters the polarization and origin of hepatic macrophages. Blocking NOTCH signaling in macrophages after E. multilocularis infection downregulates M1 and upregulates M2 expression. The downregulation of NTCH3 and DLL-3 in the NOTCH signaling pathway is significant. Therefore, NOTCH3/DLL3 may be the key pathway in NOTCH signaling regulating macrophage polarization affecting fibrosis caused by AE.
Assuntos
Equinococose , Inibidores da Agregação Plaquetária , Camundongos , Animais , Inibidores da Agregação Plaquetária/farmacologia , Equinococose/complicações , Cirrose Hepática/induzido quimicamente , Transdução de Sinais , FibroseRESUMO
OBJECTIVE: Cystic echinococcosis (CE) represents a profoundly perilous zoonotic disease. The advent of viral macrogenomics has facilitated the exploration of hitherto uncharted viral territories. In the scope of this investigation, our objective is to scrutinize disparities in the intestinal microbiotic ecosystems of canines dwelling in elevated terrains and those afflicted by Echinococcus infection, employing the tool of viral macrogenomics. METHODS: In this study, we collected a comprehensive total of 1,970 fecal samples from plateau dogs infected with Echinococcus, as well as healthy control plateau dogs from the Yushu and Guoluo regions in the highland terrain of China. These samples were subjected to viral macrogenomic analysis to investigate the viral community inhabiting the canine gastrointestinal tract. RESULTS: Our meticulous analysis led to the identification of 136 viral genomic sequences, encompassing eight distinct viral families. CONCLUSION: The outcomes of this study hold the potential to enhance our comprehension of the intricate interplay between hosts, parasites, and viral communities within the highland canine gut ecosystem. Through the examination of phage presence, it may aid in early detection or assessment of infection severity, providing valuable insights into Echinococcus infection and offering prospects for potential treatment strategies.
Assuntos
Doenças do Cão , Equinococose , Echinococcus , Fezes , Microbioma Gastrointestinal , Animais , Cães , Equinococose/veterinária , Doenças do Cão/parasitologia , Doenças do Cão/microbiologia , Doenças do Cão/virologia , China , Fezes/parasitologia , Fezes/microbiologia , Fezes/virologia , Echinococcus/genética , Echinococcus/isolamento & purificação , Genoma Viral , Vírus/classificação , Vírus/isolamento & purificação , Vírus/genéticaRESUMO
Scavenger receptors participate in a wide range of biological functions after binding to multiple non-self or altered self-ligands. Among them, CD5 and CD6 are lymphocyte scavenger receptors known to interact with different microbial-associated molecular patterns, and the administration of the recombinant soluble ectodomains of human CD5 (rshCD5) and/or CD6 (rshCD6) has shown therapeutic/prophylactic potential in experimental models of fungal, bacterial and echinococcal infections. The latter is a zoonosis caused by the larval stage of the cestode parasite Echinococcus granulosus sensu lato, which in humans can induce secondary cystic echinococcosis (CE) after the spillage of protoscoleces contained within fertile cysts, either spontaneously or during surgical removal of primary hydatid cysts. Herein, we have analysed the mechanisms behind the significant protection observed in the mouse model of secondary CE following prophylactic administration of rshCD5 or rshCD6. Our results show that both molecules exhibit intrinsic antiparasitic activities in vitro, as well as immunomodulatory functions during early secondary CE, mainly through Th1/Th17 cytokine bias and promotion of peritoneal polyreactive antibodies. These data support the relevance of the parasite components bound by rshCD5 and rshCD6, as well as the potential of their prophylactic administration as a useful strategy to reduce secondary CE in patients.
Assuntos
Anti-Infecciosos , Equinococose , Animais , Camundongos , Humanos , Antiparasitários , Zoonoses , Receptores DepuradoresRESUMO
Cystic echinococcosis is caused by the tissue-dwelling larva (hydatid) of Echinococcus granulosus sensu lato. A salient feature is that this larva is protected by the acellular laminated layer (LL). As the parasite grows, the LL sheds abundant particles that can accumulate in the parasite's vicinity. The potential of LL particles to induce inflammation in vivo has not been specifically analysed. It is not known how each of its two major components, namely highly glycosylated mucins and calcium inositol hexakisphosphate (InsP6) deposits, impacts inflammation induced by the LL as a whole. In this work, we show that LL particles injected intraperitoneally cause infiltration of eosinophils, neutrophils and monocytes/macrophages as well as the disappearance of resident (large peritoneal) macrophages. Strikingly, the absence of calcium InsP6 enhanced the recruitment of all the inflammatory cell types analysed. In contrast, oxidation of the mucin carbohydrates caused decreased recruitment of neutrophils. The carbohydrate-oxidised particles caused cell influx nonetheless, which may be explained by possible receptor-independent effects of LL particles on innate immune cells, as suggested by previous works from our group. In summary, LL particles can induce acute inflammatory cell recruitment partly dependent on its mucin glycans, and this recruitment is attenuated by the calcium InsP6 component.
Assuntos
Echinococcus granulosus , Ácido Fítico , Animais , Echinococcus granulosus/imunologia , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Equinococose/imunologia , Equinococose/parasitologia , Inflamação , Neutrófilos/imunologia , Mucinas/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Eosinófilos/imunologia , Feminino , Larva/imunologiaRESUMO
INTRODUCTION: Management of cystic echinococcosis (CE) requires knowledge of certain aspects related to the survival of Echinococcus granulosus. The viability of daughter vesicles (DV) is a determining factor in guiding therapeutic indications, particularly for transiently active Cysts type CE3b. PURPOSE: To determine the predictive factors of DV viability and its impact on the therapeutic management of CE3b type. MATERIALS AND METHODS: This is a prospective pilot study with an analytical aim on patients with cystic echinococcosis of the liver type CE2 and CE3b, operated in the General Surgery Department of Habib-Bourguiba Academic Hospital, Sfax-Tunisia for 22 months from March 2018 until December 2019. The unit of the study is the DV. A parasitological study of the DV was done in the parasitology laboratory. RESULTS: During the study period, 27 (40.9%) of 66 operated CE Disease from 21 patients containing 248 DV were explored. The median viability of DV protoscoleces was 16.7%. In bivariate analysis, factors for viability of DV protoscoleces were: fever, acute cholangitis, hyperbilirubinemia, left liver location, rock water and bilious echinococcal fluid (EF), cyst size ≥ 43 mm, Intracystic pressure ≥ 35 mmHg, DV size ≥ 6.5 mm, volume, number of DV/cyst ≥ 5, and opaque wall (p < 0.05). Predictive factors for the Non-viability of DV were: CE3b type, purulent EF, gelatinous EF. In multivariate analysis, only CE2 type, cyst size ≥ 43 mm, number of DV/cyst ≥ 5 and DV size ≥ 6.5 mm were factors significantly associated with the viability of DV protoscoleces. CONCLUSION: CE3b cysts without the criteria of viability of DV protoscoleces may become candidates for the 'Wait-and-Watch' procedure.
Assuntos
Cistos , Equinococose Hepática , Equinococose , Echinococcus granulosus , Echinococcus , Animais , Humanos , Estudos Prospectivos , Núcleo Familiar , Projetos Piloto , Equinococose/parasitologia , Equinococose Hepática/tratamento farmacológicoRESUMO
BACKGROUND: Cystic echinococcosis (CE) is prevalent in livestock farming regions around the world. However, it remains relatively rare compared to other infectious diseases. CE typically affects the liver, lungs, brain, and kidneys. Spinal and pleural wall involvement is exceedingly rare. We report a unique case of intradural and pleural wall CE in a young male, successfully treated with surgery and postoperative medication. CASE PRESENTATION: A 19-year-old Tibetan male from the Qinghai-Tibet Plateau was diagnosed with intradural and pleural wall CE through imaging, serology, and surgical pathology. According to the Dew/Braithwaite & Lees (BL) classification, his condition was an exceptionally rare form of spinal echinococcosis, compounded by an even rarer pleural wall involvement. Prompt surgical intervention and postoperative medication resulted in significant improvement in spinal cord compression symptoms. CONCLUSIONS: This case highlights the diagnostic and therapeutic challenges of rare CE locations. MRI proved superior to CT in diagnosing bony cystic echinococcosis. Early surgical intervention combined with medication facilitates spinal cord function recovery, providing valuable insights for managing similar cases.
Assuntos
Equinococose , Humanos , Masculino , Equinococose/cirurgia , Equinococose/diagnóstico por imagem , Equinococose/diagnóstico , Equinococose/tratamento farmacológico , Adulto Jovem , Imageamento por Ressonância Magnética , Pleura/patologia , Pleura/diagnóstico por imagem , Pleura/cirurgia , Tomografia Computadorizada por Raios X , Tibet , Compressão da Medula Espinal/cirurgia , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/parasitologiaRESUMO
BACKGROUND: Cystic echinococcosis (CE) is a chronic disease considered a neglected one. Cystic echinococcosis is endemic in Uruguay and the region. Surgery, using various technical approaches, has the potential to safely remove the cyst(s) and lead to a complete cure in a high number of patients with simple forms of CE. However, surgery may be impractical in patients with multiple cysts in several organs, high surgical risk, or in patients with previous multiple surgeries. In these cases, the pharmacological treatment with the benzimidazolic drug Albendazole (ABZ) alone or combined with Praziquantel (PZQ), has been promising as the best choice to achieve improvement or cure. METHODS: In this study, we analyze the results obtained on the anti-parasitic treatment of 43 patients diagnosed with CE between the years 2003 and 2020. Patients were treated before and/or after surgery with ABZ or the combination ABZ/PZQ. The standardize protocol of the anti-parasitic drug treatment before surgery was 7 days, 15 days or 1 month depending on the urgency and availability of the surgical procedure. All cases that involved confirmed locations on lungs underwent immediate surgery with minimal pre-treatment when possible. After surgery, the standardize protocol of anti-parasitic drug treatment consisted of six cycles of 30 days each and resting intervals of 15 days in between. ABZ was used in all cases, administered orally, twice daily, at a total dosage of 15 mg/kg/day, with food high in fat content for improved absorption. The follow up was carried out according to WHO-IWGE guidelines for 5 years. RESULTS: Of the 43 patients fourteen were ≤ 15 years of age and had a differentiated pre-surgical treatment. From the ≥ 16 years of age, 36 completed the treatments and the 5 years follow up. Four patients changed geographical locations, without a forwarding contact, after the post-surgery treatment. No patient died during the study. Of the 36 patients that completed the study, 32 were treated only with ABZ; 93.75% achieved treatment success as determined by improvement or cure, and 6.25% treatment failure determined by no change or worsening. The last four patients received the ABZ/PZQ combination therapy and achieved 100% treatment success. CONCLUSION: The pharmacological treatment resulted in a good option not only as palliative but also as potentially curative. The main relevance of its use was in cases with previous multiple surgeries or surgeries with potential life-threatening complications due to the number and location of cysts and concurrent comorbidities. A follow-up of at least 5 years would be recommended to assure remission and control of the transmission. More randomized trials are needed to provide clear clinical evidence of different pharmacological treatments for CE.
Assuntos
Albendazol , Anti-Helmínticos , Equinococose , Praziquantel , Humanos , Albendazol/uso terapêutico , Albendazol/administração & dosagem , Praziquantel/uso terapêutico , Praziquantel/administração & dosagem , Equinococose/tratamento farmacológico , Equinococose/cirurgia , Masculino , Feminino , Uruguai , Adulto , Pessoa de Meia-Idade , Seguimentos , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/administração & dosagem , Adulto Jovem , Resultado do Tratamento , Adolescente , Idoso , Quimioterapia CombinadaRESUMO
BACKGROUND: Thyroid Hydatid Cyst (THC), a pathological state induced by the larval form of Echinococcus granulosus, represents a multifaceted clinical entity with nonspecific symptoms, making both diagnosis and treatment intricate. The current understanding of THC's attributes is somewhat limited. To gain a broader perspective on the disease's clinical and epidemiological characteristics, we have systematically reviewed the existing literature. METHODS: We performed an extensive review of articles on THC across four key scientific databases: PubMed, Scopus, Web of Science, and Google Scholar. Our study encompassed all patients diagnosed with THC through post-surgical pathology or Fine Needle Aspiration Cytology (FNAC) examinations, extracting clinical, epidemiological, and therapeutic data of THC patients from publications up to October 2023. RESULTS: From 770 articles, 57 met our criteria, detailing 75 THC patients. The gender ratio was 2.36 females per one male. The patients averaged 36.1 years old, with common symptoms including neck mass, hoarseness, shortness of breath, and dysphagia. The left lobe was involved in most patients, and only 21.3% had extrathyroidal involvement. Cysts averaged 36.4 mm in diameter, with cystic nodules being the most frequent imaging finding (91.2%). Serological tests were performed for 42.6% of cases, of which 62.5% were positive. Surgery was undertaken in 71 patients (94.6%). CONCLUSION: Cystic echinococcosis (CE) of the thyroid should be considered as part of the differential diagnosis in patients with cervicofacial mass, especially in endemic countries. The present study provides reliable data to improve our understanding of the features of the disease for a better diagnosis and management.
Assuntos
Equinococose , Humanos , Equinococose/patologia , Masculino , Feminino , Adulto , Glândula Tireoide/patologia , Glândula Tireoide/parasitologia , Echinococcus granulosus , Animais , Doenças da Glândula Tireoide/parasitologia , Doenças da Glândula Tireoide/patologia , Biópsia por Agulha Fina , Pessoa de Meia-IdadeRESUMO
INTRODUCTION: Alveolar echinococcosis (AE), caused by the larval forms of Echinococcus multilocularis, is a zoonotic disease affecting the liver, lungs, lymph nodes, kidneys, brain, bones, thyroid, and other organs. Diagnosing AE in a non-endemic area is usually challenging. With the rapid development and increasing application of sequencing techniques in recent years, metagenomic next-generation sequencing (mNGS) has become a powerful tool for diagnosing rare infectious diseases. CASE PRESENTATION: A 45-year-old woman was admitted to the hospital for the presence of pulmonary shadows for more than 3 months. The lung computed tomography (CT) at a local hospital revealed scattered solid and quasi-circular nodules in the left upper lobe, left lower lobe, right middle lobe, and right lower lobe. The largest nodule was located in the dorsal part of the right lung, measuring 2.0 × 1.7 × 1.5 cm. Moreover, abdominal CT revealed one space-occupying lesion each in the left and right lobes. The pathological analysis of the lung biopsy specimen revealed infiltration of lymphocytes, plasma cells, and eosinophils in the alveolar wall and interstitial area. No pathogenic bacteria were observed in the sputum smear and culture tests. There were no parasite eggs in the stool. The mNGS of the lung puncture tissue revealed 6156 sequence reads matching E. multilocularis; thus, the condition was diagnosed as AE. Albendazole 400 mg was administered twice daily, and the patient was stable during follow-up. CONCLUSION: This case emphasizes the role of mNGS in diagnosing AE. As a novel, sensitive, and accurate diagnostic method, mNGS could be an attractive approach for facilitating early diagnosis and prompt treatment of infectious diseases, especially when the infection was caused by rare pathogens.
Assuntos
Equinococose , Echinococcus multilocularis , Sequenciamento de Nucleotídeos em Larga Escala , Pulmão , Metagenômica , Humanos , Feminino , Pessoa de Meia-Idade , Animais , Pulmão/parasitologia , Pulmão/patologia , Pulmão/diagnóstico por imagem , Metagenômica/métodos , Echinococcus multilocularis/genética , Echinococcus multilocularis/isolamento & purificação , Equinococose/diagnóstico , Equinococose/parasitologia , Tomografia Computadorizada por Raios X , Albendazol/uso terapêutico , Equinococose Pulmonar/diagnóstico , Equinococose Pulmonar/parasitologia , Equinococose Pulmonar/diagnóstico por imagemRESUMO
BACKGROUND: Zoonotic infections, characterized with huge pathogen diversity, wide affecting area and great society harm, have become a major global public health problem. Early and accurate prediction of their outbreaks is crucial for disease control. The aim of this study was to develop zoonotic diseases risk predictive models based on time-series incidence data and three zoonotic diseases in mainland China were employed as cases. METHODS: The incidence data for schistosomiasis, echinococcosis, and leptospirosis were downloaded from the Scientific Data Centre of the National Ministry of Health of China, and were processed by interpolation, dynamic curve reconstruction and time series decomposition. Data were decomposed into three distinct components: the trend component, the seasonal component, and the residual component. The trend component was used as input to construct the Long Short-Term Memory (LSTM) prediction model, while the seasonal component was used in the comparison of the periods and amplitudes. Finaly, the accuracy of the hybrid LSTM prediction model was comprehensive evaluated. RESULTS: This study employed trend series of incidence numbers and incidence rates of three zoonotic diseases for modeling. The prediction results of the model showed that the predicted incidence number and incidence rate were very close to the real incidence data. Model evaluation revealed that the prediction error of the hybrid LSTM model was smaller than that of the single LSTM. Thus, these results demonstrate that using trending sequences as input sequences for the model leads to better-fitting predictive models. CONCLUSIONS: Our study successfully developed LSTM hybrid models for disease outbreak risk prediction using three zoonotic diseases as case studies. We demonstrate that the LSTM, when combined with time series decomposition, delivers more accurate results compared to conventional LSTM models using the raw data series. Disease outbreak trends can be predicted more accurately using hybrid models.
Assuntos
Surtos de Doenças , Equinococose , Leptospirose , Esquistossomose , Zoonoses , Leptospirose/epidemiologia , Humanos , Animais , Equinococose/epidemiologia , China/epidemiologia , Zoonoses/epidemiologia , Incidência , Esquistossomose/epidemiologia , Medição de RiscoRESUMO
BACKGROUND: Albendazole (ABZ) and atovaquone (ATO) achieve killing efficacy on Echinococcus granulosus (Egs) by inhibiting energy metabolism, but their utilization rate is low. This study aims to analyze the killing efficacy of ABZ-ATO loading nanoparticles (ABZ-ATO NPs) on Egs. METHODS: Physicochemical properties of NPs were evaluated by ultraviolet spectroscopy and nanoparticle size potentiometer. In vitro experiments exmianed the efficacy of ATO, ABZ, or ATO-ABZ NPs on protoscolex activity, drug toxicity on liver cell LO2, ROS production, and energy metabolism indexes (lactic dehydrogenase, lactic acid, pyruvic acid, and ATP). In vivo of Egs-infected mouse model exmianed the efficacy of ATO, ABZ, or ATO-ABZ NPs on vesicle growth and organ toxicity. RESULTS: Drug NPs are characterized by uniform particle size, stability, high drug loading, and - 21.6mV of zeta potential. ABZ or ATO NPs are more potent than free drugs in inhibiting protoscolex activity. The protoscolex-killing effect of ATO-ABZ NPs was stronger than that of free drugs. In vivo Egs-infected mice experiment showed that ATO-ABZ NPs reduced vesicle size and could protect various organs. The results of energy metabolism showed that ATO-ABZ NPs significantly increased the ROS level and pyruvic acid content, and decreased lactate dehydrogenase, lactic acid content, and ATP production in the larvae. In addition, ATO-ABZ NPs promoted a decrease in DHODH protein expression in protoscolexes. CONCLUSION: ATO-ABZ NPs exhibits anti-CE in vitro and in vivo, possibly by inhibiting energy production and promoting pyruvic acid aggregation.