Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.542
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 88: 113-135, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30830798

RESUMO

Integrative structure modeling computationally combines data from multiple sources of information with the aim of obtaining structural insights that are not revealed by any single approach alone. In the first part of this review, we survey the commonly used sources of structural information and the computational aspects of model building. Throughout the past decade, integrative modeling was applied to various biological systems, with a focus on large protein complexes. Recent progress in the field of cryo-electron microscopy (cryo-EM) has resolved many of these complexes to near-atomic resolution. In the second part of this review, we compare a range of published integrative models with their higher-resolution counterparts with the aim of critically assessing their accuracy. This comparison gives a favorable view of integrative modeling and demonstrates its ability to yield accurate and informative results. We discuss possible roles of integrative modeling in the new era of cryo-EM and highlight future challenges and directions.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Modelos Moleculares , Proteínas/ultraestrutura , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica/história , Microscopia Crioeletrônica/instrumentação , Cristalografia por Raios X/história , Cristalografia por Raios X/instrumentação , História do Século XX , História do Século XXI , Espectroscopia de Ressonância Magnética/história , Espectroscopia de Ressonância Magnética/instrumentação , Espectrometria de Massas/história , Espectrometria de Massas/instrumentação , Conformação Proteica , Proteínas/química , Software
2.
Annu Rev Biochem ; 88: 25-33, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30986087

RESUMO

Over the past six decades, steadily increasing progress in the application of the principles and techniques of the physical sciences to the study of biological systems has led to remarkable insights into the molecular basis of life. Of particular significance has been the way in which the determination of the structures and dynamical properties of proteins and nucleic acids has so often led directly to a profound understanding of the nature and mechanism of their functional roles. The increasing number and power of experimental and theoretical techniques that can be applied successfully to living systems is now ushering in a new era of structural biology that is leading to fundamentally new information about the maintenance of health, the origins of disease, and the development of effective strategies for therapeutic intervention. This article provides a brief overview of some of the most powerful biophysical methods in use today, along with references that provide more detailed information about recent applications of each of them. In addition, this article acts as an introduction to four authoritative reviews in this volume. The first shows the ways that a multiplicity of biophysical methods can be combined with computational techniques to define the architectures of complex biological systems, such as those involving weak interactions within ensembles of molecular components. The second illustrates one aspect of this general approach by describing how recent advances in mass spectrometry, particularly in combination with other techniques, can generate fundamentally new insights into the properties of membrane proteins and their functional interactions with lipid molecules. The third reviewdemonstrates the increasing power of rapidly evolving diffraction techniques, employing the very short bursts of X-rays of extremely high intensity that are now accessible as a result of the construction of free-electron lasers, in particular to carry out time-resolved studies of biochemical reactions. The fourth describes in detail the application of such approaches to probe the mechanism of the light-induced changes associated with bacteriorhodopsin's ability to convert light energy into chemical energy.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Biologia Molecular/métodos , Química Analítica/história , Microscopia Crioeletrônica/história , Microscopia Crioeletrônica/instrumentação , Cristalografia por Raios X/história , Cristalografia por Raios X/instrumentação , História do Século XX , História do Século XXI , Humanos , Lasers/história , Espectroscopia de Ressonância Magnética/história , Espectroscopia de Ressonância Magnética/instrumentação , Espectrometria de Massas/história , Espectrometria de Massas/instrumentação , Biologia Molecular/história , Biologia Molecular/instrumentação , Ácidos Nucleicos/química , Ácidos Nucleicos/ultraestrutura , Proteínas/química , Proteínas/ultraestrutura
3.
Annu Rev Biochem ; 88: 85-111, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30901263

RESUMO

Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid-protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein-lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo-electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein-lipid interactions in the native environment.


Assuntos
Glicerofosfolipídeos/metabolismo , Glicolipídeos/metabolismo , Espectrometria de Massas/métodos , Proteínas de Membrana/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo , Bactérias/química , Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Fungos/química , Fungos/metabolismo , Glicerofosfolipídeos/química , Glicolipídeos/química , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/instrumentação , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Esfingolipídeos/química , Esteróis/química
4.
Annu Rev Biochem ; 83: 291-315, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905784

RESUMO

Large macromolecular assemblies, so-called molecular machines, are critical to ensuring proper cellular function. Understanding how proper function is achieved at the atomic level is crucial to advancing multiple avenues of biomedical research. Biophysical studies often include X-ray diffraction and cryo-electron microscopy, providing detailed structural descriptions of these machines. However, their inherent flexibility has complicated an understanding of the relation between structure and function. Solution NMR spectroscopy is well suited to the study of such dynamic complexes, and continued developments have increased size boundaries; insights into function have been obtained for complexes with masses as large as 1 MDa. We highlight methyl-TROSY (transverse relaxation optimized spectroscopy) NMR, which enables the study of such large systems, and include examples of applications to several cellular machines. We show how this emerging technique contributes to an understanding of cellular function and the role of molecular plasticity in regulating an array of biochemical activities.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Sítio Alostérico , Animais , Proteínas de Bactérias/química , Domínio Catalítico , Exossomos , Proteína HMGN2/química , Proteínas de Choque Térmico/química , Humanos , Concentração de Íons de Hidrogênio , Substâncias Macromoleculares/química , Nucleossomos/química , Canais de Potássio/química , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Proteínas/química
5.
Proc Natl Acad Sci U S A ; 121(37): e2408104121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39231207

RESUMO

Prolyl-hydroxylation is an oxygen-dependent posttranslational modification (PTM) that is known to regulate fibril formation of collagenous proteins and modulate cellular expression of hypoxia-inducible factor (HIF) α subunits. However, our understanding of this important but relatively rare PTM has remained incomplete due to the lack of biophysical methodologies that can directly measure multiple prolyl-hydroxylation events within intrinsically disordered proteins. Here, we describe a real-time 13C-direct detection NMR-based assay for studying the hydroxylation of two evolutionarily conserved prolines (P402 and P564) simultaneously in the intrinsically disordered oxygen-dependent degradation domain of hypoxic-inducible factor 1α by exploiting the "proton-less" nature of prolines. We show unambiguously that P564 is rapidly hydroxylated in a time-resolved manner while P402 hydroxylation lags significantly behind that of P564. The differential hydroxylation rate was negligibly influenced by the binding affinity to prolyl-hydroxylase enzyme, but rather by the surrounding amino acid composition, particularly the conserved tyrosine residue at the +1 position to P564. These findings support the unanticipated notion that the evolutionarily conserved P402 seemingly has a minimal impact in normal oxygen-sensing pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas Intrinsicamente Desordenadas , Prolina , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Prolina/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Humanos , Processamento de Proteína Pós-Traducional , Espectroscopia de Ressonância Magnética/métodos
6.
Proc Natl Acad Sci U S A ; 121(29): e2404060121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985770

RESUMO

DNA aptamers have emerged as novel molecular tools in disease theranostics owing to their high binding affinity and specificity for protein targets, which rely on their ability to fold into distinctive three-dimensional (3D) structures. However, delicate atomic interactions that shape the 3D structures are often ignored when designing and modeling aptamers, leading to inefficient functional optimization. Challenges persist in determining high-resolution aptamer-protein complex structures. Moreover, the experimentally determined 3D structures of DNA molecules with exquisite functions remain scarce. These factors impede our comprehension and optimization of some important DNA aptamers. Here, we performed a streamlined solution NMR-based structural investigation on the 41-nt sgc8c, a prominent DNA aptamer used to target membrane protein tyrosine kinase 7, for cancer theranostics. We show that sgc8c prefolds into an intricate three-way junction (3WJ) structure stabilized by long-range tertiary interactions and extensive base-base stackings. Delineated by NMR chemical shift perturbations, site-directed mutagenesis, and 3D structural information, we identified essential nucleotides constituting the key functional elements of sgc8c that are centralized at the core of 3WJ. Leveraging the well-established structure-function relationship, we efficiently engineered two sgc8c variants by modifying the apical loop and introducing L-DNA base pairs to simultaneously enhance thermostability, biostability, and binding affinity for both protein and cell targets, a feat not previously attained despite extensive efforts. This work showcases a simplified NMR-based approach to comprehend and optimize sgc8c without acquiring the complex structure, and offers principles for the sophisticated structure-function organization of DNA molecules.


Assuntos
Aptâmeros de Nucleotídeos , Conformação de Ácido Nucleico , Receptores Proteína Tirosina Quinases , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Modelos Moleculares , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica , Moléculas de Adesão Celular
7.
Proc Natl Acad Sci U S A ; 121(28): e2403635121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38950371

RESUMO

While the intracellular-extracellular distribution of lactate has been suggested to play a critical role in the healthy and diseased brain, tools are lacking to noninvasively probe lactate in intracellular and extracellular spaces. Here, we show that, by measuring the diffusion of lactate with diffusion-weighted magnetic resonance (MR) spectroscopy in vivo and comparing it to the diffusion of purely intracellular metabolites, noninvasive quantification of extracellular and intracellular lactate fractions becomes possible. More specifically, we detect alterations of lactate diffusion in the APP/PS1 mouse model of Alzheimer's disease. Data modeling allows quantifying decreased extracellular lactate fraction in APP/PS1 mice as compared to controls, which is quantitatively confirmed with implanted enzyme-microelectrodes. The capability of diffusion-weighted MR spectroscopy to quantify extracellular-intracellular lactate fractions opens a window into brain metabolism, including in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Encéfalo , Ácido Láctico , Animais , Ácido Láctico/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Camundongos , Camundongos Transgênicos , Imagem de Difusão por Ressonância Magnética/métodos , Espaço Extracelular/metabolismo , Modelos Animais de Doenças , Espectroscopia de Ressonância Magnética/métodos , Masculino , Precursor de Proteína beta-Amiloide/metabolismo
8.
RNA ; 30(7): 779-794, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565242

RESUMO

The stem-loop 2 motif (s2m) in SARS-CoV-2 (SCoV-2) is located in the 3'-UTR. Although s2m has been reported to display characteristics of a mobile genomic element that might lead to an evolutionary advantage, its function has remained unknown. The secondary structure of the original SCoV-2 RNA sequence (Wuhan-Hu-1) was determined by NMR in late 2020, delineating the base-pairing pattern and revealing substantial differences in secondary structure compared to SARS-CoV-1 (SCoV-1). The existence of a single G29742-A29756 mismatch in the upper stem of s2m leads to its destabilization and impedes a complete NMR analysis. With Delta, a variant of concern has evolved with one mutation compared to the original sequence that replaces G29742 by U29742. We show here that this mutation results in a more defined structure at ambient temperature accompanied by a rise in melting temperature. Consequently, we were able to identify >90% of the relevant NMR resonances using a combination of selective RNA labeling and filtered 2D NOESY as well as 4D NMR experiments. We present a comprehensive NMR analysis of the secondary structure, (sub)nanosecond dynamics, and ribose conformation of s2m Delta based on heteronuclear 13C NOE and T 1 measurements and ribose carbon chemical shift-derived canonical coordinates. We further show that the G29742U mutation in Delta has no influence on the druggability of s2m compared to the Wuhan-Hu-1 sequence. With the assignment at hand, we identify the flexible regions of s2m as the primary site for small molecule binding.


Assuntos
Conformação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/química , SARS-CoV-2/metabolismo , RNA Viral/genética , RNA Viral/química , RNA Viral/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância Magnética/métodos , Regiões 3' não Traduzidas , Ligantes , Humanos , Mutação , COVID-19/virologia , Pareamento de Bases , Motivos de Nucleotídeos
9.
Nat Chem Biol ; 20(8): 1044-1052, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38467846

RESUMO

Phase transitions are important to understand cell dynamics, and the maturation of liquid droplets is relevant to neurodegenerative disorders. We combined NMR and Raman spectroscopies with microscopy to follow, over a period of days to months, droplet maturation of the protein fused in sarcoma (FUS). Our study reveals that the surface of the droplets plays a critical role in this process, while RNA binding prevents it. The maturation kinetics are faster in an agarose-stabilized biphasic sample compared with a monophasic condensed sample, owing to the larger surface-to-volume ratio. In addition, Raman spectroscopy reports structural differences upon maturation between the inside and the surface of droplets, which is comprised of ß-sheet content, as revealed by solid-state NMR. In agreement with these observations, a solid crust-like shell is observed at the surface using microaspiration. Ultimately, matured droplets were converted into fibrils involving the prion-like domain as well as the first RGG motif.


Assuntos
Proteína FUS de Ligação a RNA , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Humanos , Conformação Proteica em Folha beta , Análise Espectral Raman , Transição de Fase , Propriedades de Superfície , Cinética , Espectroscopia de Ressonância Magnética/métodos
10.
Chem Rev ; 124(10): 6501-6542, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722769

RESUMO

Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.


Assuntos
Aminoácidos , Aminoácidos/química , Proteínas/química , Proteínas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Microscopia/métodos , Espectroscopia de Ressonância Magnética/métodos , Humanos
11.
Nucleic Acids Res ; 52(8): 4691-4701, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567725

RESUMO

Understanding small molecule binding to RNA can be complicated by an intricate interplay between binding stoichiometry, multiple binding motifs, different occupancies of different binding motifs, and changes in the structure of the RNA under study. Here, we use native top-down mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy to experimentally resolve these factors and gain a better understanding of the interactions between neomycin B and the 40 nt aptamer domain of a neomycin-sensing riboswitch engineered in yeast. Data from collisionally activated dissociation of the 1:1, 1:2 and 1:3 RNA-neomycin B complexes identified a third binding motif C of the riboswitch in addition to the two motifs A and B found in our previous study, and provided occupancies of the different binding motifs for each complex stoichiometry. Binding of a fourth neomycin B molecule was unspecific according to both MS and NMR data. Intriguingly, all major changes in the aptamer structure can be induced by the binding of the first neomycin B molecule regardless of whether it binds to motif A or B as evidenced by stoichiometry-resolved MS data together with titration data from 1H NMR spectroscopy in the imino proton region. Specific binding of the second and third neomycin B molecules further stabilizes the riboswitch aptamer, thereby allowing for a gradual response to increasing concentrations of neomycin B, which likely leads to a fine-tuning of the cellular regulatory mechanism.


Assuntos
Aptâmeros de Nucleotídeos , Framicetina , Riboswitch , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Sítios de Ligação , Framicetina/química , Framicetina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos
12.
Proc Natl Acad Sci U S A ; 120(1): e2206765120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36580589

RESUMO

Phosphates and polyphosphates play ubiquitous roles in biology as integral structural components of cell membranes and bone, or as vehicles of energy storage via adenosine triphosphate and phosphocreatine. The solution phase space of phosphate species appears more complex than previously known. We present nuclear magnetic resonance (NMR) and cryogenic transmission electron microscopy (cryo-TEM) experiments that suggest phosphate species including orthophosphates, pyrophosphates, and adenosine phosphates associate into dynamic assemblies in dilute solutions that are spectroscopically "dark." Cryo-TEM provides visual evidence of the formation of spherical assemblies tens of nanometers in size, while NMR indicates that a majority population of phosphates remain as unassociated ions in exchange with spectroscopically invisible assemblies. The formation of these assemblies is reversibly and entropically driven by the partial dehydration of phosphate groups, as verified by diffusion-ordered spectroscopy (DOSY), indicating a thermodynamic state of assembly held together by multivalent interactions between the phosphates. Molecular dynamics simulations further corroborate that orthophosphates readily cluster in aqueous solutions. This study presents the surprising discovery that phosphate-containing molecules, ubiquitously present in the biological milieu, can readily form dynamic assemblies under a wide range of commonly used solution conditions, highlighting a hitherto unreported property of phosphate's native state in biological solutions.


Assuntos
Fosfatos , Polifosfatos , Fosfatos/metabolismo , Polifosfatos/metabolismo , Água/química , Espectroscopia de Ressonância Magnética/métodos , Microscopia Eletrônica de Transmissão , Trifosfato de Adenosina , Soluções
13.
J Neurosci ; 44(21)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38531634

RESUMO

Methods of cognitive enhancement for humans are most impactful when they generalize across tasks. However, the extent to which such "transfer" is possible via interventions is widely debated. In addition, the contribution of excitatory and inhibitory processes to such transfer is unknown. Here, in a large-scale neuroimaging individual differences study with humans (both sexes), we paired multitasking training and noninvasive brain stimulation (transcranial direct current stimulation, tDCS) over multiple days and assessed performance across a range of paradigms. In addition, we varied tDCS dosage (1.0 and 2.0 mA), electrode montage (left or right prefrontal regions), and training task (multitasking vs a control task) and assessed GABA and glutamate concentrations via ultrahigh field 7T magnetic resonance spectroscopy. Generalized benefits were observed in spatial attention, indexed by visual search performance, when multitasking training was combined with 1.0 mA stimulation targeting either the left or right prefrontal cortex (PFC). This transfer effect persisted for ∼30 d post intervention. Critically, the transferred benefits associated with right prefrontal tDCS were predicted by pretraining concentrations of glutamate in the PFC. Thus, the effects of this combined stimulation and training protocol appear to be linked predominantly to excitatory brain processes.


Assuntos
Ácido Glutâmico , Aprendizagem , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Feminino , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/metabolismo , Adulto Jovem , Aprendizagem/fisiologia , Ácido gama-Aminobutírico/metabolismo , Atenção/fisiologia , Espectroscopia de Ressonância Magnética/métodos
14.
Hepatology ; 80(2): 266-277, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305739

RESUMO

BACKGROUND AND AIMS: Metabolomics is used to predict, diagnose, and monitor metabolic disorders but altered metabolomic signatures have also been reported in diverse diseases, including autoimmune disorders. However, the metabolomic profile in autoimmune hepatitis (AIH) has not been investigated in depth. Therefore, we investigated the metabolomic signature of AIH and its significance as a diagnostic and pathogenetic tool. APPROACH AND RESULTS: Metabolites in plasma samples from 50 patients with AIH at diagnosis, 43 healthy controls, 72 patients with primary biliary cholangitis (PBC), 26 patients with metabolic dysfunction-associated liver disease, and 101 patients with chronic viral hepatitis were determined by 1 H NMR (nuclear magnetic resonance) spectroscopy. Fifty-two metabolites were quantified, and metabolic pathway analysis was performed. Multivariate analysis revealed that AIH could be differentiated from healthy controls and each of the disease controls ( p <0.001). Fifteen metabolites differentiated AIH from disease controls (PBC+chronic viral hepatitis+metabolic dysfunction-associated liver disease) (95% sensitivity and 92% specificity). Ten distinct metabolic pathways were altered in AIH compared to disease controls. The metabolic pathway of branched-chain amino acids (lower valine, leucine, and isoleucine levels and their catabolic intermediates in PBC), methionine (lower methionine, 2-aminobutyrate, and 2-hydroxybutyrate levels in PBC), alanine-aspartate-glutamate (lower metabolites in PBC), and that of metabolites associated with gut microbiota (lower choline, betaine, and dimethylamine levels in PBC) were significantly different between AIH and PBC ( p <0.01). CONCLUSIONS: 1 H NMR spectroscopy could be a promising novel tool to diagnose and study AIH pathogenesis as there is no need for much sample handling, is highly reproducible with high sensitivity and specificity, and low cost.


Assuntos
Hepatite Autoimune , Metabolômica , Humanos , Hepatite Autoimune/diagnóstico , Hepatite Autoimune/sangue , Hepatite Autoimune/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Metabolômica/métodos , Adulto , Espectroscopia de Ressonância Magnética/métodos , Idoso , Estudos de Casos e Controles
15.
Ann Neurol ; 95(5): 849-857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366778

RESUMO

OBJECTIVE: One proposed mechanism of disease progression in Parkinson's disease includes the interplay of endogenous dopamine toxicity and mitochondrial dysfunction. However, the in-vivo effects of exogenous dopamine administration on cerebral bioenergetics are unknown. METHODS: We performed a double-blinded, cross-over, placebo-controlled trial. Participants received either 200/50 mg levodopa/benserazide or a placebo and vice versa on the second study visit. Clinical assessments and multimodal neuroimaging were performed, including 31phosphorus magnetic resonance spectroscopy of the basal ganglia and the midbrain. RESULTS: In total, 20 (6 female) patients with Parkinson's disease and 22 sex- and age-matched healthy controls (10 female) were enrolled. Treatment with levodopa/benserazide but not with placebo resulted in a substantial reduction of high-energy phosphorus-containing metabolites in the basal ganglia (patients with Parkinson's disease: -40%; healthy controls: -39%) but not in the midbrain. There were no differences in high-energy phosphorus-containing metabolites for patients with Parkinson's disease compared to healthy controls in the OFF state and treatment response. INTERPRETATION: Exogenously administered levodopa/benserazide strongly interferes with basal ganglia high-energy phosphorus-containing metabolite levels in both groups. The lack of effects on midbrain levels suggests that the observed changes are limited to the site of dopamine action. ANN NEUROL 2024;95:849-857.


Assuntos
Gânglios da Base , Benserazida , Estudos Cross-Over , Metabolismo Energético , Levodopa , Doença de Parkinson , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Gânglios da Base/metabolismo , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/diagnóstico por imagem , Idoso , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/diagnóstico por imagem , Benserazida/farmacologia , Método Duplo-Cego , Metabolismo Energético/efeitos dos fármacos , Antiparkinsonianos , Combinação de Medicamentos , Espectroscopia de Ressonância Magnética/métodos
16.
Nat Chem Biol ; 19(5): 556-564, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36894723

RESUMO

Anaerobic microbial metabolism drives critical functions within global ecosystems, host-microbiota interactions, and industrial applications, yet remains ill-defined. Here we advance a versatile approach to elaborate cellular metabolism in obligate anaerobes using the pathogen Clostridioides difficile, an amino acid and carbohydrate-fermenting Clostridia. High-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy of C. difficile, grown with fermentable 13C substrates, informed dynamic flux balance analysis (dFBA) of the pathogen's genome-scale metabolism. Analyses identified dynamic recruitment of oxidative and supporting reductive pathways, with integration of high-flux amino acid and glycolytic metabolism at alanine's biosynthesis to support efficient energy generation, nitrogen handling and biomass generation. Model predictions informed an approach leveraging the sensitivity of 13C NMR spectroscopy to simultaneously track cellular carbon and nitrogen flow from [U-13C]glucose and [15N]leucine, confirming the formation of [13C,15N]alanine. Findings identify metabolic strategies used by C. difficile to support its rapid colonization and expansion in gut ecosystems.


Assuntos
Clostridioides difficile , Anaerobiose , Ecossistema , Espectroscopia de Ressonância Magnética/métodos , Aminoácidos , Alanina
17.
Mol Psychiatry ; 29(6): 1824-1832, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38326560

RESUMO

Men with antisocial personality disorder (ASPD) with or without psychopathy (+/-P) are responsible for most violent crime in society. Development of effective treatments is hindered by poor understanding of the neurochemical underpinnings of the condition. Men with ASPD with and without psychopathy demonstrate impulsive decision-making, associated with striatal abnormalities in functional neuroimaging studies. However, to date, no study has directly examined the potential neurochemical underpinnings of such abnormalities. We therefore investigated striatal glutamate: GABA ratio using Magnetic Resonance Spectroscopy in 30 violent offenders (16 ASPD-P, 14 ASPD + P) and 21 healthy non-offenders. Men with ASPD +/- P had a significant reduction in striatal glutamate : GABA ratio compared to non-offenders. We report, for the first time, striatal Glutamate/GABA dysregulation in ASPD +/- P, and discuss how this may be related to core behavioral abnormalities in the disorders.


Assuntos
Transtorno da Personalidade Antissocial , Corpo Estriado , Criminosos , Ácido Glutâmico , Violência , Ácido gama-Aminobutírico , Humanos , Masculino , Ácido Glutâmico/metabolismo , Transtorno da Personalidade Antissocial/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adulto , Criminosos/psicologia , Corpo Estriado/metabolismo , Violência/psicologia , Espectroscopia de Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto Jovem
18.
Mol Psychiatry ; 29(4): 939-950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38182806

RESUMO

Previous studies reported decreased glutamate levels in the anterior cingulate cortex (ACC) in non-treatment-resistant schizophrenia and first-episode psychosis. However, ACC glutamatergic changes in subjects at high-risk for psychosis, and the effects of commonly experienced environmental emotional/social stressors on glutamatergic function in adolescents remain unclear. In this study, adolescents recruited from the general population underwent proton magnetic resonance spectroscopy (MRS) of the pregenual ACC using a 3-Tesla scanner. We explored longitudinal data on the association of combined glutamate-glutamine (Glx) levels, measured by MRS, with subclinical psychotic experiences. Moreover, we investigated associations of bullying victimization, a risk factor for subclinical psychotic experiences, and help-seeking intentions, a coping strategy against stressors including bullying victimization, with Glx levels. Finally, path analyses were conducted to explore multivariate associations. For a contrast analysis, gamma-aminobutyric acid plus macromolecule (GABA+) levels were also analyzed. Negative associations were found between Glx levels and subclinical psychotic experiences at both Times 1 (n = 219, mean age 11.5 y) and 2 (n = 211, mean age 13.6 y), as well as for over-time changes (n = 157, mean interval 2.0 y). Moreover, effects of bullying victimization and bullying victimization × help-seeking intention interaction effects on Glx levels were found (n = 156). Specifically, bullying victimization decreased Glx levels, whereas help-seeking intention increased Glx levels only in bullied adolescents. Finally, associations among bullying victimization, help-seeking intention, Glx levels, and subclinical psychotic experiences were revealed. GABA+ analysis revealed no significant results. This is the first adolescent study to reveal longitudinal trajectories of the association between glutamatergic function and subclinical psychotic experiences and to elucidate the effect of commonly experienced environmental emotional/social stressors on glutamatergic function. Our findings may deepen the understanding of how environmental emotional/social stressors induce impaired glutamatergic neurotransmission that could be the underpinning of liability for psychotic experiences in early adolescence.


Assuntos
Bullying , Vítimas de Crime , Ácido Glutâmico , Giro do Cíngulo , Transtornos Psicóticos , Humanos , Giro do Cíngulo/metabolismo , Adolescente , Masculino , Feminino , Transtornos Psicóticos/metabolismo , Ácido Glutâmico/metabolismo , Bullying/psicologia , Vítimas de Crime/psicologia , Estudos Longitudinais , Criança , Glutamina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Fatores de Risco , Esquizofrenia/metabolismo , Espectroscopia de Ressonância Magnética/métodos
19.
Chem Rev ; 123(3): 918-988, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36542732

RESUMO

Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana
20.
Methods ; 228: 55-64, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782295

RESUMO

Metal ions, including biologically prevalent sodium ions, can modulate electrostatic interactions frequently involved in the stability of condensed compartments in cells. Quantitative characterization of heterogeneous ion dynamics inside biomolecular condensates demands new experimental approaches. Here we develop a 23Na NMR relaxation-based integrative approach to probe dynamics of sodium ions inside agarose gels as a model system. We exploit the electric quadrupole moment of spin-3/2 23Na nuclei and, through combination of single-quantum and triple-quantum-filtered 23Na NMR relaxation methods, disentangle the relaxation contribution of different populations of sodium ions inside gels. Three populations of sodium ions are identified: a population with bi-exponential relaxation representing ions within the slow motion regime and two populations with mono-exponential relaxation but at different rates. Our study demonstrates the dynamical heterogeneity of sodium ions inside agarose gels and presents a new experimental approach for monitoring dynamics of sodium and other spin-3/2 ions (e.g. chloride) in condensed environments.


Assuntos
Géis , Sefarose , Sódio , Sefarose/química , Sódio/química , Géis/química , Espectroscopia de Ressonância Magnética/métodos , Íons/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA