Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 868
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 50(4): 812-831, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995501

RESUMO

Since the molecular cloning of interleukin-6 (IL-6) in 1986, many other cytokines have been found to share the same signal transducer, gp130, in their receptor complexes. Thus, the IL-6 family of cytokines now consists of ten members. Although some of the family members' functions are redundant as a result of the expression of gp130, there are also functional distinctions between members. The mechanisms that determine functional redundancies and distinctions are not completely understood. Yet, research has clarified the role of IL-6 family cytokines in autoimmune diseases and has led to effective therapies that target them. Here, we review the IL-6 family of cytokines in autoimmune diseases, with a particular focus on the prototypical member IL-6, from the viewpoints of their structure, signaling, and biological features and discuss possible mechanisms of their functional pleiotropy.


Assuntos
Citocinas/fisiologia , Pleiotropia Genética , Família Multigênica/fisiologia , Animais , Doenças Autoimunes/imunologia , Citocinas/genética , Regulação da Expressão Gênica , Inflamação/imunologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/fisiologia , Camundongos , Subunidades Proteicas , Receptores de Citocinas/fisiologia , Receptores de Interleucina-6/fisiologia , Transdução de Sinais , Relação Estrutura-Atividade
2.
Nat Rev Mol Cell Biol ; 14(8): 503-17, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23860236

RESUMO

Integrin receptors provide a dynamic, tightly-regulated link between the extracellular matrix (or cellular counter-receptors) and intracellular cytoskeletal and signalling networks, enabling cells to sense and respond to their chemical and physical environment. Talins and kindlins, two families of FERM-domain proteins, bind the cytoplasmic tail of integrins, recruit cytoskeletal and signalling proteins involved in mechanotransduction and synergize to activate integrin binding to extracellular ligands. New data reveal the domain structure of full-length talin, provide insights into talin-mediated integrin activation and show that RIAM recruits talin to the plasma membrane, whereas vinculin stabilizes talin in cell-matrix junctions. How kindlins act is less well-defined, but disease-causing mutations show that kindlins are also essential for integrin activation, adhesion, cell spreading and signalling.


Assuntos
Comunicação Celular/genética , Integrinas/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Talina/fisiologia , Animais , Adesão Celular/genética , Comunicação Celular/fisiologia , Humanos , Integrinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Família Multigênica/fisiologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica/fisiologia , Talina/genética , Talina/metabolismo
3.
Development ; 147(7)2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32122990

RESUMO

Control of cell number is crucial to define body size during animal development and to restrict tumoral transformation. The cell number is determined by the balance between cell proliferation and cell death. Although many genes are known to regulate those processes, the molecular mechanisms underlying the relationship between cell number and body size remain poorly understood. This relationship can be better understood by studying planarians, flatworms that continuously change their body size according to nutrient availability. We identified a novel gene family, blitzschnell (bls), that consists of de novo and taxonomically restricted genes that control cell proliferation:cell death ratio. Their silencing promotes faster regeneration and increases cell number during homeostasis. Importantly, this increase in cell number leads to an increase in body size only in a nutrient-rich environment; in starved planarians, silencing results in a decrease in cell size and cell accumulation that ultimately produces overgrowths. bls expression is downregulated after feeding and is related to activity of the insulin/Akt/mTOR network, suggesting that the bls family evolved in planarians as an additional mechanism for restricting cell number in nutrient-fluctuating environments.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Morte Celular/genética , Proliferação de Células/genética , Família Multigênica/fisiologia , Planárias , Animais , Animais Geneticamente Modificados , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Contagem de Células , Mapeamento Cromossômico , Regulação da Expressão Gênica no Desenvolvimento , Homeostase/genética , Planárias/classificação , Planárias/citologia , Planárias/genética , Planárias/fisiologia , Regeneração/genética , Sequências de Repetição em Tandem
4.
PLoS Biol ; 18(9): e3000783, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925907

RESUMO

Plant nucleotide-binding (NB) leucine-rich repeat (LRR) receptor (NLR) proteins function as intracellular immune receptors that perceive the presence of pathogen-derived virulence proteins (effectors) to induce immune responses. The 2 major types of plant NLRs that "sense" pathogen effectors differ in their N-terminal domains: these are Toll/interleukin-1 receptor resistance (TIR) domain-containing NLRs (TNLs) and coiled-coil (CC) domain-containing NLRs (CNLs). In many angiosperms, the RESISTANCE TO POWDERY MILDEW 8 (RPW8)-CC domain containing NLR (RNL) subclass of CNLs is encoded by 2 gene families, ACTIVATED DISEASE RESISTANCE 1 (ADR1) and N REQUIREMENT GENE 1 (NRG1), that act as "helper" NLRs during multiple sensor NLR-mediated immune responses. Despite their important role in sensor NLR-mediated immunity, knowledge of the specific, redundant, and synergistic functions of helper RNLs is limited. We demonstrate that the ADR1 and NRG1 families act in an unequally redundant manner in basal resistance, effector-triggered immunity (ETI) and regulation of defense gene expression. We define RNL redundancy in ETI conferred by some TNLs and in basal resistance against virulent pathogens. We demonstrate that, in Arabidopsis thaliana, the 2 RNL families contribute specific functions in ETI initiated by specific CNLs and TNLs. Time-resolved whole genome expression profiling revealed that RNLs and "classical" CNLs trigger similar transcriptome changes, suggesting that RNLs act like other CNLs to mediate ETI downstream of sensor NLR activation. Together, our genetic data confirm that RNLs contribute to basal resistance, are fully required for TNL signaling, and can also support defense activation during CNL-mediated ETI.


Assuntos
Arabidopsis/imunologia , Proteínas NLR/fisiologia , Imunidade Vegetal/genética , Receptores Imunológicos/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Família Multigênica/genética , Família Multigênica/fisiologia , Proteínas NLR/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Receptores Imunológicos/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcriptoma
5.
Plant Physiol ; 185(3): 1242-1258, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33744946

RESUMO

The identification of functional elements encoded in plant genomes is necessary to understand gene regulation. Although much attention has been paid to model species like Arabidopsis (Arabidopsis thaliana), little is known about regulatory motifs in other plants. Here, we describe a bottom-up approach for de novo motif discovery using peach (Prunus persica) as an example. These predictions require pre-computed gene clusters grouped by their expression similarity. After optimizing the boundaries of proximal promoter regions, two motif discovery algorithms from RSAT::Plants (http://plants.rsat.eu) were tested (oligo and dyad analysis). Overall, 18 out of 45 co-expressed modules were enriched in motifs typical of well-known transcription factor (TF) families (bHLH, bZip, BZR, CAMTA, DOF, E2FE, AP2-ERF, Myb-like, NAC, TCP, and WRKY) and a few uncharacterized motifs. Our results indicate that small modules and promoter window of [-500 bp, +200 bp] relative to the transcription start site (TSS) maximize the number of motifs found and reduce low-complexity signals in peach. The distribution of discovered regulatory sites was unbalanced, as they accumulated around the TSS. This approach was benchmarked by testing two different expression-based clustering algorithms (network-based and hierarchical) and, as control, genes grouped for harboring ChIPseq peaks of the same Arabidopsis TF. The method was also verified on maize (Zea mays), a species with a large genome. In summary, this article presents a glimpse of the peach regulatory components at genome scale and provides a general protocol that can be applied to other species. A Docker software container is released to facilitate the reproduction of these analyses.


Assuntos
Regiões Promotoras Genéticas/genética , Prunus persica/genética , Algoritmos , Arabidopsis/genética , Biologia Computacional , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Família Multigênica/genética , Família Multigênica/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
PLoS Genet ; 15(10): e1008435, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31613892

RESUMO

Bacteria have evolved sophisticated uptake machineries in order to obtain the nutrients required for growth. Gram-negative plant pathogens of the genus Pectobacterium obtain iron from the protein ferredoxin, which is produced by their plant hosts. This iron-piracy is mediated by the ferredoxin uptake system (Fus), a gene cluster encoding proteins that transport ferredoxin into the bacterial cell and process it proteolytically. In this work we show that gene clusters related to the Fus are widespread in bacterial species. Through structural and biochemical characterisation of the distantly related Fus homologues YddB and PqqL from Escherichia coli, we show that these proteins are analogous to components of the Fus from Pectobacterium. The membrane protein YddB shares common structural features with the outer membrane ferredoxin transporter FusA, including a large extracellular substrate binding site. PqqL is an active protease with an analogous periplasmic localisation and iron-dependent expression to the ferredoxin processing protease FusC. Structural analysis demonstrates that PqqL and FusC share specific features that distinguish them from other members of the M16 protease family. Taken together, these data provide evidence that protease associated import systems analogous to the Fus are widespread in Gram-negative bacteria.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Membrana Transportadoras/genética , Pectobacterium/genética , Peptídeo Hidrolases/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Ferredoxinas/metabolismo , Genes Bacterianos/fisiologia , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica/fisiologia , Óperon/fisiologia , Pectobacterium/metabolismo , Peptídeo Hidrolases/metabolismo
7.
Plant J ; 103(4): 1490-1502, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32412129

RESUMO

Vernalization accelerates flowering after prolonged winter cold. Transcriptional and epigenetic changes are known to be involved in the regulation of the vernalization response. Despite intensive applications of next-generation sequencing in diverse aspects of plant research, genome-wide transcriptome and epigenome profiling during the vernalization response has not been conducted. In this work, to our knowledge, we present the first comprehensive analyses of transcriptomic and epigenomic dynamics during the vernalization process in Arabidopsis thaliana. Six major clusters of genes exhibiting distinctive features were identified. Temporary changes in histone H3K4me3 levels were observed that likely coordinate photosynthesis and prevent oxidative damage during cold exposure. In addition, vernalization induced a stable accumulation of H3K27me3 over genes encoding many development-related transcription factors, which resulted in either inhibition of transcription or a bivalent status of the genes. Lastly, FLC-like and VIN3-like genes were identified that appear to be novel components of the vernalization pathway.


Assuntos
Arabidopsis/genética , Epigenoma/fisiologia , Transcriptoma/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Temperatura Baixa , Epigenoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Germinação/genética , Germinação/fisiologia , Código das Histonas , Histonas/metabolismo , Histonas/fisiologia , Família Multigênica/genética , Família Multigênica/fisiologia , Sementes/genética , Sementes/metabolismo , Sementes/fisiologia , Fatores de Transcrição/fisiologia , Transcriptoma/genética
8.
Development ; 145(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217754

RESUMO

The epidermal cell layer and the tissues that lie underneath have different intrinsic functions during plant development. The stem cells within the shoot apical meristem (SAM) that give rise to aerial structures are located in the epidermal and internal tissue layers. However, our understanding of how the functions of these stem cells are coordinated across tissue layers so stem cells can behave as a single population remains limited. WUSCHEL (WUS) functions as a master regulator of stem cell activity. Here, we show that loss of function in the ERECTA (ER)-family receptor kinase genes can rescue the mutant phenotype of wus plants (loss of stem cells), as demonstrated by the reinstated expression of a stem cell marker gene in the SAM epidermis. Localized ER expression in the epidermis can suppress the SAM phenotype caused by loss of ER-family activity. Furthermore, the CLAVATA3- and cytokinin-induced outputs, which contribute to stem cell homeostasis, are dysfunctional in a tissue layer-specific manner in ER-family mutants. Collectively, our findings suggest that the ER family plays a role in the coordination of stem cell behavior between different SAM tissue layers.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Meristema/metabolismo , Família Multigênica/fisiologia , Epiderme Vegetal/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/genética , Epiderme Vegetal/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética
9.
Plant Physiol ; 182(2): 840-856, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31727678

RESUMO

APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) gene clusters regulate the biosynthesis of diverse specialized metabolites, including steroidal glycoalkaloids in tomato (Solanum lycopersicum) and potato (Solanum tuberosum), nicotine in tobacco (Nicotiana tabacum), and pharmaceutically valuable terpenoid indole alkaloids in Madagascar periwinkle (Catharanthus roseus). However, the regulatory relationships between individual AP2/ERF genes within the cluster remain unexplored. We uncovered intracluster regulation of the C. roseus AP2/ERF regulatory circuit, which consists of ORCA3, ORCA4, and ORCA5 ORCA3 and ORCA5 activate ORCA4 by directly binding to a GC-rich motif in the ORCA4 promoter. ORCA5 regulates its own expression through a positive autoregulatory loop and indirectly activates ORCA3 In determining the functional conservation of AP2/ERF clusters in other plant species, we found that GC-rich motifs are present in the promoters of analogous AP2/ERF clusters in tobacco, tomato, and potato. Intracluster regulation is evident within the tobacco NICOTINE2 (NIC2) ERF cluster. Moreover, overexpression of ORCA5 in tobacco and of NIC2 ERF189 in C. roseus hairy roots activates nicotine and terpenoid indole alkaloid pathway genes, respectively, suggesting that the AP2/ERFs are functionally equivalent and are likely to be interchangeable. Elucidation of the intracluster and mutual regulation of transcription factor gene clusters advances our understanding of the underlying molecular mechanism governing regulatory gene clusters in plants.


Assuntos
Etilenos/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Fatores de Transcrição/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Catharanthus/genética , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Etilenos/farmacologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Homeodomínio/genética , Solanum lycopersicum/genética , Família Multigênica/genética , Família Multigênica/fisiologia , Motivos de Nucleotídeos/genética , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica/genética , Ligação Proteica/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solanum tuberosum/genética , Nicotiana/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Regulação para Cima
10.
Nat Chem Biol ; 15(4): 331-339, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886436

RESUMO

Biosynthetic gene clusters (BGCs) bridging genotype and phenotype continuously evolve through gene mutations and recombinations to generate chemical diversity. Phenazine BGCs are widespread in bacteria, and the biosynthetic mechanisms of the formation of the phenazine structural core have been illuminated in the last decade. However, little is known about the complex phenazine core-modification machinery. Here, we report the diversity-oriented modifications of the phenazine core through two distinct BGCs in the entomopathogenic bacterium Xenorhabdus szentirmaii, which lives in symbiosis with nematodes. A previously unidentified aldehyde intermediate, which can be modified by multiple enzymatic and non-enzymatic reactions, is a common intermediate bridging the pathways encoded by these BGCs. Evaluation of the antibiotic activity of the resulting phenazine derivatives suggests a highly effective strategy to convert Gram-positive specific phenazines into broad-spectrum antibiotics, which might help the bacteria-nematode complex to maintain its special environmental niche.


Assuntos
Fenazinas/metabolismo , Xenorhabdus/genética , Animais , Bactérias , Proteínas de Bactérias , Família Multigênica/genética , Família Multigênica/fisiologia , Nematoides/metabolismo , Xenorhabdus/metabolismo
11.
Nat Chem Biol ; 15(2): 111-114, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30598544

RESUMO

Here we report a transcription factor decoy strategy for targeted activation of eight large silent polyketide synthase and non-ribosomal peptide synthetase gene clusters, ranging from 50 to 134 kilobases (kb) in multiple streptomycetes, and characterization of a novel oxazole family compound produced by a 98-kb biosynthetic gene cluster. Owing to its simplicity and ease of use, this strategy can be scaled up readily for discovery of natural products in streptomycetes.


Assuntos
Peptídeo Sintases/genética , Policetídeo Sintases/genética , Fatores de Transcrição/biossíntese , Regulação da Expressão Gênica/genética , Família Multigênica/fisiologia , Peptídeo Sintases/fisiologia , Policetídeo Sintases/fisiologia , Streptomycetaceae/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(29): 7581-7586, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29954861

RESUMO

The secretion of small Fe-binding molecules called siderophores is an important microbial strategy for survival in Fe-limited environments. Siderophore production is often regulated by quorum sensing (QS), a microbial counting technique that allows organisms to alter gene expression based on cell density. However, the identity and quantities of siderophores produced under QS regulation are rarely studied in the context of their roles in Fe uptake. We investigated the link between QS, siderophores, and Fe uptake in the model marine organism Vibrio harveyi where QS is thought to repress siderophore production. We find that V. harveyi uses a single QS- and Fe-repressed gene cluster to produce both cell-associated siderophores (amphiphilic enterobactins) as well as several related soluble siderophores, which we identify and quantify using liquid chromatography-coupled (LC)-MS as well as tandem high-resolution MS (LC-HR-MS/MS). Measurements of siderophore production show that soluble siderophores are present at ∼100× higher concentrations than amphi-enterobactin and that over the course of growth V. harveyi decreases amphi-enterobactin concentrations but accumulates soluble siderophores. 55Fe radio-tracer uptake experiments demonstrate that these soluble siderophores play a significant role in Fe uptake and that the QS-dictated concentrations of soluble siderophores in stationary phase are near the limit of cellular uptake capacities. We propose that cell-associated and soluble siderophores are beneficial to V. harveyi in different environmental and growth contexts and that QS allows V. harveyi to exploit "knowledge" of its population size to avoid unnecessary siderophore production.


Assuntos
Enterobactina/biossíntese , Ferro/metabolismo , Família Multigênica/fisiologia , Percepção de Quorum/fisiologia , Sideróforos/biossíntese , Vibrio/metabolismo , Enterobactina/genética , Sideróforos/genética , Vibrio/genética
13.
Mol Microbiol ; 112(6): 1684-1700, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31441977

RESUMO

We staged the transfer of the aurofusarin and bikaverin biosynthetic gene clusters (BGCs) to Aspergillus nidulans with the aim of gaining functional insights into dynamics immediately following a horizontal gene transfer (HGT) event. While the introduction of both BGCs resulted in the production of detectable pathway metabolites in A. nidulans, the transferred aurofusarin BGC formed dimeric shunt products instead of aurofusarin. This was linked to low transcription of the cluster activator and insufficient activity of tailoring enzymes, demonstrating how a shift of the pathway bottleneck after HGT can result in metabolic innovation. The transferred bikaverin BGC readily produced bikaverin, providing a model system for studying the conservation of regulatory responses to environmental cues. Conserved PacC-mediated pH regulation of the bikaverin BGC was observed between original host Fusarium fujikuroi and A. nidulans. Contrary to strong nitrogen responses described in other hosts, the BGC appeared unresponsive to environmental nitrogen in A. nidulans. While F. fujikuroi and A. nidulans both form chlamydospore-like structures when exposed to ralsolamycin, specific induction of the bikaverin BGC was not observed in A. nidulans. We propose that the presence of compatible cis-regulatory elements in BGCs facilitates regulatory conservation after transfer, without which the chromosomal context would dictate expression.


Assuntos
Aspergillus nidulans/genética , Fusarium/genética , Família Multigênica/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Técnicas de Transferência de Genes , Família Multigênica/fisiologia , Naftoquinonas/metabolismo , Xantonas/metabolismo
14.
Genome Res ; 27(7): 1153-1161, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28420691

RESUMO

Housekeeping genes of animal genomes cluster in the same chromosomal regions. It has long been suggested that this organization contributes to their steady expression across all the tissues of the organism. Here, we show that the activity of Drosophila housekeeping gene promoters depends on the expression of their neighbors. By measuring the expression of ∼85,000 reporters integrated in Kc167 cells, we identified the best predictors of expression as chromosomal contacts with the promoters and terminators of active genes. Surprisingly, the chromatin composition at the insertion site and the contacts with enhancers were less informative. These results are substantiated by the existence of genomic "paradoxical" domains, rich in euchromatic features and enhancers, but where the reporters are expressed at low level, concomitant with a deficit of interactions with promoters and terminators. This indicates that the proper function of housekeeping genes relies not on contacts with long distance enhancers but on spatial clustering. Overall, our results suggest that spatial proximity between genes increases their expression and that the linear architecture of the Drosophila genome contributes to this effect.


Assuntos
Regulação da Expressão Gênica/fisiologia , Genes Essenciais/fisiologia , Família Multigênica/fisiologia , Animais , Linhagem Celular , Drosophila melanogaster
15.
Insect Mol Biol ; 29(5): 477-489, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32683761

RESUMO

Polydnaviruses associated with ichneumonid parasitoid wasps (Ichnoviruses) encode large numbers of genes, often in multigene families. The Ichnovirus Vinnexin gene family, which is expressed in parasitized lepidopteran larvae, encodes homologues of Innexins, the structural components of insect gap junctions. Here, we have examined intracellular behaviours of the Campoletis sonorensis Ichnovirus (CsIV) Vinnexins, alone and in combination with a host Innexin orthologue, Innexin2 (Inx2). QRT-PCR verified that transcription of CsIV vinnexins occurs contemporaneously with inx2, implying co-occurrence of Vinnexin and Inx2 proteins. Confocal microscopy demonstrated that epitope-tagged VinnexinG (VnxG) and VinnexinQ2 (VnxQ2) exhibit similar subcellular localization as Spodoptera frugiperda Inx2 (Sf-Inx2). Surface biotinylation assays verified that all three proteins localize to the cell surface, and cytochalasin B and nocodazole that they rely on actin and microtubule cytoskeletal networks for localization. Immunomicroscopy following co-transfection of constructs indicates extensive co-localization of Vinnexins with each other and Sf-Inx2, and live-cell imaging of mCherry-labelled Inx2 supports that Vinnexins may affect Sf-Inx2 distribution in a Vinnexin-specific fashion. Our findings support that the Vinnexins may disrupt host cell physiology in a protein-specific manner through altering gap junctional intercellular channel communication, as well as indirectly by affecting multicellular junction characteristics.


Assuntos
Genes de Insetos/fisiologia , Genes Virais/fisiologia , Família Multigênica/fisiologia , Polydnaviridae/fisiologia , Spodoptera/genética , Transcrição Gênica , Animais , Interações Hospedeiro-Patógeno , Larva/genética , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/virologia , Polydnaviridae/genética , Spodoptera/crescimento & desenvolvimento , Spodoptera/parasitologia , Spodoptera/virologia , Vespas/fisiologia , Vespas/virologia
16.
Proc Natl Acad Sci U S A ; 114(52): E11121-E11130, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229817

RESUMO

Bacterial natural products remain an important source of new medicines. DNA sequencing has revealed that a majority of natural product biosynthetic gene clusters (BGCs) maintained in bacterial genomes have yet to be linked to the small molecules whose biosynthesis they encode. Efforts to discover the products of these orphan BGCs are driving the development of genome mining techniques based on the premise that many are transcriptionally silent during normal laboratory cultivation. Here, we employ comparative transcriptomics to assess BGC expression among four closely related strains of marine bacteria belonging to the genus Salinispora The results reveal that slightly more than half of the BGCs are expressed at levels that should facilitate product detection. By comparing the expression profiles of similar gene clusters in different strains, we identified regulatory genes whose inactivation appears linked to cluster silencing. The significance of these subtle differences between expressed and silent BGCs could not have been predicted a priori and was only revealed by comparative transcriptomics. Evidence for the conservation of silent clusters among a larger number of strains for which genome sequences are available suggests they may be under different regulatory control from the expressed forms or that silencing may represent an underappreciated mechanism of gene cluster evolution. Coupling gene expression and metabolomics data established a bioinformatic link between the salinipostins and their associated BGC, while genetic manipulation established the genetic basis for this series of compounds, which were previously unknown from Salinispora pacifica.


Assuntos
Actinobacteria , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia , Família Multigênica/fisiologia , Transcriptoma/fisiologia , Actinobacteria/genética , Actinobacteria/metabolismo
17.
Proc Natl Acad Sci U S A ; 114(52): E11131-E11140, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229819

RESUMO

Nature's ability to generate diverse natural products from simple building blocks has inspired combinatorial biosynthesis. The knowledge-based approach to combinatorial biosynthesis has allowed the production of designer analogs by rational metabolic pathway engineering. While successful, structural alterations are limited, with designer analogs often produced in compromised titers. The discovery-based approach to combinatorial biosynthesis complements the knowledge-based approach by exploring the vast combinatorial biosynthesis repertoire found in Nature. Here we showcase the discovery-based approach to combinatorial biosynthesis by targeting the domain of unknown function and cysteine lyase domain (DUF-SH) didomain, specific for sulfur incorporation from the leinamycin (LNM) biosynthetic machinery, to discover the LNM family of natural products. By mining bacterial genomes from public databases and the actinomycetes strain collection at The Scripps Research Institute, we discovered 49 potential producers that could be grouped into 18 distinct clades based on phylogenetic analysis of the DUF-SH didomains. Further analysis of the representative genomes from each of the clades identified 28 lnm-type gene clusters. Structural diversities encoded by the LNM-type biosynthetic machineries were predicted based on bioinformatics and confirmed by in vitro characterization of selected adenylation proteins and isolation and structural elucidation of the guangnanmycins and weishanmycins. These findings demonstrate the power of the discovery-based approach to combinatorial biosynthesis for natural product discovery and structural diversity and highlight Nature's rich biosynthetic repertoire. Comparative analysis of the LNM-type biosynthetic machineries provides outstanding opportunities to dissect Nature's biosynthetic strategies and apply these findings to combinatorial biosynthesis for natural product discovery and structural diversity.


Assuntos
Actinobacteria , Proteínas de Bactérias , Genes Bacterianos/fisiologia , Lactamas/metabolismo , Macrolídeos/metabolismo , Família Multigênica/fisiologia , Filogenia , Tiazóis/metabolismo , Tionas/metabolismo , Actinobacteria/enzimologia , Actinobacteria/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Biologia Computacional
18.
Genomics ; 111(6): 1687-1694, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30465914

RESUMO

Clostridium formicoaceticum, a Gram-negative mixotrophic homoacetogen, produces acetic acid as the sole metabolic product from various carbon sources, including fructose, glycerol, formate, and CO2. Its genome of 4.59-Mbp contains a highly conserved Wood-Ljungdahl pathway gene cluster with the same layout as that in other mixotrophic acetogens, including Clostridium aceticum, Clostridium carboxidivorans, and Clostridium ljungdahlii. For energy conservation, C. formicoaceticum does not have all the genes required for the synthesis of cytochrome or quinone used for generating proton gradient in H+-dependent acetogens such as Moorella thermoacetica; instead, it has the Rnf system and a Na+-translocating ATPase similar to the one in Acetobacterium woodii. Its growth in both heterotrophic and autotrophic media were dependent on the sodium concentration. C. formicoaceticum has genes encoding acetaldehyde dehydrogenases, alcohol dehydrogenases, and aldehyde oxidoreductases, which could convert acetyl-CoA and acetate to ethanol and butyrate to butanol under excessive reducing equivalent conditions.


Assuntos
Proteínas de Bactérias , Clostridium , Metabolismo Energético/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Família Multigênica/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Clostridium/enzimologia , Clostridium/genética , Genômica
19.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322437

RESUMO

Oral squamous cell carcinoma (OSCC) is among the leading causes of cancer-associated deaths worldwide. Family members in miR-371/372/373 miRNA cluster, which is localized at human chromosome 19q13.4, are co-expressed in both human stem cells and malignancies. The individual miRNA in this cluster are also involved in modulating the pathogenesis of malignancies as either oncogenes or suppressors. The 19q13 region is frequently gained in head and neck cancers. High expression of miR-372 and miR-373 are survival predictors for OSCC. However, the role of the miR-371/372/373 cluster in oral carcinogenesis remains to be fully investigated. We use the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system to establish OSCC cell subclones that had the miR-371/372/373 cluster deleted. In addition, further subclones were established that had the promoter of this cluster deleted. Concordant silencing in SAS cells of miR-371/372/373 decreased oncogenic potential, increased cisplatin sensitivity, activated p53, and upregulated the expression of Bad and DKK1. We also employed the CRISPR/dCas9 synergistic activation mediator system, which allowed robust transcriptional activation of the whole miR-371/372/373 cistron. Upregulation of endogenous miR-371/372/372 expression increased both oncogenicity and drug resistance. These were accompanied by a slight activation of AKT, ß-catenin, and Src. This study identifies the oncogenic role of the miR-371/372/373 cluster in OSCC. Using CRISPR based strategy can be a powerful paradigm that will provide mechanistic insights into miRNA cluster functionality, which will also likely help the development of targeting options for malignancies.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , MicroRNAs/metabolismo , Neoplasias Bucais/metabolismo , Animais , Antineoplásicos/uso terapêutico , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Cisplatino/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Família Multigênica/genética , Família Multigênica/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Trends Biochem Sci ; 40(4): 183-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25757400

RESUMO

The evolutionary relation between sugar and vitamin transporters from the SWEET and Pnu families is unclear. They have similar 3D structures, but differ in the topology of their secondary structure elements, and lack significant sequence similarity. Here we analyze the structures and sequences of different members of the SWEET and Pnu transporter families and propose an evolutionary pathway by which they may have diverged from a common ancestor. A 3D domain swapping event can explain the topological differences between the families, as well as the puzzling observation that a highly conserved and essential sequence motif of the SWEET family (the PQ loop) is absent from the Pnu transporters.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias/genética , Evolução Biológica , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Família Multigênica/genética , Família Multigênica/fisiologia , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA