Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(9): 1699-1710.e6, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38604172

RESUMO

The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription.


Assuntos
Fosfoproteínas , Regiões Promotoras Genéticas , RNA Polimerase II , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIB , Fatores de Transcrição , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Humanos , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIIB/genética , Proteína de Ligação a TATA-Box/metabolismo , Proteína de Ligação a TATA-Box/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Iniciação da Transcrição Genética , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIIA/genética , Transcrição Gênica , Elongação da Transcrição Genética , RNA/metabolismo , RNA/genética , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição TFII/genética
2.
Cell ; 152(1-2): 120-31, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332750

RESUMO

A mechanistic description of metazoan transcription is essential for understanding the molecular processes that govern cellular decisions. To provide structural insights into the DNA recognition step of transcription initiation, we used single-particle electron microscopy (EM) to visualize human TFIID with promoter DNA. This analysis revealed that TFIID coexists in two predominant and distinct structural states that differ by a 100 Å translocation of TFIID's lobe A. The transition between these structural states is modulated by TFIIA, as the presence of TFIIA and promoter DNA facilitates the formation of a rearranged state of TFIID that enables promoter recognition and binding. DNA labeling and footprinting, together with cryo-EM studies, were used to map the locations of TATA, Initiator (Inr), motif ten element (MTE), and downstream core promoter element (DPE) promoter motifs within the TFIID-TFIIA-DNA structure. The existence of two structurally and functionally distinct forms of TFIID suggests that the different conformers may serve as specific targets for the action of regulatory factors.


Assuntos
Regiões Promotoras Genéticas , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo , Transcrição Gênica , Microscopia Crioeletrônica , DNA/genética , Humanos , Conformação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , TATA Box , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIID/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
3.
EMBO J ; 42(10): e113519, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37013908

RESUMO

Recruitment of RNA polymerase II (Pol II) to promoters is essential for transcription. Despite conflicting evidence, the Pol II preinitiation complex (PIC) is often thought to have a uniform composition and to assemble at all promoters via an identical mechanism. Here, using Drosophila melanogaster S2 cells as a model, we demonstrate that different promoter classes function via distinct PICs. Promoter DNA of developmentally regulated genes readily associates with the canonical Pol II PIC, whereas housekeeping promoters do not, and instead recruit other factors such as DREF. Consistently, TBP and DREF are differentially required by distinct promoter types. TBP and its paralog TRF2 also function at different promoter types in a partially redundant manner. In contrast, TFIIA is required at all promoters, and we identify factors that can recruit and/or stabilize TFIIA at housekeeping promoters and activate transcription. Promoter activation by tethering these factors is sufficient to induce the dispersed transcription initiation patterns characteristic of housekeeping promoters. Thus, different promoter classes utilize distinct mechanisms of transcription initiation, which translate into different focused versus dispersed initiation patterns.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fator de Transcrição TFIIA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas de Drosophila/genética
4.
Nature ; 577(7792): 711-716, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969704

RESUMO

SAGA (Spt-Ada-Gcn5-acetyltransferase) is a 19-subunit complex that stimulates transcription via two chromatin-modifying enzymatic modules and by delivering the TATA box binding protein (TBP) to nucleate the pre-initiation complex on DNA, a pivotal event in the expression of protein-encoding genes1. Here we present the structure of yeast SAGA with bound TBP. The core of the complex is resolved at 3.5 Å resolution (0.143 Fourier shell correlation). The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves an octamer of histone-fold domains at the core of SAGA. This deformed octamer deviates considerably from the symmetrical analogue in the nucleosome and is precisely tuned to establish a peripheral site for TBP, where steric hindrance represses binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires transcription factor IIA and whose efficiency correlates with the affinity of DNA to TBP. We provide the foundations for understanding the specific delivery of TBP to gene promoters and the multiple roles of SAGA in regulating gene expression.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Pichia , Regiões Promotoras Genéticas/genética , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/química , Transativadores/metabolismo , Sítios de Ligação , DNA Fúngico/química , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Pichia/química , Pichia/genética , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/química , Fator de Transcrição TFIIA/química , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo
5.
Hum Mol Genet ; 31(18): 3083-3094, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512351

RESUMO

BACKGROUND: TASP1 encodes an endopeptidase activating histone methyltransferases of the KMT2 family. Homozygous loss-of-function variants in TASP1 have recently been associated with Suleiman-El-Hattab syndrome. We report six individuals with Suleiman-El-Hattab syndrome and provide functional characterization of this novel histone modification disorder in a multi-omics approach. METHODS: Chromosomal microarray/exome sequencing in all individuals. Western blotting from fibroblasts in two individuals. RNA sequencing and proteomics from fibroblasts in one individual. Methylome analysis from blood in two individuals. Knock-out of tasp1 orthologue in zebrafish and phenotyping. RESULTS: All individuals had biallelic TASP1 loss-of-function variants and a phenotype including developmental delay, multiple congenital anomalies (including cardiovascular and posterior fossa malformations), a distinct facial appearance and happy demeanor. Western blot revealed absence of TASP1. RNA sequencing/proteomics showed HOX gene downregulation (HOXA4, HOXA7, HOXA1 and HOXB2) and dysregulation of transcription factor TFIIA. A distinct methylation profile intermediate between control and Kabuki syndrome (KMT2D) profiles could be produced. Zebrafish tasp1 knock-out revealed smaller head size and abnormal cranial cartilage formation in tasp1 crispants. CONCLUSION: This work further delineates Suleiman-El-Hattab syndrome, a recognizable neurodevelopmental syndrome. Possible downstream mechanisms of TASP1 deficiency include perturbed HOX gene expression and dysregulated TFIIA complex. Methylation pattern suggests that Suleiman-El-Hattab syndrome can be categorized into the group of histone modification disorders including Wiedemann-Steiner and Kabuki syndrome.


Assuntos
Código das Histonas , Peixe-Zebra , Anormalidades Múltiplas , Animais , Endopeptidases/genética , Face/anormalidades , Doenças Hematológicas , Histona Metiltransferases/genética , Fenótipo , Fator de Transcrição TFIIA/genética , Doenças Vestibulares , Peixe-Zebra/genética
6.
PLoS Pathog ; 18(9): e1010850, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121876

RESUMO

Viroids, a fascinating group of plant pathogens, are subviral agents composed of single-stranded circular noncoding RNAs. It is well-known that nuclear-replicating viroids exploit host DNA-dependent RNA polymerase II (Pol II) activity for transcription from circular RNA genome to minus-strand intermediates, a classic example illustrating the intrinsic RNA-dependent RNA polymerase activity of Pol II. The mechanism for Pol II to accept single-stranded RNAs as templates remains poorly understood. Here, we reconstituted a robust in vitro transcription system and demonstrated that Pol II also accepts minus-strand viroid RNA template to generate plus-strand RNAs. Further, we purified the Pol II complex on RNA templates for nano-liquid chromatography-tandem mass spectrometry analysis and identified a remodeled Pol II missing Rpb4, Rpb5, Rpb6, Rpb7, and Rpb9, contrasting to the canonical 12-subunit Pol II or the 10-subunit Pol II core on DNA templates. Interestingly, the absence of Rpb9, which is responsible for Pol II fidelity, explains the higher mutation rate of viroids in comparison to cellular transcripts. This remodeled Pol II is active for transcription with the aid of TFIIIA-7ZF and appears not to require other canonical general transcription factors (such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and TFIIS), suggesting a distinct mechanism/machinery for viroid RNA-templated transcription. Transcription elongation factors, such as FACT complex, PAF1 complex, and SPT6, were also absent in the reconstituted transcription complex. Further analyses of the critical zinc finger domains in TFIIIA-7ZF revealed the first three zinc finger domains pivotal for RNA template binding. Collectively, our data illustrated a distinct organization of Pol II complex on viroid RNA templates, providing new insights into viroid replication, the evolution of transcription machinery, as well as the mechanism of RNA-templated transcription.


Assuntos
Fatores Genéricos de Transcrição , Viroides , DNA/metabolismo , RNA/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Circular/genética , RNA Polimerase Dependente de RNA/genética , Fator de Transcrição TFIIA/genética , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Transcrição Gênica , Viroides/genética , Viroides/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301908

RESUMO

The TATA box-binding protein (TBP) is highly conserved throughout eukaryotes and plays a central role in the assembly of the transcription preinitiation complex (PIC) at gene promoters. TBP binds and bends DNA, and directs adjacent binding of the transcription factors TFIIA and TFIIB for PIC assembly. Here, we show that yeast TBP can bind to a nucleosome containing the Widom-601 sequence and that TBP-nucleosome binding is stabilized by TFIIA. We determine three cryo-electron microscopy (cryo-EM) structures of TBP-nucleosome complexes, two of them containing also TFIIA. TBP can bind to superhelical location (SHL) -6, which contains a TATA-like sequence, but also to SHL +2, which is GC-rich. Whereas binding to SHL -6 can occur in the absence of TFIIA, binding to SHL +2 is only observed in the presence of TFIIA and goes along with detachment of upstream terminal DNA from the histone octamer. TBP-nucleosome complexes are sterically incompatible with PIC assembly, explaining why a promoter nucleosome generally impairs transcription and must be moved before initiation can occur.


Assuntos
DNA/metabolismo , Nucleossomos/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIIB/metabolismo , DNA/química , Modelos Moleculares , Nucleossomos/química , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIA/genética , Fator de Transcrição TFIIB/genética
8.
PLoS Genet ; 17(1): e1009316, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493197

RESUMO

Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases in citrus industry worldwide. Most citrus cultivars such as sweet orange are susceptible to canker disease. Here, we utilized wild citrus to identify canker-resistant germplasms, and found that Atalantia buxifolia, a primitive (distant-wild) citrus, exhibited remarkable resistance to canker disease. Although the susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1) could also be induced in Atalantia after canker infection, the induction extent was far lower than that in sweet orange. In addition, three of amino acids encoded by transcription factor TFIIAγ in Atalantia (AbTFIIAγ) exhibited difference from those in sweet orange (CsTFIIAγ) which could stabilize the interaction between effector PthA4 and effector binding element (EBE) of LOB1 promoter. The mutation of AbTFIIAγ did not change its interaction with transcription factor binding motifs (TFBs). However, the AbTFIIAγ could hardly support the LOB1 expression induced by the PthA4. In addition, the activity of AbLOB1 promoter was significantly lower than that of CsLOB1 under the induction by PthA4. Our results demonstrate that natural variations of AbTFIIAγ and effector binding element (EBE) in the AbLOB1 promoter are crucial for the canker disease resistance of Atalantia. The natural mutations of AbTFIIAγ gene and AbLOB1 promoter in Atalantia provide candidate targets for improving the resistance to citrus canker disease.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Rutaceae/genética , Fator de Transcrição TFIIA/genética , Citrus/genética , Citrus/crescimento & desenvolvimento , Citrus/microbiologia , Regulação da Expressão Gênica de Plantas , Mutação/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Rutaceae/crescimento & desenvolvimento , Rutaceae/microbiologia , Xanthomonas/genética , Xanthomonas/patogenicidade
9.
Curr Genet ; 69(4-6): 289-300, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37947853

RESUMO

Binding of general transcription factors TFIID and TFIIA to basal promoters is rate-limiting for transcriptional initiation of eukaryotic protein-coding genes. Consequently, activator proteins interacting with subunits of TFIID and/or TFIIA can drastically increase the rate of initiation events. Yeast transcriptional activator Ino2 interacts with several Taf subunits of TFIID, among them the multifunctional Taf1 protein. In contrast to mammalian Taf1, yeast Taf1 lacks bromodomains which are instead encoded by separate proteins Bdf1 and Bdf2. In this work, we show that Bdf1 not only binds to acetylated histone H4 but can also be recruited by Ino2 and unrelated activators such as Gal4, Rap1, Leu3 and Flo8. An activator-binding domain was mapped in the N-terminus of Bdf1. Subunits Toa1 and Toa2 of yeast TFIIA directly contact sequences of basal promoters and TFIID subunit TBP but may also mediate the influence of activators. Indeed, Ino2 efficiently binds to two separate structural domains of Toa1, specifically with its N-terminal four-helix bundle structure required for dimerization with Toa2 and its C-terminal ß-barrel domain contacting TBP and sequences of the TATA element. These findings complete the functional analysis of yeast general transcription factors Bdf1 and Toa1 and identify them as targets of activator proteins.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas que Contêm Bromodomínio , Fosfolipídeos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fator de Transcrição TFIIA , Fatores de Transcrição , Fosfolipídeos/biossíntese , Fosfolipídeos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIA/genética , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas que Contêm Bromodomínio/genética , Proteínas que Contêm Bromodomínio/metabolismo
10.
Nature ; 549(7670): 54-59, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28847004

RESUMO

Nuclear small RNA pathways safeguard genome integrity by establishing transcription-repressing heterochromatin at transposable elements. This inevitably also targets the transposon-rich source loci of the small RNAs themselves. How small RNA source loci are efficiently transcribed while transposon promoters are potently silenced is not understood. Here we show that, in Drosophila, transcription of PIWI-interacting RNA (piRNA) clusters-small RNA source loci in animal gonads-is enforced through RNA polymerase II pre-initiation complex formation within repressive heterochromatin. This is accomplished through Moonshiner, a paralogue of a basal transcription factor IIA (TFIIA) subunit, which is recruited to piRNA clusters via the heterochromatin protein-1 variant Rhino. Moonshiner triggers transcription initiation within piRNA clusters by recruiting the TATA-box binding protein (TBP)-related factor TRF2, an animal TFIID core variant. Thus, transcription of heterochromatic small RNA source loci relies on direct recruitment of the core transcriptional machinery to DNA via histone marks rather than sequence motifs, a concept that we argue is a recurring theme in evolution.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Heterocromatina/genética , Heterocromatina/metabolismo , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/genética , Transcrição Gênica , Animais , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Inativação Gênica , Heterocromatina/química , Família Multigênica/genética , Regiões Promotoras Genéticas/genética , RNA Polimerase II/química , RNA Interferente Pequeno/biossíntese , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Fator de Transcrição TFIIA/metabolismo , Iniciação da Transcrição Genética
11.
Nature ; 531(7596): 604-9, 2016 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-27007846

RESUMO

The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.


Assuntos
Regiões Promotoras Genéticas/genética , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIID/ultraestrutura , Iniciação da Transcrição Genética , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Humanos , Modelos Moleculares , Ligação Proteica , Especificidade por Substrato , TATA Box/genética , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/ultraestrutura , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Proteína de Ligação a TATA-Box/ultraestrutura , Fator de Transcrição TFIIA/química , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIIA/ultraestrutura , Fator de Transcrição TFIID/química
12.
Mol Cell ; 51(4): 480-92, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23973376

RESUMO

To bridge the gap between in vivo and in vitro molecular mechanisms, we dissected the transcriptional control of the endogenous histone gene cluster (His-C) by single-cell imaging. A combination of quantitative immunofluorescence, RNA FISH, and FRAP measurements revealed atypical promoter recognition complexes and differential transcription kinetics directing histone H1 versus core histone gene expression. While H1 is transcribed throughout S phase, core histones are only transcribed in a short pulse during early S phase. Surprisingly, no TFIIB or TFIID was detectable or functionally required at the initiation complexes of these promoters. Instead, a highly stable, preloaded TBP/TFIIA "pioneer" complex primes the rapid initiation of His-C transcription during early S phase. These results provide mechanistic insights for the role of gene-specific core promoter factors and implications for cell cycle-regulated gene expression.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica , Histonas/genética , Família Multigênica , Fase S/fisiologia , Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Processamento de Imagem Assistida por Computador , Cinética , Regiões Promotoras Genéticas/genética , TATA Box/genética , Proteína de Ligação a TATA-Box/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Fator de Transcrição TFIIA/genética , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Iniciação da Transcrição Genética
13.
Methods ; 159-160: 82-89, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30905750

RESUMO

Transcription initiation can be reconstituted from highly purified general transcription factors (GTFs), RNA polymerase II (pol II), and promoter DNA. However, earlier biochemical reconstitution systems had a serious technical limitation, namely very poor initiation efficiency. Due to the poor efficiency of the reaction and trace amounts of proteins involved in the pre-initiation complex (PIC) assembly, detection of transcription and PIC formation was only possible by the synthesis of a radiolabeled transcript and by immunoblotting for PIC components on templates. Here we describe a transcription system that is capable of initiating transcription with >90% efficiency of template usage using homogeneous, active yeast components including TFIIA, TFIIB, TBP, TFIIE, TFIIF, TFIIH, Sub1, and pol II. The abundant specifically assembled PICs on promoter DNA can be separated from free general transcription factors (GTFs) and pol II by density gradient sedimentation, irrespective of the length of promoter DNA. The system is robust, and can be modified to accommodate many other transcription factors, and the resulting complexes can be analyzed by SDS-PAGE followed by Coomassie Blue staining. This technical advance now paves the way to conduct definitive biochemical and structural studies of the complete process of pol II initiation from the PIC, through promoter escape, and finally to productive elongation.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Iniciação da Transcrição Genética , Complexos Multiproteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição TFII/metabolismo , Leveduras/enzimologia , Leveduras/genética , Leveduras/metabolismo
14.
J Biol Chem ; 292(28): 11873-11885, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28539359

RESUMO

RNA polymerase II (pol II) is required for the transcription of all protein-coding genes and as such represents a major enzyme whose activity is tightly regulated. Transcriptional initiation therefore requires numerous general transcriptional factors and cofactors that associate with pol II at the core promoter to form a pre-initiation complex. Transcription factor IIA (TFIIA) is a general cofactor that binds TFIID and stabilizes the TFIID-DNA complex during transcription initiation. Previous studies showed that TFIIA can make contact with the DNA sequence upstream or downstream of the TATA box, and that the region bound by TFIIA could overlap with the elements recognized by another factor, TFIIB, at adenovirus major late core promoter. Whether core promoters contain a DNA motif recognized by TFIIA remains unknown. Here we have identified a core promoter element upstream of the TATA box that is recognized by TFIIA. A search of the human promoter database revealed that many natural promoters contain a TFIIA recognition element (IIARE). We show that the IIARE enhances TFIIA-promoter binding and enhances the activity of TATA-containing promoters, but represses or activates promoters that lack a TATA box. Chromatin immunoprecipitation assays revealed that the IIARE activates transcription by increasing the recruitment of pol II, TFIIA, TAF4, and P300 at TATA-dependent promoters. These findings extend our understanding of the role of TFIIA in transcription, and provide new insights into the regulatory mechanism of core promoter elements in gene transcription by pol II.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Elementos de Resposta , TATA Box , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIID/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , DNA Recombinante , Proteína p300 Associada a E1A/química , Proteína p300 Associada a E1A/metabolismo , Genes Reporter , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Mutação , Motivos de Nucleotídeos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase II/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIA/química , Fator de Transcrição TFIIA/genética , Fator de Transcrição TFIID/química , Fatores Estimuladores Upstream/química , Fatores Estimuladores Upstream/genética , Fatores Estimuladores Upstream/metabolismo
15.
Biochem Biophys Res Commun ; 496(2): 608-613, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29331375

RESUMO

The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria, which infect a broad range of crops and wild plant species, cause symptoms with leaf blights, streaks, spots, stripes, necrosis, wilt, cankers and gummosis on leaves, stems and fruits in a wide variety of plants via injecting their effector proteins into the host cell during infection. Among these virulent effectors, transcription activator-like effectors (TALEs) interact with the γ subunit of host transcription factor IIA (TFIIAγ) to activate the transcription of host disease susceptibility genes. Functional TFIIA is a ternary complex comprising α, ß and γ subunits. However, whether TALEs recruit TFIIAα, TFIIAß, or both remains unknown. The underlying molecular mechanisms by which TALEs mediate host susceptibility gene activation require full elucidation. Here, we show that TALEs interact with the α+γ binary subcomplex but not the α+ß+γ ternary complex of rice TFIIA (holo-OsTFIIA). The transcription factor binding (TFB) regions of TALEs, which are highly conserved in Xanthomonas species, have a dominant role in these interactions. Furthermore, the interaction between TALEs and the α+γ complex exhibits robust DNA binding activity in vitro. These results collectively demonstrate that TALE-carrying pathogens hijack the host basal transcription factors TFIIAα and TFIIAγ, but not TFIIAß, to enhance host susceptibility during pathogen infection. The uncovered mechanism widens new insights on host-microbe interaction and provide an applicable strategy to breed high-resistance crop varieties.


Assuntos
Interações Hospedeiro-Patógeno , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Fator de Transcrição TFIIA/metabolismo , Xanthomonas/fisiologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/genética , Ligação Proteica , Subunidades Proteicas/metabolismo
16.
Genes Cells ; 21(11): 1223-1232, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27696626

RESUMO

Although the majority of gene expression is driven by TATA-binding protein (TBP)-based transcription machinery, it has been reported that TBP-related factors (TRFs) are also involved in the regulation of gene expression. TBP-like protein (TLP), which is one of the TRFs and exhibits the highest affinity to TFIIA among known proteins, has recently been showed to have significant roles in gene regulation. However, how the level of TLP is maintained in vivo has remained unknown. In this study, we explored the mechanism by which TLP protein is turned over in vivo and the factor that maintains the amount of TLP. We showed that TLP is rapidly degraded by the ubiquitin-proteasome system and that tight interaction with TFIIA results in protection of TLP from ubiquitin-proteasome-dependent degradation. The half-life of TLP was shown to be less than a few hours, and the proteasome inhibitor MG132 specifically suppressed TLP degradation. Moreover, knockdown and over-expression experiments showed that TFIIA is engaged in stabilization of TLPin vivo. Thus, we showed a novel characteristic of TLP, that is, interaction with TFIIA is essential to suppress proteasome-dependent turnover of TLP, providing a further insight into TLP-governed gene regulation.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIA/metabolismo , Ubiquitina/metabolismo , Animais , Ligação Competitiva , Regulação da Expressão Gênica , Células HCT116 , Células HeLa , Humanos , Camundongos , Ligação Proteica , Estabilidade Proteica , Proteólise , Proteína de Ligação a TATA-Box/metabolismo
17.
Protein Expr Purif ; 133: 50-56, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28259734

RESUMO

In vitro transcription systems have been utilized to elucidate detailed mechanisms of transcription. Purified RNA polymerase II (pol II) and general transcription factors (GTFs) are required for the in vitro reconstitution of eukaryotic transcription systems. Among GTFs, TFIID and TFIIA play critical roles in the early stage of transcription initiation; TFIID first binds to the DNA in transcription initiation and TFIIA regulates TFIID's DNA binding activity. Despite the important roles of TFIIA, the time-consuming steps required to purify it, such as denaturing and refolding, have hampered the preparation of in vitro transcription systems. Here, we report an improved method for soluble expression and rapid purification of yeast TFIIA. The subunits of TFIIA, TOA1 and TOA2, were bacterially expressed as fusion proteins in soluble form, then processed by the PreScission protease and co-purified. TFIIA's heterodimer formation was confirmed by size exclusion chromatography-multiangle light scattering (SEC-MALS). The hydrodynamic radius (Rh) and radius of gyration (Rg) were measured by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), respectively. The Rg/Rh value implied that the intrinsically disordered region of TOA1 might not have an extended structure in solution. Our improved method provides highly purified TFIIA of sufficient quality for biochemical, biophysical, and structural analyses of eukaryotic transcription systems.


Assuntos
Escherichia coli/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIA , Escherichia coli/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade , Fator de Transcrição TFIIA/biossíntese , Fator de Transcrição TFIIA/química , Fator de Transcrição TFIIA/genética
18.
Nucleic Acids Res ; 43(13): 6285-98, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26038314

RESUMO

TBP-TFIIA interaction is involved in the potentiation of TATA box-driven promoters. TFIIA activates transcription through stabilization of TATA box-bound TBP. The precursor of TFIIA is subjected to Taspase1-directed processing to generate α and ß subunits. Although this processing has been assumed to be required for the promoter activation function of TFIIA, little is known about how the processing is regulated. In this study, we found that TBP-like protein (TLP), which has the highest affinity to TFIIA among known proteins, affects Taspase1-driven processing of TFIIA. TLP interfered with TFIIA processing in vivo and in vitro, and direct binding of TLP to TFIIA was essential for inhibition of the processing. We also showed that TATA box promoters are specifically potentiated by processed TFIIA. Processed TFIIA, but not unprocessed TFIIA, associated with the TATA box. In a TLP-knocked-down condition, not only the amounts of TATA box-bound TFIIA but also those of chromatin-bound TBP were significantly increased, resulting in the stimulation of TATA box-mediated gene expression. Consequently, we suggest that TLP works as a negative regulator of the TFIIA processing and represses TFIIA-governed and TATA-dependent gene expression through preventing TFIIA maturation.


Assuntos
Endopeptidases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , TATA Box , Fator de Transcrição TFIIA/metabolismo , Ativação Transcricional , Linhagem Celular , Cromatina/metabolismo , Células HeLa , Humanos , Proteína de Ligação a TATA-Box/metabolismo
19.
Nature ; 465(7300): 956-60, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20559389

RESUMO

Transcription of eukaryotic messenger RNA (mRNA) encoding genes by RNA polymerase II (Pol II) is triggered by the binding of transactivating proteins to enhancer DNA, which stimulates the recruitment of general transcription factors (TFIIA, B, D, E, F, H) and Pol II on the cis-linked promoter, leading to pre-initiation complex formation and transcription. In TFIID-dependent activation pathways, this general transcription factor containing TATA-box-binding protein is first recruited on the promoter through interaction with activators and cooperates with TFIIA to form a committed pre-initiation complex. However, neither the mechanisms by which activation signals are communicated between these factors nor the structural organization of the activated pre-initiation complex are known. Here we used cryo-electron microscopy to determine the architecture of nucleoprotein complexes composed of TFIID, TFIIA, the transcriptional activator Rap1 and yeast enhancer-promoter DNA. These structures revealed the mode of binding of Rap1 and TFIIA to TFIID, as well as a reorganization of TFIIA induced by its interaction with Rap1. We propose that this change in position increases the exposure of TATA-box-binding protein within TFIID, consequently enhancing its ability to interact with the promoter. A large Rap1-dependent DNA loop forms between the activator-binding site and the proximal promoter region. This loop is topologically locked by a TFIIA-Rap1 protein bridge that folds over the DNA. These results highlight the role of TFIIA in transcriptional activation, define a molecular mechanism for enhancer-promoter communication and provide structural insights into the pathways of intramolecular communication that convey transcription activation signals through the TFIID complex.


Assuntos
Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Microscopia Crioeletrônica , Nucleoproteínas/química , Nucleoproteínas/ultraestrutura , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Complexo Shelterina , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/ultraestrutura , Fator de Transcrição TFIIA/química , Fator de Transcrição TFIID/química , Fatores de Transcrição/química , Fatores de Transcrição/ultraestrutura
20.
Nucleic Acids Res ; 42(12): 7561-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24829456

RESUMO

The TATA binding protein (TBP) is a critical transcription factor used for nucleating assembly of the RNA polymerase II machinery. TBP binds TATA box elements with high affinity and kinetic stability and in vivo is correlated with high levels of transcription activation. However, since most promoters use less stable TATA-less or TATA-like elements, while also competing with nucleosome occupancy, further mechanistic insight into TBP's DNA binding properties and ability to access chromatin is needed. Using bulk and single-molecule FRET, we find that TBP binds a minimal consensus TATA box as a two-state equilibrium process, showing no evidence for intermediate states. However, upon addition of flanking DNA sequence, we observe non-specific cooperative binding to multiple DNA sites that compete for TATA-box specificity. Thus, we conclude that TBP binding is defined by a branched pathway, wherein TBP initially binds with little sequence specificity and is thermodynamically positioned by its kinetic stability to the TATA box. Furthermore, we observed the real-time access of TBP binding to TATA box DNA located within the DNA entry-exit site of the nucleosome. From these data, we determined salt-dependent changes in the nucleosome conformation regulate TBP's access to the TATA box, where access is highly constrained under physiological conditions, but is alleviated by histone acetylation and TFIIA.


Assuntos
Nucleossomos/química , Nucleossomos/metabolismo , TATA Box , Proteína de Ligação a TATA-Box/metabolismo , Acetilação , Sequência de Bases , Sítios de Ligação , DNA/química , DNA/metabolismo , Histonas/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Fator de Transcrição TFIIA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA