Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(6): e1010800, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363915

RESUMO

The phosphatase FIG4 and the scaffold protein VAC14 function in the biosynthesis of PI(3,5)P2, a signaling lipid that inhibits the lysosomal chloride transporter ClC-7. Loss-of-function mutations of FIG4 and VAC14 reduce PI(3,5)P2 and result in lysosomal disorders characterized by accumulation of enlarged lysosomes and neurodegeneration. Similarly, a gain of function mutation of CLCN7 encoding ClC-7 also results in enlarged lysosomes. We therefore tested the ability of reduced CLCN7 expression to compensate for loss of FIG4 or VAC14. Knock-out of CLCN7 corrected lysosomal swelling and partially corrected lysosomal hyperacidification in FIG4 null cell cultures. Knockout of the related transporter CLCN6 (ClC-6) in FIG4 null cells did not affect the lysosome phenotype. In the Fig4 null mouse, reduction of ClC-7 by expression of the dominant negative CLCN7 variant p.Gly215Arg improved growth and neurological function and increased lifespan by 20%. These observations demonstrate a role for the CLCN7 chloride transporter in pathogenesis of FIG4 and VAC14 disorders. Reduction of CLCN7 provides a new target for treatment of FIG4 and VAC14 deficiencies that lack specific therapies, such as Charcot-Marie-Tooth Type 4J and Yunis-Varón syndrome.


Assuntos
Antiporters , Cloretos , Animais , Camundongos , Antiporters/metabolismo , Cloretos/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Lisossomos/metabolismo , Camundongos Knockout , Fosfatases de Fosfoinositídeos/genética , Fosfatases de Fosfoinositídeos/metabolismo , Monoéster Fosfórico Hidrolases/genética
2.
J Biol Chem ; 299(9): 105092, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507017

RESUMO

In budding yeast cells, much of the inner surface of the plasma membrane (PM) is covered with the endoplasmic reticulum (ER). This association is mediated by seven ER membrane proteins that confer cortical ER-PM association at membrane contact sites (MCSs). Several of these membrane "tether" proteins are known to physically interact with the phosphoinositide phosphatase Sac1p. However, it is unclear how or if these interactions are necessary for their interdependent functions. We find that SAC1 inactivation in cells lacking the homologous synaptojanin-like genes INP52 and INP53 results in a significant increase in cortical ER-PM MCSs. We show in sac1Δ, sac1tsinp52Δ inp53Δ, or Δ-super-tether (Δ-s-tether) cells lacking all seven ER-PM tethering genes that phospholipid biosynthesis is disrupted and phosphoinositide distribution is altered. Furthermore, SAC1 deletion in Δ-s-tether cells results in lethality, indicating a functional overlap between SAC1 and ER-PM tethering genes. Transcriptomic profiling indicates that SAC1 inactivation in either Δ-s-tether or inp52Δ inp53Δ cells induces an ER membrane stress response and elicits phosphoinositide-dependent changes in expression of autophagy genes. In addition, by isolating high-copy suppressors that rescue sac1Δ Δ-s-tether lethality, we find that key phospholipid biosynthesis genes bypass the overlapping function of SAC1 and ER-PM tethers and that overexpression of the phosphatidylserine/phosphatidylinositol-4-phosphate transfer protein Osh6 also provides limited suppression. Combined with lipidomic analysis and determinations of intracellular phospholipid distributions, these results suggest that Sac1p and ER phospholipid flux controls lipid distribution to drive Osh6p-dependent phosphatidylserine/phosphatidylinositol-4-phosphate counter-exchange at ER-PM MCSs.


Assuntos
Membrana Celular , Fosfatases de Fosfoinositídeos , Proteínas de Saccharomyces cerevisiae , Membrana Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/metabolismo , Fosfatases de Fosfoinositídeos/genética , Fosfatases de Fosfoinositídeos/metabolismo , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Inativação Gênica , Autofagia/genética , Transcriptoma , Regulação Fúngica da Expressão Gênica/genética , Membranas Intracelulares/metabolismo
3.
Biol Pharm Bull ; 47(6): 1148-1153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880622

RESUMO

Transcriptional activation, based on Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) and known as CRISPR activation (CRISPRa), is a specific and safe tool to upregulate endogenous genes. Therefore, CRISPRa is valuable not only for analysis of molecular mechanisms of cellular events, but also for treatment of various diseases. Regulating autophagy has been proposed to enhance effects of some therapies. In this study, we upregulated genes for phosphoinositide phosphatases, SACM1L, PIP4P1, and PIP4P2, using CRISPRa, and their effects on autophagy were examined. Our results suggested that TMEM55A/PIP4P2, a phosphatidylinositol-4,5-bisphosphate 4-phosphatase, positively regulates basal autophagy in 293A cells. Furthermore, it was also suggested that SAC1, a phosphatidylinositol 4-phosphatase, negatively regulates basal autophagic degradation.


Assuntos
Autofagia , Fosfatases de Fosfoinositídeos , Humanos , Sistemas CRISPR-Cas , Células HEK293 , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fosfatases de Fosfoinositídeos/metabolismo , Fosfatases de Fosfoinositídeos/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
EMBO Rep ; 22(2): e50218, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369848

RESUMO

Cell signalling governs cellular behaviour and is therefore subject to tight spatiotemporal regulation. Signalling output is modulated by specialized cell membranes and vesicles which contain unique combinations of lipids and proteins. The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ), an important component of the plasma membrane as well as other subcellular membranes, is involved in multiple processes, including signalling. However, which enzymes control the turnover of non-plasma membrane PI(4,5)P2 , and their impact on cell signalling and function at the organismal level are unknown. Here, we identify Paladin as a vascular PI(4,5)P2 phosphatase regulating VEGFR2 endosomal signalling and angiogenesis. Paladin is localized to endosomal and Golgi compartments and interacts with vascular endothelial growth factor receptor 2 (VEGFR2) in vitro and in vivo. Loss of Paladin results in increased internalization of VEGFR2, over-activation of extracellular regulated kinase 1/2, and hypersprouting of endothelial cells in the developing retina of mice. These findings suggest that inhibition of Paladin, or other endosomal PI(4,5)P2 phosphatases, could be exploited to modulate VEGFR2 signalling and angiogenesis, when direct and full inhibition of the receptor is undesirable.


Assuntos
Neovascularização Fisiológica , Fosfatases de Fosfoinositídeos , Fosfoproteínas Fosfatases , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Células Endoteliais/metabolismo , Camundongos , Fosfatidilinositol 4,5-Difosfato , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Mol Genet Metab ; 137(4): 382-387, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36434903

RESUMO

Loss-of-function mutations of FIG4 impair the biosynthesis of PI(3,5)P2 and are responsible for rare genetic disorders including Yunis-Varón Syndrome and Charcot-Marie-Tooth Disease Type 4 J. Cultured cells deficient in FIG4 accumulate enlarged lysosomes with hyperacidic pH, due in part to impaired regulation of lysosomal ion channels and elevated intra-lysosomal osmotic pressure. We evaluated the effects of the FDA approved drug chloroquine, which is known to reduce lysosome acidity, on FIG4 deficient cell culture and on a mouse model. Chloroquine corrected the enlarged lysosomes in FIG4 null cells. In null mice, addition of chloroquine to the drinking water slowed progression of the disorder. Growth and mobility were dramatically improved during the first month of life, and spongiform degeneration of the nervous system was reduced. The median survival of Fig4 null mice was increased from 4 weeks for untreated mutants to 8 weeks with chloroquine treatment (p < 0.009). Chloroquine thus corrects the lysosomal swelling in cultured cells and ameliorates Fig4 deficiency in vivo. The improved phenotype of mice with complete loss of Fig4 suggests that chloroquine could be beneficial FIG2 in partial loss-of-function disorders such as Charcot-Marie-Tooth Type 4 J.


Assuntos
Cloroquina , Displasia Cleidocraniana , Animais , Camundongos , Cloroquina/farmacologia , Linfócitos Nulos , Displasia Cleidocraniana/genética , Lisossomos , Camundongos Knockout , Fosfatases de Fosfoinositídeos/genética , Flavoproteínas/genética
6.
J Cell Sci ; 132(5)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709920

RESUMO

The metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex, mutations in which are associated with hypopigmentation in mice. These pigmentation defects indicate a key, but as yet unexplored, physiological relevance of this complex in the biogenesis of melanosomes. Here, we show that PIKfyve activity regulates formation of amyloid matrix composed of PMEL protein within the early endosomes in melanocytes, called stage I melanosomes. PIKfyve activity controls the membrane remodeling of stage I melanosomes, which regulates PMEL abundance, sorting and processing. PIKfyve activity also affects stage I melanosome kiss-and-run interactions with lysosomes, which are required for PMEL amyloidogenesis and the establishment of melanosome identity. Mechanistically, PIKfyve activity promotes both the formation of membrane tubules from stage I melanosomes and their release by modulating endosomal actin branching. Taken together, our data indicate that PIKfyve activity is a key regulator of the melanosomal import-export machinery that fine tunes the formation of functional amyloid fibrils in melanosomes and the maintenance of melanosome identity.This article has an associated First Person interview with the first author of the paper.


Assuntos
Flavoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Melanócitos/metabolismo , Melanossomas/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Amiloide/metabolismo , Animais , Células Cultivadas , Flavoproteínas/genética , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/genética , Melanócitos/patologia , Melanossomas/ultraestrutura , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatases de Fosfoinositídeos/genética , Transporte Proteico , Epitélio Pigmentado da Retina/patologia , Antígeno gp100 de Melanoma/metabolismo
7.
Development ; 145(11)2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29752385

RESUMO

Epithelial patterning in the developing Drosophila melanogaster eye requires the Neph1 homolog Roughest (Rst), an immunoglobulin family cell surface adhesion molecule expressed in interommatidial cells (IOCs). Here, using a novel temperature-sensitive (ts) allele, we show that the phosphoinositide phosphatase Sac1 is also required for IOC patterning. Sac1ts mutants have rough eyes and retinal patterning defects that resemble rst mutants. Sac1ts retinas exhibit elevated levels of phosphatidylinositol 4-phosphate (PI4P), consistent with the role of Sac1 as a PI4P phosphatase. Indeed, genetic rescue and interaction experiments reveal that restriction of PI4P levels by Sac1 is crucial for normal eye development. Rst is delivered to the cell surface in Sac1ts mutants. However, Sac1ts mutant IOCs exhibit severe defects in microtubule organization, associated with accumulation of Rst and the exocyst subunit Sec8 in enlarged intracellular vesicles upon cold fixation ex vivo Together, our data reveal a novel requirement for Sac1 in promoting microtubule stability and suggest that Rst trafficking occurs in a microtubule- and exocyst-dependent manner.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Forma Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Proteínas do Olho/genética , Microtúbulos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatases de Fosfoinositídeos/genética , Animais , Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Olho/embriologia , Fosfatases de Fosfoinositídeos/metabolismo , Transporte Proteico/fisiologia , Temperatura , Proteínas de Transporte Vesicular/metabolismo
8.
New Phytol ; 231(2): 713-725, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33876422

RESUMO

Phosphoinositides play important roles in plant growth and development. Several SAC domain phosphoinositide phosphatases have been reported to be important for plant development. Here, we show functional analysis of SUPPRESSOR OF ACTIN 6 (SAC6) to SAC8 in Arabidopsis, a subfamily of phosphoinositide phosphatases containing SAC-domain and two transmembrane motifs. We isolated an Arabidopsis mutant ncp2 that lacked cotyledons in seedling and embryo in pid, a background defective in auxin signaling and transport. NCP2 encodes RHD4/SAC7 phosphoinositide phosphatase. SAC6, SAC7 and SAC8 exhibit overlapping and specific expression patterns in seedling and embryo. The sac6 sac7 embryos either fail to develop into seeds, or have three or four cotyledons. The embryo development of sac7 sac8 and sac6 sac7 sac8 mutants is significantly delayed or lethal, and the seedlings are arrested at early stages. Auxin maxima are decreased in double and triple sac mutants. The contents of PtdIns4P and PtdIns(4,5)P2 in sac6 sac7 and sac7 sac8 mutants are dramatically increased. Protein trafficking of the plasma membrane (PM)-localized protein PIN1 and PIN2 from trans-Golgi network/early endosome back to PM is delayed in sac7 sac8 mutants. These results indicate that SAC6-SAC8 are essential for maintaining homeostasis of PtdIns4P and PtdIns(4,5)P2, and auxin-mediated development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Homeostase , Fosfatidilinositol 4,5-Difosfato , Fosfatos de Fosfatidilinositol , Fosfatidilinositóis , Fosfatases de Fosfoinositídeos
9.
Plant Physiol ; 182(3): 1346-1358, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882455

RESUMO

Phosphoinositides (PIs) as regulatory membrane lipids play essential roles in multiple cellular processes. Although the exact molecular targets of PI-dependent modulation remain largely elusive, the effects of disturbed PI metabolism could be employed to identify regulatory modules associated with particular downstream targets of PIs. Here, we identified the role of GRAIN NUMBER AND PLANT HEIGHT1 (GH1), which encodes a suppressor of actin (SAC) domain-containing phosphatase with unknown function in rice (Oryza sativa). Endoplasmic reticulum-localized GH1 specifically dephosphorylated and hydrolyzed phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Inactivation of GH1 resulted in massive accumulation of both PI4P and PI(4,5)P2, while excessive GH1 caused their depletion. Notably, superabundant PI4P and PI(4,5)P2 could both disrupt actin cytoskeleton organization and suppress cell elongation. Interestingly, both PI4P and PI(4,5)P2 inhibited actin-related protein2 and -3 (Arp2/3) complex-nucleated actin-branching networks in vitro, whereas PI(4,5)P2 showed more dramatic effects in a dose-dependent manner. Overall, the overaccumulation of PI(4,5)P2 resulting from dysfunction of SAC phosphatase possibly perturbs Arp2/3 complex-mediated actin polymerization, thereby disordering cell development. These findings imply that the Arp2/3 complex might be the potential molecular target of PI(4,5)P2-dependent modulation in eukaryotes, thereby providing insights into the relationship between PI homeostasis and plant growth and development.


Assuntos
Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Oryza/genética , Fosfatases de Fosfoinositídeos/genética , Proteínas de Plantas/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 40(5): 1311-1324, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32188273

RESUMO

OBJECTIVE: TMEM55B (transmembrane protein 55B) is a phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P2) phosphatase that regulates cellular cholesterol, modulates LDLR (low-density lipoprotein receptor) decay, and lysosome function. We tested the effects of Tmem55b knockdown on plasma lipids in mice and assessed the roles of LDLR lysosomal degradation and change in (PI[4,5]P2) in mediating these effects. Approach and Results: Western diet-fed C57BL/6J mice were treated with antisense oligonucleotides against Tmem55b or a nontargeting control for 3 to 4 weeks. Hepatic Tmem55b transcript and protein levels were reduced by ≈70%, and plasma non-HDL (high-density lipoprotein) cholesterol was increased ≈1.8-fold (P<0.0001). Immunoblot analysis of fast protein liquid chromatography (FPLC) fractions revealed enrichment of ApoE-containing particles in the LDL size range. In contrast, Tmem55b knockdown had no effect on plasma cholesterol in Ldlr-/- mice. In primary hepatocytes and liver tissues from Tmem55b knockdown mice, there was decreased LDLR protein. In the hepatocytes, there was increased lysosome staining and increased LDLR-lysosome colocalization. Impairment of lysosome function (incubation with NH4Cl or knockdown of the lysosomal proteins LAMP1 or RAB7) abolished the effect of TMEM55B knockdown on LDLR in HepG2 (human hepatoma) cells. Colocalization of the recycling endosome marker RAB11 (Ras-related protein 11) with LDLR in HepG2 cells was reduced by 50% upon TMEM55B knockdown. Finally, knockdown increased hepatic PI(4,5)P2 levels in vivo and in HepG2 cells, while TMEM55B overexpression in vitro decreased PI(4,5)P2. TMEM55B knockdown decreased, whereas overexpression increased, LDL uptake in HepG2 cells. Notably, the TMEM55B overexpression effect was reversed by incubation with PI(4,5)P2. Conclusions: These findings indicate a role for TMEM55B in regulating plasma cholesterol levels by affecting PI(4,5)P2-mediated LDLR lysosomal degradation.


Assuntos
Colesterol/sangue , Hepatócitos/metabolismo , Fígado/metabolismo , Lisossomos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Receptores de LDL/metabolismo , Animais , Dieta Hiperlipídica , Regulação para Baixo , Feminino , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatases de Fosfoinositídeos/genética , Transporte Proteico , Proteólise , Receptores de LDL/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
PLoS Genet ; 14(3): e1007290, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29584722

RESUMO

PIKfyve, VAC14, and FIG4 form a complex that catalyzes the production of PI(3,5)P2, a signaling lipid implicated in process ranging from lysosome maturation to neurodegeneration. While previous studies have identified VAC14 and FIG4 mutations that lead to both neurodegeneration and coat color defects, how PIKfyve regulates melanogenesis is unknown. In this study, we sought to better understand the role of PIKfyve in melanosome biogenesis. Melanocyte-specific PIKfyve knockout mice exhibit greying of the mouse coat and the accumulation of single membrane vesicle structures in melanocytes resembling multivesicular endosomes. PIKfyve inhibition blocks melanosome maturation, the processing of the melanosome protein PMEL, and the trafficking of the melanosome protein TYRP1. Taken together, these studies identify a novel role for PIKfyve in controlling the delivery of proteins from the endosomal compartment to the melanosome, a role that is distinct from the role of PIKfyve in the reformation of lysosomes from endolysosomes.


Assuntos
Melanossomas/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Flavoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melaninas/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Organelas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Transporte Proteico
12.
Semin Cancer Biol ; 59: 50-65, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30922959

RESUMO

Phosphoinositides are a group of lipids that regulate intracellular signaling and subcellular biological events. The signaling by phosphatidylinositol-3,4,5-trisphosphate and Akt mediates the action of growth factors that are essential for cell proliferation, gene transcription, cell migration, and polarity. The hyperactivation of this signaling has been identified in different cancer cells; and, it has been implicated in oncogenic transformation and cancer cell malignancy. Recent studies have argued the role of phosphoinositides in cancer cell dynamics, including actin cytoskeletal rearrangement at the plasma membrane and the organization of intracellular compartments. The focus of this review is to summarize the impact of the activities of phosphoinositide phosphatases on intracellular signaling related to cancer cell dynamics and to discuss how the abnormalities in the activities of the enzymes alter the levels of phosphoinositides in cancer cells.


Assuntos
Neoplasias/etiologia , Neoplasias/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Animais , Biomarcadores , Metabolismo Energético , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatases de Fosfoinositídeos/genética , Transdução de Sinais
13.
Hum Mol Genet ; 27(14): 2443-2453, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29688489

RESUMO

The signaling lipid phosphatidylinositol 3,5-bisphosphate, PI(3,5)P2, functions in vesicular trafficking through the endo-lysosomal compartment. Cellular levels of PI(3,5)P2 are regulated by an enzyme complex comprised of the kinase PIKFYVE, the phosphatase FIG4, and the scaffold protein VAC14. Mutations of human FIG4 cause inherited disorders including Charcot-Marie-Tooth disease type 4J, polymicrogyria with epilepsy, and Yunis-Varón syndrome. Constitutive Fig4-/- mice exhibit intention tremor, spongiform degeneration of neural tissue, hypomyelination, and juvenile lethality. To determine whether PI(3,5)P2 is required in the adult, we generated Fig4flox/-; CAG-creER mice and carried out tamoxifen-induced gene ablation. Global ablation in adulthood leads to wasting, tremor, and motor impairment. Death follows within 2 months of tamoxifen treatment, demonstrating a life-long requirement for Fig4. Histological examinations of the sciatic nerve revealed profound Wallerian degeneration of myelinated fibers, but not C-fiber axons in Remak bundles. In optic nerve sections, myelinated fibers appear morphologically intact and carry compound action potentials at normal velocity and amplitude. However, when iKO mice are challenged with a chemical white matter lesion, repair of damaged CNS myelin is significantly delayed, demonstrating a novel role for Fig4 in remyelination. Thus, in the adult PNS Fig4 is required to protect myelinated axons from Wallerian degeneration. In the adult CNS, Fig4 is dispensable for fiber stability and nerve conduction, but is required for the timely repair of damaged white matter. The greater vulnerability of the PNS to Fig4 deficiency in the mouse is consistent with clinical observations in patients with Charcot-Marie-Tooth disease.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Flavoproteínas/genética , Sistema Nervoso/metabolismo , Fosfatases de Fosfoinositídeos/genética , Monoéster Fosfórico Hidrolases/genética , Animais , Axônios/patologia , Sistema Nervoso Central/fisiopatologia , Doença de Charcot-Marie-Tooth/fisiopatologia , Displasia Cleidocraniana/genética , Displasia Cleidocraniana/fisiopatologia , Displasia Ectodérmica/genética , Displasia Ectodérmica/fisiopatologia , Humanos , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/fisiopatologia , Camundongos , Camundongos Transgênicos , Micrognatismo/genética , Micrognatismo/fisiopatologia , Mutação , Sistema Nervoso/patologia , Neurônios/patologia , Sistema Nervoso Periférico/fisiopatologia , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Polimicrogiria/genética , Polimicrogiria/fisiopatologia , Nervo Isquiático/fisiopatologia
14.
J Cell Sci ; 131(5)2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29378918

RESUMO

TMEM55a (also known as PIP4P2) is an enzyme that dephosphorylates the phosphatidylinositol (PtdIns) PtdIns(4,5)P2 to form PtdIns(5)P in vitro However, the in vivo conversion of the polyphosphoinositide into PtdIns(5)P by the phosphatase has not yet been demonstrated, and the role of TMEM55a remains poorly understood. Here, we found that mouse macrophages (Raw264.7) deficient in TMEM55a showed an increased engulfment of large particles without affecting the phagocytosis of Escherichia coli Transfection of a bacterial phosphatase with similar substrate specificity to TMEM55a, namely IpgD, into Raw264.7 cells inhibited the engulfment of IgG-erythrocytes in a manner dependent on its phosphatase activity. In contrast, cells transfected with PIP4K2a, which catalyzes PtdIns(4,5)P2 production from PtdIns(5)P, increased phagocytosis. Fluorescent TMEM55a transfected into Raw264.7 cells was found to mostly localize to the phagosome. The accumulation of PtdIns(4,5)P2, PtdIns(3,4,5)P3 and F-actin on the phagocytic cup was increased in TMEM55a-deficient cells, as monitored by live-cell imaging. Phagosomal PtdIns(5)P was decreased in the knockdown cells, but the augmentation of phagocytosis in these cells was unaffected by the exogenous addition of PtdIns(5)P. Taken together, these results suggest that TMEM55a negatively regulates the phagocytosis of large particles by reducing phagosomal PtdIns(4,5)P2 accumulation during cup formation.


Assuntos
Fagocitose/genética , Fagossomos/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Transporte Vesicular/metabolismo , Animais , Membrana Celular/metabolismo , Macrófagos/metabolismo , Camundongos , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositóis/metabolismo , Ligação Proteica , Células RAW 264.7
15.
Genes Cells ; 23(6): 418-434, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29644770

RESUMO

Mammalian/mechanistic target of rapamycin complex 1 (mTORC1) responds to growth factors and nutrient availability. Amino acids induce the recruitment of mTORC1 to the lysosomal membrane and its consequent activation, but the molecular mechanism of such activation has remained unclear. We have now examined the role of TMEM55B, a lysosomal protein of unknown molecular function, in this process on the basis of the results of proteomics and immunofluorescence analyses showing that TMEM55B interacts with many proteins that participate in mTORC1 activation including components of the vacuolar-type proton ATPase (V-ATPase) and Ragulator complexes at the lysosomal membrane. The amino acid-induced phosphorylation of the mTORC1 substrates S6K and 4E-BP was attenuated in TMEM55B-depleted cells compared with control cells. Depletion of TMEM55B was also found to evoke lysosomal stress as showed by translocation of the transcription factor TFEB to the nucleus. Furthermore, recruitment of the V1 domain subcomplex of V-ATPase to lipid rafts was abrogated in TMEM55B-depleted cells. Collectively, our results suggest that TMEM55B contributes to assembly of the V-ATPase complex in lipid rafts of the lysosomal membrane and to subsequent activation of mTORC1.


Assuntos
Aminoácidos/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Ativação Enzimática , Feminino , Células HEK293 , Células HeLa , Homeostase , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatases de Fosfoinositídeos/química , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Proteínas de Transporte Vesicular/química
16.
Biol Pharm Bull ; 42(6): 923-928, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155588

RESUMO

Macrophages endocytose modified low-density lipoproteins (LDL) vigorously via scavenger receptor A (SR-A) to become foam cells. In the present study, we found that Sac1, a member of the Sac family of phosphoinositide phosphatases, increases the protein level of SR-A and upregulates foam cell formation. Mouse macrophages (RAW264.7) were transfected with short hairpin RNAs (shRNAs) against Sac1. Sac1 knockdown decreased cell surface SR-A levels and impaired acetylated LDL-induced foam cell formation. Transfection of Sac1-knockdown cells with shRNA-resistant flag-Sac1 effectively rescued the expression of SR-A. Glycosylation of SR-A was largely attenuated by Sac1 knockdown, but neither mRNA expression nor protein degradation of SR-A were affected. These results suggest that Sac1 maintains SR-A protein levels by modulating SR-A glycosylation.


Assuntos
Células Espumosas/metabolismo , Proteínas de Membrana/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Receptores Depuradores Classe A/metabolismo , Animais , Lipoproteínas LDL/metabolismo , Proteínas de Membrana/genética , Camundongos , Fosfatases de Fosfoinositídeos/genética , Células RAW 264.7 , RNA Mensageiro , RNA Interferente Pequeno , Receptores Depuradores Classe A/genética
17.
Bioessays ; 39(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28977683

RESUMO

Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Células Eucarióticas/metabolismo , Membranas Intracelulares/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatases de Fosfoinositídeos/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Acilação , Animais , Compartimento Celular , Células Eucarióticas/citologia , Regulação da Expressão Gênica , Fosfatidilinositóis/química , Fosfatidilinositóis/classificação , Fosfatases de Fosfoinositídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
18.
J Cell Physiol ; 233(10): 6377-6385, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29667735

RESUMO

Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2 , PIP2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes.


Assuntos
Fenômenos Fisiológicos Celulares/genética , Ativação do Canal Iônico/genética , Proteínas de Membrana/genética , Fosfatases de Fosfoinositídeos/genética , Canais Iônicos Sensíveis a Ácido/genética , Animais , Exocitose/genética , Humanos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Domínios Proteicos/genética
19.
Hum Mol Genet ; 25(2): 340-7, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26604144

RESUMO

The lipid phosphatase FIG4 is a subunit of the protein complex that regulates biosynthesis of the signaling lipid PI(3,5)P2. Mutations of FIG4 result in juvenile lethality and spongiform neurodegeneration in the mouse, and are responsible for the human disorders Charcot-Marie-Tooth disease, Yunis-Varon syndrome and polymicrogyria with seizures. We previously demonstrated that conditional expression of a wild-type FIG4 transgene in neurons is sufficient to rescue most of the abnormalities of Fig4 null mice, including juvenile lethality and extensive neurodegeneration. To evaluate the contribution of the phosphatase activity to the in vivo function of Fig4, we introduced the mutation p.Cys486Ser into the Sac phosphatase active-site motif CX5RT. Transfection of the Fig4(Cys486Ser) cDNA into cultured Fig4(-/-) fibroblasts was effective in preventing vacuolization. The neuronal expression of an NSE-Fig4(Cys486Ser) transgene in vivo prevented the neonatal neurodegeneration and juvenile lethality seen in Fig4 null mice. These observations demonstrate that the catalytically inactive FIG4 protein provides significant function, possibly by stabilization of the PI(3,5)P2 biosynthetic complex and/or localization of the complex to endolysosomal vesicles. Despite this partial rescue, later in life the NSE-Fig4(Cys486Ser) transgenic mice display significant abnormalities that include hydrocephalus, defective myelination and reduced lifespan. The late onset phenotype of the NSE-Fig4(Cys486Ser) transgenic mice demonstrates that the phosphatase activity of FIG4 has an essential role in vivo.


Assuntos
Flavoproteínas/genética , Hidrocefalia/genética , Mutação , Neurônios/metabolismo , Animais , Domínio Catalítico/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Displasia Cleidocraniana/genética , Displasia Cleidocraniana/metabolismo , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Flavoproteínas/metabolismo , Hidrocefalia/metabolismo , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/metabolismo , Camundongos , Camundongos Transgênicos , Micrognatismo/genética , Micrognatismo/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatases de Fosfoinositídeos , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Polimicrogiria/genética , Polimicrogiria/metabolismo , Células de Schwann/metabolismo
20.
Exp Cell Res ; 357(2): 252-259, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28552585

RESUMO

The findings of this study suggest that the phosphoinositide phosphatase Sac3 maintains the protein level of scavenger receptor A (SR-A) and regulates foam cell formation. RAW264.7 macrophages were transfected with short hairpin RNAs that target Sac3. The knockdown decreased the level of the cell surface SR-A and suppressed the acetylated low density lipoprotein-induced foam cell formation. The associated regulator of PIKfyve (ArPIKfyve) is a scaffold protein that protects Sac3 from proteasome-dependent degradation. The knockdown of ArPIKfyve decreased Sac3, cell surface SR-A, and foam cell formation. The knockdown of PIKfyve had no effect on SR-A protein levels. These results suggest that the ArPIKfyve-Sac3 complex regulates SR-A protein levels independently of its effect on PIKfyve activity.


Assuntos
Flavoproteínas/metabolismo , Gotículas Lipídicas/metabolismo , Macrófagos/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Receptores Depuradores/metabolismo , Animais , Membrana Celular/metabolismo , Flavoproteínas/genética , Técnicas de Silenciamento de Genes/métodos , Humanos , Camundongos , Fosfatases de Fosfoinositídeos/genética , Monoéster Fosfórico Hidrolases/genética , Células RAW 264.7 , Receptores Depuradores Classe A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA