Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Sep Sci ; 47(9-10): e2300898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726747

RESUMO

Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.


Assuntos
Produtos Biológicos , Fosfolipases Tipo C , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/isolamento & purificação , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/química , Fosfolipases Tipo C/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Lignanas/química , Lignanas/isolamento & purificação , Lignanas/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/isolamento & purificação , Humanos , Compostos Alílicos , Fenóis
2.
Biosci Biotechnol Biochem ; 87(6): 605-610, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37015872

RESUMO

Recently, phosphatidylglycerol (PG) focused on its important role in chloroplast photosynthesis, mitochondrial function of the sperm, an inhibitory effect on SARS-CoV-2 ability to infect naïve cells, and reducing lung inflammation caused by coronavirus disease 2019. To develop an enzymatic PG determination method as the high-throughput analysis of PG, a PG-specific phospholipase C (PG-PLC) was found in the culture supernatant of Amycolatopsis sp. NT115. PG-PLC (54 kDa by SDS-PAGE) achieved the maximal activity at pH 6.0 and 55 °C and was inhibited by detergents, such as Briji35, Tween 80, and sodium cholate, but not by EDTA and metal ions, except for Zn2+. The open reading frame of the PG-PLC gene consisted of 1620 bp encoding 515-amino-acid residues containing the preceding 25-amino-acid residues (Tat signal peptide sequence). The putative amino acid sequence of PG-PLC was highly similar to those of metallophosphoesterases; however, its substrate specificity was completely different from those of known PLCs.


Assuntos
COVID-19 , Fosfolipases Tipo C , Masculino , Humanos , Fosfolipases Tipo C/química , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Amycolatopsis/genética , Amycolatopsis/metabolismo , Fosfatidilgliceróis , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sêmen , Clonagem Molecular , Sinais Direcionadores de Proteínas/genética
3.
J Biol Chem ; 297(6): 101398, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774525

RESUMO

Many studies have confirmed the enzymatic activity of a mammalian phosphatidylcholine (PC) phospholipase C (PLC) (PC-PLC), which produces diacylglycerol (DAG) and phosphocholine through the hydrolysis of PC in the absence of ceramide. However, the protein(s) responsible for this activity have never yet been identified. Based on the fact that tricyclodecan-9-yl-potassium xanthate can inhibit both PC-PLC and sphingomyelin synthase (SMS) activities, and SMS1 and SMS2 have a conserved catalytic domain that could mediate a nucleophilic attack on the phosphodiester bond of PC, we hypothesized that both SMS1 and SMS2 might have PC-PLC activity. In the present study, we found that purified recombinant SMS1 and SMS2 but not SMS-related protein have PC-PLC activity. Moreover, we prepared liver-specific Sms1/global Sms2 double-KO mice. We found that liver PC-PLC activity was significantly reduced and steady-state levels of PC and DAG in the liver were regulated by the deficiency, in comparison with control mice. Using adenovirus, we expressed Sms1 and Sms2 genes in the liver of the double-KO mice, respectively, and found that expressed SMS1 and SMS2 can hydrolyze PC to produce DAG and phosphocholine. Thus, SMS1 and SMS2 exhibit PC-PLC activity in vitro and in vivo.


Assuntos
Fígado/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos) , Fosfolipases Tipo C , Animais , Células COS , Chlorocebus aethiops , Camundongos , Camundongos Knockout , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Domínios Proteicos , Proteínas Recombinantes , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Fosfolipases Tipo C/química , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
4.
Mol Biol Rep ; 49(5): 4123-4128, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35526246

RESUMO

BACKGROUND: Pleckstrin homology (PH) domains are common modules of ∼120 amino acids found in proteins involved in signalling, cytoskeletal organization, membrane transport, and modification of phospholipids. Previous live cell studies have involved the use of the green-fluorescent protein (GFP) labelling of PH-domain of phospholipase C δ1 (PLC δ1) to study the interactions of molecules at the membrane interface. METHODS AND RESULTS: For this study, the aim was to construct and express the GFP-PH domain of PLC δ1 in the Saccharomyces cerevisiae BY4741. The transformants expressing GFP-PH domain of PLC δ1 displayed localised fluorescence to the cell periphery (plasma membrane) while the negative control expressed GFP within the cytoplasm only. No GFP was observed in the non-transformed yeast cells. CONCLUSIONS: Thus, this technique could be useful in future molecular interactions studies targeted specifically at the yeast cell membrane interface in live yeast cells.


Assuntos
Domínios de Homologia à Plecstrina , Saccharomyces cerevisiae , Animais , Proteínas Sanguíneas , Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mamíferos/metabolismo , Fosfolipase C delta , Fosfoproteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfolipases Tipo C/química , Fosfolipases Tipo C/metabolismo
5.
Plant Cell Rep ; 40(11): 2123-2133, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34003316

RESUMO

Environmental stimuli are primarily perceived at the plasma membrane. Stimuli perception leads to membrane disintegration and generation of molecules which trigger lipid signaling. In plants, lipid signaling regulates important biological functions however, the molecular mechanism involved is unclear. Phospholipases C (PLCs) are important lipid-modifying enzymes in eukaryotes. In animals, PLCs by hydrolyzing phospholipids, such as phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] generate diacylglycerol (DAG) and inositol- 1,4,5-trisphosphate (IP3). However, in plants their phosphorylated variants i.e., phosphatidic acid (PA) and inositol hexakisphosphate (IP6) are proposed to mediate lipid signaling. Specific substrate preferences divide PLCs into phosphatidylinositol-PLC (PI-PLC) and non-specific PLCs (NPC). PLC activity is regulated by various cellular factors including, calcium (Ca2+) concentration, phospholipid substrate, and post-translational modifications. Both PI-PLCs and NPCs are implicated in plants' response to stresses and development. Emerging evidences show that PLCs regulate structural and developmental features, like stomata movement, microtubule organization, membrane remodelling and root development under abiotic stresses. Thus, crucial insights are provided into PLC mediated regulatory mechanism of abiotic stress responses in plants. In this review, we describe the structure and regulation of plant PLCs. In addition, cellular and physiological roles of PLCs in abiotic stresses, phosphorus deficiency, aluminium toxicity, pollen tube growth, and root development are discussed.


Assuntos
Metabolismo dos Lipídeos , Desenvolvimento Vegetal , Proteínas de Plantas/fisiologia , Estresse Fisiológico , Fosfolipases Tipo C/fisiologia , Alumínio/toxicidade , Diglicerídeos/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/química , Plantas/efeitos dos fármacos , Plantas/metabolismo , Fosfolipases Tipo C/química
6.
Anaerobe ; 72: 102473, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34743038

RESUMO

OBJECTIVES: Clostridium perfringens is a common anaerobic pathogen causing enteritis/enterocolitis and wound infections in humans. We analyzed clonal diversity and toxin gene prevalence in C. perfringens clinical isolates from humans in northern Japan. METHODS: Prevalence of nine toxin genes was analyzed for 585 C. perfringens isolates from patients collected for 20-month period between May 2019 and December 2020 by molecular methods. Sequence type (ST) based on multilocus sequence typing (Xiao's scheme) and alpha-toxin (PLC) sequence type were determined for a total of 124 isolates selected in the present study along with those in our previous study (2017-2018). RESULTS: Toxinotypes A (68.2%) was the most frequent, followed by F (31.6%), and G (0.2%), while additional toxin genes encoding binary enterotoxin (BEC/CPILE) and beta2 toxin were identified in one and six isolates, respectively. Among the 124 isolates with various toxin gene profiles, 62 STs including 53 novel types were identified, revealing the presence of six clonal complexes (CCs) consisting of 27 STs. Most of enterotoxin gene (cpe)-positive isolates belonged to CC36, CC41, and CC117. Based on 22 key amino acids in alpha toxin sequence, four PLC types (I-IV) including 21 subtypes were classified, and their relation to individual STs/CCs was clarified. Two isolates harboring bec/cpile belonged to different STs (ST95, ST131) and PLC types (If, IVb), indicating distribution of this toxin gene to distinct lineages. CONCLUSIONS: The present study revealed the diversity in C. perfringens clones of human origin with various toxin gene profiles represented by ST/CC and PLC type.


Assuntos
Toxinas Bacterianas/genética , Proteínas de Ligação ao Cálcio/genética , Infecções por Clostridium/microbiologia , Clostridium perfringens/classificação , Clostridium perfringens/genética , Variação Genética , Tipagem de Sequências Multilocus , Fosfolipases Tipo C/genética , Sequência de Aminoácidos , Toxinas Bacterianas/química , Proteínas de Ligação ao Cálcio/química , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/epidemiologia , Clostridium perfringens/isolamento & purificação , Genes Bacterianos , Genótipo , Humanos , Filogenia , Prevalência , Fosfolipases Tipo C/química
7.
BMC Biotechnol ; 20(1): 7, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992276

RESUMO

BACKGROUND: Clostridium perfringens is the causative agent of several diseases and enteric infections in animals and humans. The virulence of C. perfringens is largely attributable to the production of numerous toxins; of these, the alpha toxin (CPA) plays a crucial role in histotoxic infections (gas gangrene). CPA toxin consists of two domains, i.e., the phospholipase C active site, which lies in the N-terminal domain amino acid (aa residues 1-250), and the C-terminal region (aa residues 251-370), which is responsible for the interaction of the toxin with membrane phospholipids in the presence of calcium ions. All currently produced clostridial vaccines contain toxoids derived from culture supernatants that are inactivated, mostly using formalin. The CPA is an immunogenic antigen; recently, it has been shown that mice that were immunized with the C-terminal domain of the toxin produced in E. coli were protected against C. perfringens infections and the anti-sera produced were able to inhibit the CPA activity. Monoclonal and polyclonal antibodies were produced only against full-length CPA and not against the truncated forms. RESULTS: In the present study, we have reported for the first time; about the generation of a recombinant baculovirus capable of producing a deleted rCPA toxin (rBacCPA250-363H6) lacking the N-terminal domain and the 28 amino acids (aa) of the putative signal sequence. The insertion of the L21 consensus sequence upstream of the translational start codon ATG, drastically increases the yield of recombinant protein in the baculovirus-based expression system. The protein was purified by Ni-NTA affinity chromatography and the lack of toxicity in vitro was confirmed in CaCo-2 cells. Polyclonal antibodies and eight hybridoma-secreting Monoclonal antibodies were generated and tested to assess specificity and reactivity. The anti-sera obtained against the fragment rBacCPA250-363H6 neutralized the phospholipase C activity of full-length PLC. CONCLUSIONS: The L21 leader sequence enhanced the expression of atoxic C-terminal recombinant CPA protein produced in insect cells. The monoclonal and polyclonal antibodies obtained were specific and highly reactive. The availability of these biologicals could contribute to the development of diagnostic assays and/or new recombinant protein vaccines.


Assuntos
Anticorpos Antibacterianos/metabolismo , Toxinas Bacterianas/genética , Baculoviridae/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio/genética , Infecções por Clostridium/prevenção & controle , Clostridium perfringens/metabolismo , Proteínas Recombinantes/administração & dosagem , Fosfolipases Tipo C/genética , Animais , Anticorpos Monoclonais/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Células CACO-2 , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Infecções por Clostridium/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/imunologia , Sequência Consenso , Humanos , Imunização , Camundongos , Domínios Proteicos , Engenharia de Proteínas , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Fosfolipases Tipo C/química , Fosfolipases Tipo C/imunologia , Fosfolipases Tipo C/metabolismo
8.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 725-734, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31872485

RESUMO

In order to interpret the molecular structure and biological characteristics of Clostridium perfringens alpha-toxin (CPA), the CPA251-370 gene was cloned and the 120 amino acid carboxy terminal of CPA (CPA251-370) was obtained. The secondary and three-dimensional (3D) structures of CPA251-370 were predicted. The secondary structure of CPA251-370 consisted primarily of 35.48% ß-sheets and 44.35% random coils. Compared with the CPA toxin consisting of 10 α-helices and eight ß-sheets, the 3D structure of CPA251-370 only contained eight ß-sheets. The circular dichroism (CD) spectrum detection showed that the CD spectrum of CPA251-370 changed slightly compared with the CD spectrum of CPA. Biological activity assays showed that CPA251-370 had lost the phospholipase C (PLC) activity and haemolytic activity of CPA. More importantly, the mice immunized with CPA251-370 were protected against a challenge with 1 MLD C. perfringens type A strain C57-1. This study laid a solid foundation for explaining the relationship between molecular structure and biological characteristics of CPA in the future. Our research also provides CPA251-370 as a candidate strains for genetic engineering subunit vaccines of C. perfringens type A.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Clostridium perfringens/metabolismo , Fosfolipases Tipo C/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Bactérias , Toxinas Bacterianas/química , Proteínas de Ligação ao Cálcio/química , Clonagem Molecular , Clostridium perfringens/imunologia , Regulação Bacteriana da Expressão Gênica , Camundongos , Modelos Moleculares , Conformação Proteica , Fosfolipases Tipo C/química
9.
J Biol Chem ; 293(45): 17477-17490, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30242131

RESUMO

Phospholipase C (PLC) enzymes produce second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC). These enzymes also share a highly conserved arrangement of core domains. However, the contributions of the individual domains to regulation are poorly understood, particularly in isoforms lacking high-resolution information, such as PLCϵ. Here, we used small-angle X-ray scattering (SAXS), EM, and functional assays to gain insights into the molecular architecture of PLCϵ, revealing that its PH domain is conformationally dynamic and essential for activity. We further demonstrate that the PH domain of PLCß exhibits similar dynamics in solution that are substantially different from its conformation observed in multiple previously reported crystal structures. We propose that this conformational heterogeneity contributes to subfamily-specific differences in activity and regulation by extracellular signals.


Assuntos
Simulação de Dinâmica Molecular , Domínios de Homologia à Plecstrina , Fosfolipases Tipo C/química , Animais , Humanos , Mutação , Ratos , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
10.
J Biol Chem ; 293(47): 18318-18327, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30287690

RESUMO

Members of the G protein-coupled receptor and TMEM16 (transmembrane protein 16) protein families are phospholipid scramblases that facilitate rapid, bidirectional movement of phospholipids across a membrane bilayer in an ATP-independent manner. On reconstitution into large unilamellar vesicles, these proteins scramble more than 10,000 lipids/protein/s as measured with co-reconstituted fluorescent nitrobenzoxadiazole (NBD)-labeled phospholipids. Although NBD-labeled phospholipids are ubiquitously used as reporters of scramblase activity, it remains unclear whether the NBD modification influences the quantitative outcomes of the scramblase assay. We now report a refined biochemical approach for measuring the activity of scramblase proteins with radiolabeled natural phosphatidylinositol ([3H]PI) and exploiting the hydrolytic activity of bacterial PI-specific phospholipase C (PI-PLC) to detect the transbilayer movement of PI. PI-PLC rapidly hydrolyzed 50% of [3H]PI in large symmetric, unilamellar liposomes, corresponding to the lipid pool in the outer leaflet. On reconstitution of a crude preparation of yeast endoplasmic reticulum scramblase, purified bovine opsin, or purified Nectria haematococca TMEM16, the extent of [3H]PI hydrolysis increased, indicating that [3H]PI from the inner leaflet had been scrambled to the outer leaflet. Using transphosphatidylation, we synthesized acyl-NBD-PI and used it to compare our PI-PLC-based assay with conventional fluorescence-based methods. Our results revealed quantitative differences between the two assays that we attribute to the specific features of the assays themselves rather than to the nature of the phospholipid. In summary, we have developed an assay that measures scrambling of a chemically unmodified phospholipid by a reconstituted scramblase.


Assuntos
Anoctaminas/metabolismo , Proteínas Fúngicas/metabolismo , Opsinas/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Anoctaminas/química , Anoctaminas/genética , Transporte Biológico , Bovinos , Fluorescência , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hidrólise , Cinética , Nectria/enzimologia , Opsinas/química , Opsinas/genética , Fosfatidilinositóis/química , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipases Tipo C/química , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
11.
Langmuir ; 35(46): 14949-14958, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31642682

RESUMO

This study provides insights into dynamic nanostructural changes in phospholipid systems during hydrolysis with phospholipase C, the fate of the hydrolysis products, and the kinetics of lipolysis. The effect of lipid restructuring of the vesicle was investigated using small-angle X-ray scattering and cryogenic scanning electron microscopy. The rate and extent of phospholipid hydrolysis were quantified using nuclear magnetic resonance. Hydrolysis of two phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), results in the cleavage of the molecular headgroup, causing two strikingly different changes in lipid self-assembly. The diacylglycerol product of PC escapes the lipid bilayer, whereas the diacylglycerol product adopts a different configuration within the lipid bilayer of the PE vesicles. These results are then discussed concerning the change of the lipid configuration upon the lipid membrane and its potential implications in vivo, which is of significant importance for the detailed understanding of the fate of lipidic particles and the rational design of enzyme-responsive lipid-based drug delivery systems.


Assuntos
Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfolipases Tipo C/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidrólise , Bicamadas Lipídicas , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana , Micelas , Microscopia Eletrônica de Varredura , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/química , Espalhamento a Baixo Ângulo , Fosfolipases Tipo C/metabolismo , Difração de Raios X
12.
Curr Microbiol ; 76(10): 1175-1185, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31286181

RESUMO

To explore the biological activity of Clostridium welchii α-toxin (CPA), the Asp56 residue of CPA was mutated to glycine (CPA D56G) by site-directed mutagenesis, and the 250 amino acid amino-terminal phospholipase C (PLC)-containing domain of CPA (PLC1-250) was isolated. The secondary and three-dimensional (3D) structures of CPA D56G and PLC1-250 were predicted, and the results showed that the secondary structures of CPA D56G and PLC1-250 were composed of α-helices and random coils. The 3D structures of CPA D56G and PLC1-250 were similar to the 3D structures of CPA. The circular dichroism (CD) spectrum of CPA D56G differed from the CD spectrum of CPA, but the CD spectrum of PLC1-250 was similar to the CD spectrum of CPA. Biological activity assays showed that CPA D56G lost the PLC activity of CPA and that mice immunized with CPA D56G were protected against a challenge with 1 MLD C. welchii type A strain C57-1. In addition, PLC1-250 contained the PLC activity of CPA. This study laid a solid foundation for future studies on the relationship between the molecular structure and biological function of CPA and its molecular mechanism. Our study also provided CPA D56G as a candidate strain for engineering a CPA subunit vaccine for C. welchii type A.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Clostridium perfringens/química , Fosfolipases Tipo C/química , Fosfolipases Tipo C/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Infecções por Clostridium/patologia , Infecções por Clostridium/prevenção & controle , Clostridium perfringens/imunologia , Imunização , Camundongos , Mutação , Conformação Proteica , Relação Estrutura-Atividade , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/imunologia
13.
Nanomedicine ; 14(3): 643-650, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29317346

RESUMO

ApoB-100 and Phosphatidylcholine-specific phospholipase C (PC-PLC) are important contributors to atherosclerosis development. ApoB-100 is the main structural protein of LDL, being directly associated with atherosclerosis plaque generation. PC-PLC is highly expressed in atherosclerosis lesions and contributes to their progression. We show how phosphatidylcholine-coated nanomicelles can be used for specific characterisation of atherosclerosis plaque. Results show that ApoB-100 in the protein corona of the nanomicelle targets the particles to atherosclerotic areas in apolipoprotein E-/- mice. Furthermore, PC-PLC selectively removes the polar heads from the phospholipid coating of the nanomicelles leading to their accumulation. To fully characterise the behaviour of the nanomicelles, we developed multimodal probes using a nanoemulsion step. Hybrid imaging revealed plaque accumulation of the nanomicelles and colocalisation with PC-PLC expression and ApoB-100 in the plaque. This study shows how protein corona composition and enzyme-driven nanomaterial accumulation can be used for detection of atherosclerosis.


Assuntos
Apolipoproteínas E/fisiologia , Compostos Férricos/química , Micelas , Nanocompostos/química , Placa Aterosclerótica/metabolismo , Coroa de Proteína/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Apolipoproteína B-100/metabolismo , Camundongos , Camundongos Knockout para ApoE , Nanocompostos/administração & dosagem , Placa Aterosclerótica/patologia , Coroa de Proteína/química , Fosfolipases Tipo C/química
14.
Biochim Biophys Acta ; 1858(12): 3157-3168, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693913

RESUMO

Phospholipase C (PLC) is an important enzyme of signal transduction pathways by generation of second messengers from membrane lipids. PLCs are also indicated to cleave glycosylphosphatidylinositol (GPI)-anchors of surface proteins thus releasing these into the environment. However, it remains unknown whether this enzymatic activity on the surface is due to distinct PLC isoforms in higher eukaryotes. Ciliates have, in contrast to other unicellular eukaryotes, multiple PLC isoforms as mammals do. Thus, Paramecium represents a perfect model to study subcellular distribution and potential surface activity of PLC isoforms. We have identified distinct subcellular localizations of four PLC isoforms indicating functional specialization. The association with different calcium release channels (CRCs) argues for distinct subcellular functions. They may serve as PI-PLCs in microdomains for local second messenger responses rather than free floating IP3. In addition, all isoforms can be found on the cell surface and they are found together with GPI-cleaved surface proteins in salt/ethanol washes of cells. We can moreover show them in medium supernatants of living cells where they have access to GPI-anchored surface proteins. Among the isoforms we cannot assign GPI-PLC activity to specific PLC isoforms; rather each PLC is potentially responsible for the release of GPI-anchored proteins from the surface.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Fosfolipases Tipo C/análise , Animais , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/enzimologia , Cílios/enzimologia , Técnica Indireta de Fluorescência para Anticorpo , Isoenzimas/análise , Modelos Moleculares , Coelhos , Fosfolipases Tipo C/química , Fosfolipases Tipo C/metabolismo
15.
BMC Genomics ; 18(1): 979, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258435

RESUMO

BACKGROUND: Nonspecific phospholipase C (NPC), which belongs to a phospholipase C subtype, is a class of phospholipases that hydrolyzes the primary membrane phospholipids, such as phosphatidylcholine, to yield sn-1, 2-diacylglycerol and a phosphorylated head-group. NPC plays multiple physiological roles in lipid metabolism and signaling in plants. To fully understand the putative roles of NPC genes in upland cotton, we cloned NPC genes from Gossypium hirsutum and carried out structural, expression and evolutionary analysis. RESULTS: Eleven NPC genes were cloned from G. hirsutum, which were found on chromosomes scaffold269.1, D03, A07, D07, A08, D11, and scaffold3511_A13. All GhNPCs had typical phosphoesterase domains and have hydrolase activity that acts on ester bonds. GhNPCs were annotated as phospholipase C, which was involved in glycerophospholipid metabolism, ether lipid metabolism, and biosynthesis of secondary metabolites. These GhNPCs showed differential expression patterns in distinct plant tissues and in response to various types of stress (low-phosphate, salt, drought, and abscisic acid). They also had different types and numbers of cis-element. GhNPCs could be classified into four subfamilies. Four pairs of GhNPCs were generated by whole-genome duplication and they underwent purifying selection. CONCLUSIONS: Our results suggested that GhNPCs are involved in regulating key abiotic stress responses and ABA signaling transduction, and they may have various functional roles for different members under complex abiotic stress conditions. Functional divergence may be the evolutionary driving force for the retention of four pairs of duplicate NPCs. Our analysis provides a solid foundation for the further functional characterization of the GhNPC gene family, and leads to potential applications in the genetic improvement of cotton cultivars.


Assuntos
Gossypium/genética , Família Multigênica , Fosfolipases Tipo C/genética , Clonagem Molecular , Éxons , Expressão Gênica , Íntrons , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Filogenia , Regiões Promotoras Genéticas , Alinhamento de Sequência , Sintenia , Fosfolipases Tipo C/química , Fosfolipases Tipo C/classificação , Fosfolipases Tipo C/metabolismo
16.
Biochim Biophys Acta Biomembr ; 1859(8): 1317-1325, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28434970

RESUMO

Apolipophorin III (apoLp-III) is an insect apolipoprotein (18kDa) that comprises a single five-helix bundle domain. In contrast, human apolipoprotein A-I (apoA-I) is a 28kDa two-domain protein: an α-helical N-terminal domain (residues 1-189) and a less structured C-terminal domain (residues 190-243). To better understand the apolipoprotein domain organization, a novel chimeric protein was engineered by attaching residues 179 to 243 of apoA-I to the C-terminal end of apoLp-III. The apoLp-III/apoA-I chimera was successfully expressed and purified in E. coli. Western blot analysis and mass spectrometry confirmed the presence of the C-terminal domain of apoA-I within the chimera. While parent apoLp-III did not self-associate, the chimera formed oligomers similar to apoA-I. The chimera displayed a lower α-helical content, but the stability remained similar compared to apoLp-III, consistent with the addition of a less structured domain. The chimera was able to solubilize phospholipid vesicles at a significantly higher rate compared to apoLp-III, approaching that of apoA-I. The chimera was more effective in protecting phospholipase C-treated low density lipoprotein from aggregation compared to apoLp-III. In addition, binding interaction of the chimera with phosphatidylglycerol vesicles and lipopolysaccharides was considerably improved compared to apoLp-III. Thus, addition of the C-terminal domain of apoA-I to apoLp-III created a two-domain protein, with self-association, lipid and lipopolysaccharide binding properties similar to apoA-I. The apoA-I like behavior of the chimera indicate that these properties are independent from residues residing in the N-terminal domain of apoA-I, and that they can be transferred from apoA-I to apoLp-III.


Assuntos
Apolipoproteína A-I/química , Apolipoproteínas/química , Proteínas de Insetos/química , Lipopolissacarídeos/química , Lipoproteínas LDL/química , Proteínas Recombinantes de Fusão/química , Animais , Apolipoproteína A-I/genética , Apolipoproteínas/genética , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Gafanhotos/química , Humanos , Proteínas de Insetos/genética , Cinética , Gotículas Lipídicas/química , Modelos Moleculares , Fosfatidilgliceróis/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Solubilidade , Termodinâmica , Fosfolipases Tipo C/química
17.
Annu Rev Physiol ; 75: 127-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23140367

RESUMO

Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale.


Assuntos
Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/fisiologia , Animais , Diglicerídeos/fisiologia , Humanos , Inositol 1,4,5-Trifosfato/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Fosfolipases Tipo C/química
18.
Wei Sheng Wu Xue Bao ; 57(1): 87-96, 2017 Jan 04.
Artigo em Zh | MEDLINE | ID: mdl-29746763

RESUMO

Objective: In this study, we constructed recombinant Kluyveromyces lactis strains to produce phospholipase C (PLC) of Bacillus cereus. The recombinant enzymes were purified and characterized. Methods: We cloned the PLC encoding gene bcplc of Bacillus cereus. And the amplified fragments were inserted into pKLAC1 to obtain expression plasmids. K. lactis harboring the above plasmids was cultivated to express PLC that was purified by HisTrapTM affinity chromatography and characterized. Results: PLC of B. cereus was cloned and expressed in K. lactis. The recombinant enzyme had shown activity of 19251 U/mg when using p-nitrophenyl phosphorycholine as substrate. Purified PLC exhibited optimum temperature at 80 °C and optimal pH at 9.0. The recombinant enzyme was stable below 40 °C and pH between 7.0 and 8.0. Cu2+ and Co2+ inhibited its activity whereas Zn2+, Mn2+, Ca2+ and Mg2+ stimulated its activity. Conclusion: It is the first time to express and characterize the PLC gene in K. lactis. These research results provide reference for the study of recombinant PLC.


Assuntos
Bacillus cereus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Expressão Gênica , Kluyveromyces/genética , Fosfolipases Tipo C/química , Fosfolipases Tipo C/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Kluyveromyces/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Temperatura , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
19.
Biochim Biophys Acta ; 1851(6): 746-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25732852

RESUMO

Polyphosphoinositides (PPIn) are an important family of phospholipids located on the cytoplasmic leaflet of eukaryotic cell membranes. Collectively, they are critical for the regulation of many aspects of membrane homeostasis and signaling, with notable relevance to human physiology and disease. This regulation is achieved through the selective interaction of these lipids with hundreds of cellular proteins, and thus the capability to study these localized interactions is crucial to understanding their functions. In this review, we discuss current knowledge of the principle types of PPIn-protein interactions, focusing on specific lipid-binding domains. We then discuss how these domains have been re-tasked by biologists as molecular probes for these lipids in living cells. Finally, we describe how the knowledge gained with these probes, when combined with other techniques, has led to the current view of the lipids' localization and function in eukaryotes, focusing mainly on animal cells. This article is part of a Special Issue entitled Phosphoinositides.


Assuntos
Técnicas Biossensoriais , Sondas Moleculares/química , Fosfatidilinositóis/análise , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Imagem Molecular , Sondas Moleculares/metabolismo , Fosfatidilinositóis/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Fosfolipases Tipo C/química , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
20.
J Cell Sci ; 127(Pt 1): 72-84, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24198396

RESUMO

Plasma membrane Ca(2+) ATPases (PMCAs, also known as ATP2B1-ATP2B4) are known targets of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], but if and how they control the PtdIns(4,5)P2 pool has not been considered. We demonstrate here that PMCAs protect PtdIns(4,5)P2 in the plasma membrane from hydrolysis by phospholipase C (PLC). Comparison of active and inactive PMCAs indicates that the protection operates by two mechanisms; one requiring active PMCAs, the other not. It appears that the mechanism requiring activity is the removal of the Ca(2+) required for sustained PLC activity, whereas the mechanism not requiring activity is PtdIns(4,5)P2 binding. We show that in PMCA overexpressing cells, PtdIns(4,5)P2 binding can lead to less inositol 1,4,5-triphosphate (InsP3) and diminished Ca(2+) release from intracellular Ca(2+) pools. Inspection of a homology model of PMCA suggests that PMCAs have a conserved cluster of basic residues forming a 'blue collar' at the interface between the membrane core and the cytoplasmic domains. By molecular dynamics simulation, we found that the blue collar forms four binding pockets for the phosphorylated inositol head group of PtdIns(4,5)P2; these pockets bind PtdIns(4,5)P2 strongly and frequently. Our studies suggest that by having the ability to bind PtdIns(4,5)P2, PMCAs can control the accessibility of PtdIns(4,5)P2 for PLC and other PtdIns(4,5)P2-mediated processes.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/genética , Membrana Celular/química , Expressão Gênica , Regulação da Expressão Gênica , Células HeLa , Humanos , Hidrólise , Inositol 1,4,5-Trifosfato/química , Transporte de Íons , Simulação de Dinâmica Molecular , Fosfatidilinositol 4,5-Difosfato/química , Ligação Proteica , Coelhos , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fosfolipases Tipo C/química , Fosfolipases Tipo C/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA