Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.598
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 78(5): 915-925.e7, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32392469

RESUMO

Transcriptional memory of gene expression enables adaptation to repeated stimuli across many organisms. However, the regulation and heritability of transcriptional memory in single cells and through divisions remains poorly understood. Here, we combined microfluidics with single-cell live imaging to monitor Saccharomyces cerevisiae galactokinase 1 (GAL1) expression over multiple generations. By applying pedigree analysis, we dissected and quantified the maintenance and inheritance of transcriptional reinduction memory in individual cells through multiple divisions. We systematically screened for loss- and gain-of-memory knockouts to identify memory regulators in thousands of single cells. We identified new loss-of-memory mutants, which affect memory inheritance into progeny. We also unveiled a gain-of-memory mutant, elp6Δ, and suggest that this new phenotype can be mediated through decreased histone occupancy at the GAL1 promoter. Our work uncovers principles of maintenance and inheritance of gene expression states and their regulators at the single-cell level.


Assuntos
Galactoquinase/genética , Regulação Fúngica da Expressão Gênica/genética , Transcrição Gênica/genética , Galactose/metabolismo , Expressão Gênica/genética , Genes Fúngicos/genética , Hereditariedade/genética , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos
2.
PLoS Biol ; 22(3): e3002549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502638

RESUMO

Sugar metabolism plays a pivotal role in sustaining life. Its dynamics within organisms is less understood compared to its intracellular metabolism. Galactose, a hexose stereoisomer of glucose, is a monosaccharide transported via the same transporters with glucose. Galactose feeds into glycolysis and regulates protein glycosylation. Defects in galactose metabolism are lethal for animals. Here, by transgenically implementing the yeast galactose sensing system into Drosophila, we developed a genetically encoded sensor, GALDAR, which detects galactose in vivo. Using this heterologous system, we revealed dynamics of galactose metabolism in various tissues. Notably, we discovered that intestinal stem cells do not uptake detectable levels of galactose or glucose. GALDAR elucidates the role for galactokinase in metabolism of galactose and a transition of galactose metabolism during the larval period. This work provides a new system that enables analyses of in vivo sugar metabolism.


Assuntos
Galactose , Glicólise , Animais , Galactose/metabolismo , Glicólise/genética , Glicosilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Drosophila/metabolismo , Glucose/metabolismo
3.
Nature ; 598(7880): 332-337, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616040

RESUMO

Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium1. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex O-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in O-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization2 and diseases such as inflammatory bowel disease3.


Assuntos
Bacteroides/enzimologia , Colo/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal , Mucinas/metabolismo , Sulfatases/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Animais , Colo/química , Cristalografia por Raios X , Feminino , Galactose/metabolismo , Humanos , Masculino , Camundongos , Modelos Moleculares , Especificidade por Substrato , Sulfatases/química
4.
Proc Natl Acad Sci U S A ; 121(18): e2315314121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669185

RESUMO

How genomic differences contribute to phenotypic differences is a major question in biology. The recently characterized genomes, isolation environments, and qualitative patterns of growth on 122 sources and conditions of 1,154 strains from 1,049 fungal species (nearly all known) in the yeast subphylum Saccharomycotina provide a powerful, yet complex, dataset for addressing this question. We used a random forest algorithm trained on these genomic, metabolic, and environmental data to predict growth on several carbon sources with high accuracy. Known structural genes involved in assimilation of these sources and presence/absence patterns of growth in other sources were important features contributing to prediction accuracy. By further examining growth on galactose, we found that it can be predicted with high accuracy from either genomic (92.2%) or growth data (82.6%) but not from isolation environment data (65.6%). Prediction accuracy was even higher (93.3%) when we combined genomic and growth data. After the GALactose utilization genes, the most important feature for predicting growth on galactose was growth on galactitol, raising the hypothesis that several species in two orders, Serinales and Pichiales (containing the emerging pathogen Candida auris and the genus Ogataea, respectively), have an alternative galactose utilization pathway because they lack the GAL genes. Growth and biochemical assays confirmed that several of these species utilize galactose through an alternative oxidoreductive D-galactose pathway, rather than the canonical GAL pathway. Machine learning approaches are powerful for investigating the evolution of the yeast genotype-phenotype map, and their application will uncover novel biology, even in well-studied traits.


Assuntos
Galactose , Aprendizado de Máquina , Galactose/metabolismo , Genoma Fúngico , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
5.
Plant Cell ; 35(7): 2615-2634, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37052931

RESUMO

Ascorbate (vitamin C) is an essential antioxidant in fresh fruits and vegetables. To gain insight into the regulation of ascorbate metabolism in plants, we studied mutant tomato plants (Solanum lycopersicum) that produce ascorbate-enriched fruits. The causal mutation, identified by a mapping-by-sequencing strategy, corresponded to a knock-out recessive mutation in a class of photoreceptor named PAS/LOV protein (PLP), which acts as a negative regulator of ascorbate biosynthesis. This trait was confirmed by CRISPR/Cas9 gene editing and further found in all plant organs, including fruit that accumulated 2 to 3 times more ascorbate than in the WT. The functional characterization revealed that PLP interacted with the 2 isoforms of GDP-L-galactose phosphorylase (GGP), known as the controlling step of the L-galactose pathway of ascorbate synthesis. The interaction with GGP occurred in the cytoplasm and the nucleus, but was abolished when PLP was truncated. These results were confirmed by a synthetic approach using an animal cell system, which additionally demonstrated that blue light modulated the PLP-GGP interaction. Assays performed in vitro with heterologously expressed GGP and PLP showed that PLP is a noncompetitive inhibitor of GGP that is inactivated after blue light exposure. This discovery provides a greater understanding of the light-dependent regulation of ascorbate metabolism in plants.


Assuntos
Antioxidantes , Galactose , Galactose/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico , Luz , Frutas/genética , Frutas/metabolismo , Fosforilases/genética , Fosforilases/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Bioessays ; 46(2): e2300061, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38058119

RESUMO

Sarcopenia is a process of progressive aging-associated loss of skeletal muscle mass (SMM) recognized as a serious global health issue contributing to frailty and increased all-cause mortality. Exercise and nutritional interventions (particularly intake of dairy products and milk) demonstrate good efficacy, safety, and broad applicability. Here, we propose that at least some of the well-documented favorable effects of milk and milk-derived protein supplements on SMM might be mediated by D-galactose, a monosaccharide present in large quantities in milk in the form of disaccharide lactose (milk sugar). We suggest that ingestion of dairy products results in exposure to D-galactose in concentrations metabolized primarily via the Leloir pathway with the potential to (i) promote anabolic signaling via maintenance of growth factor (e.g., insulin-like growth factor 1 [IGF-1]) receptor mature glycosylation patterns; and (ii) provide extracellular (liver glycogen) and intracellular substrates for short (muscle glycolysis) and long-term (muscle glycogen, intramyocellular lipids) energy availability. Additionally, D-galactose might optimize the metabolic function of skeletal muscles by increasing mitochondrial content and stimulating glucose and fatty acid utilization. The proposed potential of D-galactose to promote the accretion of SMM is discussed in the context of its therapeutic potential in sarcopenia.


Assuntos
Sarcopenia , Humanos , Animais , Sarcopenia/metabolismo , Leite/química , Leite/metabolismo , Galactose/análise , Galactose/metabolismo , Galactose/farmacologia , Músculo Esquelético/fisiologia , Nutrientes , Hipertrofia
7.
Nucleic Acids Res ; 52(12): 7367-7383, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38808673

RESUMO

Temperature is an important control factor for biologics biomanufacturing in precision fermentation. Here, we explored a highly responsive low temperature-inducible genetic system (LowTempGAL) in the model yeast Saccharomyces cerevisiae. Two temperature biosensors, a heat-inducible degron and a heat-inducible protein aggregation domain, were used to regulate the GAL activator Gal4p, rendering the leaky LowTempGAL systems. Boolean-type induction was achieved by implementing a second-layer control through low-temperature-mediated repression on GAL repressor gene GAL80, but suffered delayed response to low-temperature triggers and a weak response at 30°C. Application potentials were validated for protein and small molecule production. Proteomics analysis suggested that residual Gal80p and Gal4p insufficiency caused suboptimal induction. 'Turbo' mechanisms were engineered through incorporating a basal Gal4p expression and a galactose-independent Gal80p-supressing Gal3p mutant (Gal3Cp). Varying Gal3Cp configurations, we deployed the LowTempGAL systems capable for a rapid stringent high-level induction upon the shift from a high temperature (37-33°C) to a low temperature (≤30°C). Overall, we present a synthetic biology procedure that leverages 'leaky' biosensors to deploy highly responsive Boolean-type genetic circuits. The key lies in optimisation of the intricate layout of the multi-factor system. The LowTempGAL systems may be applicable in non-conventional yeast platforms for precision biomanufacturing.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Temperatura Baixa , Galactose/metabolismo , Técnicas Biossensoriais
8.
J Biol Chem ; 300(5): 107215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522518

RESUMO

Sugar absorption is crucial for life and relies on glucose transporters, including sodium-glucose cotransporters (SGLTs). Although the structure of SGLTs has been resolved, the substrate selectivity of SGLTs across diverse isoforms has not been determined owing to the complex substrate-recognition processes and limited analysis methods. Therefore, this study used voltage-clamp fluorometry (VCF) to explore the substrate-binding affinities of human SGLT1 in Xenopus oocytes. VCF analysis revealed high-affinity binding of D-glucose and D-galactose, which are known transported substrates. D-fructose, which is not a transported substrate, also bound to SGLT1, suggesting potential recognition despite the lack of transport activity. VCF analysis using the T287N mutant of the substrate-binding pocket, which has reduced D-glucose transport capacity, showed that its D-galactose-binding affinity exceeded its D-glucose-binding affinity. This suggests that the change in the VCF signal was due to substrate binding to the binding pocket. Both D-fructose and L-sorbose showed similar binding affinities, indicating that SGLT1 preferentially binds to pyranose-form sugars, including D-fructopyranose. Electrophysiological analysis confirmed that D-fructose binding did not affect the SGLT1 transport function. The significance of the VCF assay lies in its ability to measure sugar-protein interactions in living cells, thereby bridging the gap between structural analyses and functional characterizations of sugar transporters. Our findings also provide insights into SGLT substrate selectivity and the potential for developing medicines with reduced side effects by targeting non-glucose sugars with low bioreactivity.


Assuntos
Fluorometria , Glucose , Oócitos , Transportador 1 de Glucose-Sódio , Xenopus laevis , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/química , Animais , Humanos , Fluorometria/métodos , Glucose/metabolismo , Oócitos/metabolismo , Ligação Proteica , Técnicas de Patch-Clamp , Galactose/metabolismo , Frutose/metabolismo , Frutose/química , Sítios de Ligação
9.
Plant J ; 117(3): 805-817, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37983622

RESUMO

Ascorbate plays an indispensable role in plants, functioning as both an antioxidant and a cellular redox buffer. It is widely acknowledged that the ascorbate biosynthesis in the photosynthetic tissues of land plants is governed by light-mediated regulation of the D-mannose/L-galactose (D-Man/L-Gal) pathway. At the core of this light-dependent regulation lies the VTC2 gene, encoding the rate-limiting enzyme GDP-L-Gal phosphorylase. The VTC2 expression is regulated by signals via the photosynthetic electron transport system. In this study, we directed our attention to the liverwort Marchantia polymorpha, representing one of the basal land plants, enabling us to conduct an in-depth analysis of its ascorbate biosynthesis. The M. polymorpha genome harbors a solitary gene for each enzyme involved in the D-Man/L-Gal pathway, including VTC2, along with three lactonase orthologs, which may be involved in the alternative ascorbate biosynthesis pathway. Through supplementation experiments with potential precursors, we observed that only L-Gal exhibited effectiveness in ascorbate biosynthesis. Furthermore, the generation of VTC2-deficient mutants through genome editing unveiled the inability of thallus regeneration in the absence of L-Gal supplementation, thereby revealing the importance of the D-Man/L-Gal pathway in ascorbate biosynthesis within M.  polymorpha. Interestingly, gene expression analyses unveiled a distinct characteristic of M. polymorpha, where none of the genes associated with the D-Man/L-Gal pathway, including VTC2, showed upregulation in response to light, unlike other known land plants. This study sheds light on the exceptional nature of M. polymorpha as a land plant that has evolved distinctive mechanisms concerning ascorbate biosynthesis and its regulation.


Assuntos
Marchantia , Humanos , Marchantia/genética , Marchantia/metabolismo , Galactose/metabolismo , Manose/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Mol Microbiol ; 121(5): 912-926, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38400525

RESUMO

Fungal cell walls represent the frontline contact with the host and play a prime role in pathogenesis. While the roles of the cell wall polymers like chitin and branched ß-glucan are well understood in vegetative and pathogenic development, that of the most prominent galactose-containing polymers galactosaminogalactan and fungal-type galactomannan is unknown in plant pathogenic fungi. Mining the genome of the maize pathogen Colletotrichum graminicola identified the single-copy key galactose metabolism genes UGE1 and UGM1, encoding a UDP-glucose-4-epimerase and UDP-galactopyranose mutase, respectively. UGE1 is thought to be required for biosynthesis of both polymers, whereas UGM1 is specifically required for fungal-type galactomannan formation. Promoter:eGFP fusion strains revealed that both genes are expressed in vegetative and in pathogenic hyphae at all stages of pathogenesis. Targeted deletion of UGE1 and UGM1, and fluorescence-labeling of galactosaminogalactan and fungal-type galactomannan confirmed that Δuge1 mutants were unable to synthesize either of these polymers, and Δugm1 mutants did not exhibit fungal-type galactomannan. Appressoria of Δuge1, but not of Δugm1 mutants, were defective in adhesion, highlighting a function of galactosaminogalactan in the establishment of these infection cells on hydrophobic surfaces. Both Δuge1 and Δugm1 mutants showed cell wall defects in older vegetative hyphae and severely reduced appressorial penetration competence. On intact leaves of Zea mays, both mutants showed strongly reduced disease symptom severity, indicating that UGE1 and UGM1 represent novel virulence factors of C. graminicola.


Assuntos
Colletotrichum , Proteínas Fúngicas , Galactose , Doenças das Plantas , Fatores de Virulência , Zea mays , Parede Celular/metabolismo , Colletotrichum/genética , Colletotrichum/metabolismo , Colletotrichum/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactanos/metabolismo , Galactose/metabolismo , Galactose/análogos & derivados , Hifas/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Mananas/metabolismo , Doenças das Plantas/microbiologia , UDPglucose 4-Epimerase/metabolismo , UDPglucose 4-Epimerase/genética , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Zea mays/microbiologia
11.
Trends Genet ; 38(1): 97-106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34538504

RESUMO

The Leloir galactose utilization or GAL pathway of budding yeasts, including that of the baker's yeast Saccharomyces cerevisiae and the opportunistic human pathogen Candida albicans, breaks down the sugar galactose for energy and biomass production. The GAL pathway has long served as a model system for understanding how eukaryotic metabolic pathways, including their modes of regulation, evolve. More recently, the physical linkage of the structural genes GAL1, GAL7, and GAL10 in diverse budding yeast genomes has been used as a model for understanding the evolution of gene clustering. In this review, we summarize exciting recent work on three different aspects of this iconic pathway's evolution: gene cluster organization, GAL gene regulation, and the population genetics of the GAL pathway.


Assuntos
Saccharomycetales , Galactose/genética , Galactose/metabolismo , Genes Fúngicos , Humanos , Família Multigênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
12.
Genes Cells ; 29(10): 876-888, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39219252

RESUMO

Cataracts are a disease that reduces vision due to opacity formation of the lens. Diabetic cataracts occur at young age and progress relatively quickly, so the development of effective treatment has been awaited. Several studies have shown that pyruvate inhibits oxidative stress and glycation of lens proteins, which contribute to onset of diabetic cataracts. However, detailed molecular mechanisms have not been revealed. In this study, we attempted to reduce galactose-induced opacity by pyruvate with rat ex vivo model. Rat lenses were extracted and cultured in galactose-containing medium to induce lens opacity. After opacity had developed, continued culturing with pyruvate in the medium resulted in a reduction of lens opacity. Subsequently, we conducted microarray analysis to investigate the genes that contribute to the therapeutic effect. We performed quantitative expression measurements using RT-qPCR for extracted genes that were upregulated in cataract-induced lenses and downregulated in pyruvate-treated lenses, resulting in the identification of 34 candidate genes. Functional analysis using the STRING database suggests that metallothionein-related factors (Mt1a, Mt1m, and Mt2A) and epithelial-mesenchymal transition-related factors (Acta2, Anxa1, Cd81, Mki67, Timp1, and Tyms) contribute to the therapeutic effect of cataracts.


Assuntos
Catarata , Modelos Animais de Doenças , Galactose , Cristalino , Ácido Pirúvico , Animais , Catarata/genética , Catarata/metabolismo , Catarata/induzido quimicamente , Galactose/metabolismo , Ratos , Ácido Pirúvico/metabolismo , Cristalino/metabolismo , Cristalino/patologia , Cristalino/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Transição Epitelial-Mesenquimal/efeitos dos fármacos
13.
Plant Physiol ; 195(3): 2176-2194, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423969

RESUMO

Leaf senescence is a combined response of plant cells stimulated by internal and external signals. Sugars acting as signaling molecules or energy metabolites can influence the progression of leaf senescence. Both sugar starvation and accumulation can promote leaf senescence with diverse mechanisms that are reported in different species. Sugars Will Eventually be Exported Transporters (SWEETs) are proposed to play essential roles in sugar transport, but whether they have roles in senescence and the corresponding mechanism are unclear. Here, we functionally characterized a sugar transporter, OsSWEET1b, which transports sugar and promotes senescence in rice (Oryza sativa L.). OsSWEET1b could import glucose and galactose when heterologously expressed in Xenopus oocytes and translocate glucose and galactose from the extracellular apoplast into the intracellular cytosol in rice. Loss of function of OsSWEET1b decreased glucose and galactose accumulation in leaves. ossweet1b mutants showed accelerated leaf senescence under natural and dark-induced conditions. Exogenous application of glucose and galactose complemented the defect of OsSWEET1b deletion-promoted senescence. Moreover, the senescence-activated transcription factor OsWRKY53, acting as a transcriptional repressor, genetically functions upstream of OsSWEET1b to suppress its expression. OsWRKY53-overexpressing plants had attenuated sugar accumulation, exhibiting a similar phenotype as the ossweet1b mutants. Our findings demonstrate that OsWRKY53 downregulates OsSWEET1b to impair its influx transport activity, leading to compromised sugar accumulation in the cytosol of rice leaves where sugar starvation promotes leaf senescence.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Folhas de Planta , Proteínas de Plantas , Oryza/genética , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glucose/metabolismo , Senescência Vegetal/genética , Galactose/metabolismo , Açúcares/metabolismo , Deleção de Genes , Transporte Biológico
14.
Blood ; 141(4): 406-421, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36395340

RESUMO

Glycosylation is recognized as a key process for proper megakaryopoiesis and platelet formation. The enzyme uridine diphosphate (UDP)-galactose-4-epimerase, encoded by GALE, is involved in galactose metabolism and protein glycosylation. Here, we studied 3 patients from 2 unrelated families who showed lifelong severe thrombocytopenia, bleeding diathesis, mental retardation, mitral valve prolapse, and jaundice. Whole-exome sequencing revealed 4 variants that affect GALE, 3 of those previously unreported (Pedigree A, p.Lys78ValfsX32 and p.Thr150Met; Pedigree B, p.Val128Met; and p.Leu223Pro). Platelet phenotype analysis showed giant and/or grey platelets, impaired platelet aggregation, and severely reduced alpha and dense granule secretion. Enzymatic activity of the UDP-galactose-4-epimerase enzyme was severely decreased in all patients. Immunoblotting of platelet lysates revealed reduced GALE protein levels, a significant decrease in N-acetyl-lactosamine (LacNAc), showing a hypoglycosylation pattern, reduced surface expression of gylcoprotein Ibα-IX-V (GPIbα-IX-V) complex and mature ß1 integrin, and increased apoptosis. In vitro studies performed with patients-derived megakaryocytes showed normal ploidy and maturation but decreased proplatelet formation because of the impaired glycosylation of the GPIbα and ß1 integrin, and reduced externalization to megakaryocyte and platelet membranes. Altered distribution of filamin A and actin and delocalization of the von Willebrand factor were also shown. Overall, this study expands our knowledge of GALE-related thrombocytopenia and emphasizes the critical role of GALE in the physiological glycosylation of key proteins involved in platelet production and function.


Assuntos
Trombocitopenia , UDPglucose 4-Epimerase , Humanos , Plaquetas/metabolismo , Galactose/metabolismo , Glicosilação , Integrina beta1/metabolismo , Megacariócitos/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombopoese/genética , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , Difosfato de Uridina/metabolismo
15.
Exp Cell Res ; 439(1): 114075, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710404

RESUMO

Leber's hereditary optic neuropathy (LHON) is a visual impairment associated with mutations of mitochondrial genes encoding elements of the electron transport chain. While much is known about the genetics of LHON, the cellular pathophysiology leading to retinal ganglion cell degeneration and subsequent vision loss is poorly understood. The impacts of the G11778A mutation of LHON on bioenergetics, redox balance and cell proliferation were examined in patient-derived fibroblasts. Replacement of glucose with galactose in the culture media reveals a deficit in the proliferation of G11778A fibroblasts, imparts a reduction in ATP biosynthesis, and a reduction in capacity to accommodate exogenous oxidative stress. While steady-state ROS levels were unaffected by the LHON mutation, cell survival was diminished in response to exogenous H2O2.


Assuntos
DNA Mitocondrial , Fibroblastos , Galactose , Mutação , Atrofia Óptica Hereditária de Leber , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Galactose/metabolismo , Mutação/genética , Proliferação de Células/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Células Cultivadas , Glucose/metabolismo , Glucose/farmacologia
16.
Nature ; 567(7746): 123-126, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814733

RESUMO

Cannabis sativa L. has been cultivated and used around the globe for its medicinal properties for millennia1. Some cannabinoids, the hallmark constituents of Cannabis, and their analogues have been investigated extensively for their potential medical applications2. Certain cannabinoid formulations have been approved as prescription drugs in several countries for the treatment of a range of human ailments3. However, the study and medicinal use of cannabinoids has been hampered by the legal scheduling of Cannabis, the low in planta abundances of nearly all of the dozens of known cannabinoids4, and their structural complexity, which limits bulk chemical synthesis. Here we report the complete biosynthesis of the major cannabinoids cannabigerolic acid, Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid and cannabidivarinic acid in Saccharomyces cerevisiae, from the simple sugar galactose. To accomplish this, we engineered the native mevalonate pathway to provide a high flux of geranyl pyrophosphate and introduced a heterologous, multi-organism-derived hexanoyl-CoA biosynthetic pathway5. We also introduced the Cannabis genes that encode the enzymes involved in the biosynthesis of olivetolic acid6, as well as the gene for a previously undiscovered enzyme with geranylpyrophosphate:olivetolate geranyltransferase activity and the genes for corresponding cannabinoid synthases7,8. Furthermore, we established a biosynthetic approach that harnessed the promiscuity of several pathway genes to produce cannabinoid analogues. Feeding different fatty acids to our engineered strains yielded cannabinoid analogues with modifications in the part of the molecule that is known to alter receptor binding affinity and potency9. We also demonstrated that our biological system could be complemented by simple synthetic chemistry to further expand the accessible chemical space. Our work presents a platform for the production of natural and unnatural cannabinoids that will allow for more rigorous study of these compounds and could be used in the development of treatments for a variety of human health problems.


Assuntos
Vias Biossintéticas , Canabinoides/biossíntese , Canabinoides/química , Cannabis/química , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Acil Coenzima A/biossíntese , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Benzoatos/metabolismo , Vias Biossintéticas/genética , Canabinoides/metabolismo , Cannabis/genética , Dronabinol/análogos & derivados , Dronabinol/metabolismo , Fermentação , Galactose/metabolismo , Ácido Mevalônico/metabolismo , Fosfatos de Poli-Isoprenil/biossíntese , Fosfatos de Poli-Isoprenil/metabolismo , Saccharomyces cerevisiae/genética , Salicilatos/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(10): e2117930119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35239434

RESUMO

SignificanceWhile most small, regulatory RNAs are thought to be "noncoding," a few have been found to also encode a small protein. Here we describe a 164-nucleotide RNA that encodes a 28-amino acid, amphipathic protein, which interacts with aerobic glycerol-3-phosphate dehydrogenase and increases dehydrogenase activity but also base pairs with two mRNAs to reduce expression. The coding and base-pairing sequences overlap, and the two regulatory functions compete.


Assuntos
Carbono/metabolismo , Escherichia coli/metabolismo , RNA Bacteriano/fisiologia , Meios de Cultura , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Galactose/metabolismo , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo
18.
J Bacteriol ; 206(10): e0015524, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39297619

RESUMO

We identified and characterized genomic regions of Streptococcus agalactiae that are involved in the Leloir and the tagatose-6-phosphate pathways for D-galactose catabolism. The accumulation of mutations in genes coding the Leloir pathway and the absence of these genes in a significant proportion of the strains suggest that this pathway may no longer be necessary for S. agalactiae and is heading toward extinction. In contrast, a genomic region containing genes coding for intermediates of the tagatose-6-phosphate pathway, a Gat family PTS transporter, and a DeoR/GlpR family regulator is present in the vast majority of strains. By deleting genes that code for intermediates of each of these two pathways in three selected strains, we demonstrated that the tagatose-6-phosphate pathway is their sole route for galactose catabolism. Furthermore, we showed that the Gat family PTS transporter acts as the primary importer of galactose in S. agalactiae. Finally, we proved that the DeoR/GlpR family regulator is a repressor of the tagatose-6-phosphate pathway and that galactose triggers the induction of this biochemical mechanism.IMPORTANCES. agalactiae, a significant pathogen for both humans and animals, encounters galactose and galactosylated components within its various ecological niches. We highlighted the capability of this bacterium to metabolize D-galactose and showed the role of the tagatose-6-phosphate pathway and of a PTS importer in this biochemical process. Since S. agalactiae relies on carbohydrate fermentation for energy production, its ability to uptake and metabolize D-galactose could enhance its persistence and its competitiveness within the microbiome.


Assuntos
Proteínas de Bactérias , Galactose , Regulação Bacteriana da Expressão Gênica , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/enzimologia , Galactose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hexosefosfatos/metabolismo , Hexosefosfatos/genética , Redes e Vias Metabólicas/genética , Fosfotransferases/metabolismo , Fosfotransferases/genética
19.
J Cell Mol Med ; 28(16): e70027, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159149

RESUMO

Ageing is the most prominent risk for osteoarthritis (OA) development. This study aimed to investigate the role of phosphoinositide-specific phospholipase Cγ (PLCγ) 1, previously linked to OA progression, in regulating age-related changes in articular cartilage and subchondral bone. d-galactose (d-Gal) was employed to treat chondrocytes from rats and mice or injected intraperitoneally into C57BL/6 mice. RTCA, qPCR, Western blot and immunohistochemistry assays were used to evaluate cell proliferation, matrix synthesis, senescence genes and senescence-associated secretory phenotype, along with PLCγ1 expression. Subchondral bone morphology was assessed through micro-CT. In mice with chondrocyte-specific Plcg1 deficiency (Plcg1flox/flox; Col2a1-CreERT), articular cartilage and subchondral bone were examined over different survival periods. Our results showed that d-Gal induced chondrocyte senescence, expedited articular cartilage ageing and caused subchondral bone abnormalities. In d-Gal-induced chondrocytes, diminished PLCγ1 expression was observed, and its further inhibition by U73122 exacerbated chondrocyte senescence. Plcg1flox/flox; Col2a1-CreERT mice exhibited more pronounced age-related changes in articular cartilage and subchondral bone compared to Plcg1flox/flox mice. Therefore, not only does d-Gal induce senescence in chondrocytes and age-related changes in articular cartilage and subchondral bone, as well as diminished PLCγ1 expression, but PLCγ1 deficiency in chondrocytes may also accelerate age-related changes in articular cartilage and subchondral bone. PLCγ1 may be a promising therapeutic target for mitigating age-related changes in joint tissue.


Assuntos
Cartilagem Articular , Condrócitos , Camundongos Endogâmicos C57BL , Fosfolipase C gama , Animais , Masculino , Camundongos , Ratos , Envelhecimento/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Osso e Ossos/diagnóstico por imagem , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Proliferação de Células , Senescência Celular , Condrócitos/metabolismo , Estrenos/farmacologia , Galactose/metabolismo , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/etiologia , Fosfolipase C gama/metabolismo , Fosfolipase C gama/genética , Pirrolidinonas/farmacologia
20.
J Biol Chem ; 299(2): 102903, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642179

RESUMO

Members of glycosyltransferase family 75 (GT75) not only reversibly catalyze the autoglycosylation of a conserved arginine residue with specific NDP-sugars but also exhibit NDP-pyranose mutase activity that reversibly converts specific NDP-pyranose to NDP-furanose. The latter activity provides valuable NDP-furanosyl donors for glycosyltransferases and requires a divalent cation as a cofactor instead of FAD used by UDP-D-galactopyranose mutase. However, details of the mechanism for NDP-pyranose mutase activity are not clear. Here we report the first crystal structures of GT75 family NDP-pyranose mutases. The novel structures of GT75 member MtdL in complex with Mn2+ and GDP, GDP-D-glucopyranose, GDP-L-fucopyranose, GDP-L-fucofuranose, respectively, combined with site-directed mutagenesis studies, reveal key residues involved in Mn2+ coordination, substrate binding, and catalytic reactions. We also provide a possible catalytic mechanism for this unique type of NDP-pyranose mutase. Taken together, our results highlight key elements of an enzyme family important for furanose biosynthesis.


Assuntos
Actinobacteria , Glicosiltransferases , Transferases Intramoleculares , Galactose/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Transferases Intramoleculares/química , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Mutagênese Sítio-Dirigida , Actinobacteria/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA