Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 588(7839): 642-647, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33177713

RESUMO

Gene-expression programs define shared and species-specific phenotypes, but their evolution remains largely uncharacterized beyond the transcriptome layer1. Here we report an analysis of the co-evolution of translatomes and transcriptomes using ribosome-profiling and matched RNA-sequencing data for three organs (brain, liver and testis) in five mammals (human, macaque, mouse, opossum and platypus) and a bird (chicken). Our within-species analyses reveal that translational regulation is widespread in the different organs, in particular across the spermatogenic cell types of the testis. The between-species divergence in gene expression is around 20% lower at the translatome layer than at the transcriptome layer owing to extensive buffering between the expression layers, which especially preserved old, essential and housekeeping genes. Translational upregulation specifically counterbalanced global dosage reductions during the evolution of sex chromosomes and the effects of meiotic sex-chromosome inactivation during spermatogenesis. Despite the overall prevalence of buffering, some genes evolved faster at the translatome layer-potentially indicating adaptive changes in expression; testis tissue shows the highest fraction of such genes. Further analyses incorporating mass spectrometry proteomics data establish that the co-evolution of transcriptomes and translatomes is reflected at the proteome layer. Together, our work uncovers co-evolutionary patterns and associated selective forces across the expression layers, and provides a resource for understanding their interplay in mammalian organs.


Assuntos
Evolução Molecular , Mamíferos/genética , Biossíntese de Proteínas , Transcriptoma/genética , Animais , Encéfalo/metabolismo , Galinhas/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Fígado/metabolismo , Macaca/genética , Masculino , Camundongos , Gambás/genética , Especificidade de Órgãos/genética , Ornitorrinco/genética , Biossíntese de Proteínas/genética , RNA-Seq , Ribossomos/metabolismo , Cromossomos Sexuais/genética , Especificidade da Espécie , Espermatogênese/genética , Testículo/metabolismo , Regulação para Cima
2.
PLoS Genet ; 19(2): e1010556, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802379

RESUMO

X-chromosome inactivation (XCI) silences one X in female cells to balance sex-differences in X-dosage. A subset of X-linked genes escape XCI, but the extent to which this phenomenon occurs and how it varies across tissues and in a population is as yet unclear. To characterize incidence and variability of escape across individuals and tissues, we conducted a transcriptomic study of escape in adipose, skin, lymphoblastoid cell lines and immune cells in 248 healthy individuals exhibiting skewed XCI. We quantify XCI escape from a linear model of genes' allelic fold-change and XIST-based degree of XCI skewing. We identify 62 genes, including 19 lncRNAs, with previously unknown patterns of escape. We find a range of tissue-specificity, with 11% of genes escaping XCI constitutively across tissues and 23% demonstrating tissue-restricted escape, including cell type-specific escape across immune cells of the same individual. We also detect substantial inter-individual variability in escape. Monozygotic twins share more similar escape than dizygotic twins, indicating that genetic factors may underlie inter-individual differences in escape. However, discordant escape also occurs within monozygotic co-twins, suggesting environmental factors also influence escape. Altogether, these data indicate that XCI escape is an under-appreciated source of transcriptional differences, and an intricate phenotype impacting variable trait expressivity in females.


Assuntos
Cromossomos Humanos X , Inativação do Cromossomo X , Humanos , Feminino , Inativação do Cromossomo X/genética , Cromossomos Humanos X/genética , Genes Ligados ao Cromossomo X/genética , Gêmeos Monozigóticos/genética , Fenótipo
3.
Am J Hum Genet ; 108(1): 176-185, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33245860

RESUMO

Fibroblast growth factor homologous factors (FHFs) are intracellular proteins which regulate voltage-gated sodium (Nav) channels in the brain and other tissues. FHF dysfunction has been linked to neurological disorders including epilepsy. Here, we describe two sibling pairs and three unrelated males who presented in infancy with intractable focal seizures and severe developmental delay. Whole-exome sequencing identified hemi- and heterozygous variants in the N-terminal domain of the A isoform of FHF2 (FHF2A). The X-linked FHF2 gene (also known as FGF13) has alternative first exons which produce multiple protein isoforms that differ in their N-terminal sequence. The variants were located at highly conserved residues in the FHF2A inactivation particle that competes with the intrinsic fast inactivation mechanism of Nav channels. Functional characterization of mutant FHF2A co-expressed with wild-type Nav1.6 (SCN8A) revealed that mutant FHF2A proteins lost the ability to induce rapid-onset, long-term blockade of the channel while retaining pro-excitatory properties. These gain-of-function effects are likely to increase neuronal excitability consistent with the epileptic potential of FHF2 variants. Our findings demonstrate that FHF2 variants are a cause of infantile-onset developmental and epileptic encephalopathy and underline the critical role of the FHF2A isoform in regulating Nav channel function.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Fatores de Crescimento de Fibroblastos/genética , Mutação de Sentido Incorreto/genética , Isoformas de Proteínas/genética , Adolescente , Sequência de Aminoácidos , Criança , Éxons/genética , Feminino , Mutação com Ganho de Função/genética , Genes Ligados ao Cromossomo X/genética , Heterozigoto , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/fisiologia , Convulsões/genética
4.
Clin Genet ; 105(2): 173-184, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37899624

RESUMO

Duplication of all genes associated with X-linked intellectual disability (XLID) have been reported but the majority of the duplications include more than one XLID gene. It is exceptional for whole XLID gene duplications to cause the same phenotype as sequence variants or deletions of the same gene. Duplication of PLP1, the gene associated with Pelizaeus-Merzbacher syndrome, is the most notable duplication of this type. More commonly, duplication of XLID genes results in very different phenotypes than sequence alterations or deletions. Duplication of MECP2 is widely recognized as a duplication of this type, but a number of others exist. The phenotypes associated with gene duplications are often milder than those caused by deletions and sequence variants. Among some duplications that are clinically significant, marked skewing of X-inactivation in female carriers has been observed. This report describes the phenotypic consequences of duplication of 22 individual XLID genes, of which 10 are described for the first time.


Assuntos
Deficiência Intelectual , Humanos , Feminino , Deficiência Intelectual/genética , Genes Ligados ao Cromossomo X/genética , Duplicação Gênica , Inativação do Cromossomo X/genética , Mutação
5.
PLoS Genet ; 17(10): e1009792, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662332

RESUMO

The transformer (tra) gene is essential for female development in many insect species, including the Australian sheep blow fly, Lucilia cuprina. Sex-specific tra RNA splicing is controlled by Sex lethal (Sxl) in Drosophila melanogaster but is auto-regulated in L. cuprina. Sxl also represses X chromosome dosage compensation in female D. melanogaster. We have developed conditional Lctra RNAi knockdown strains using the tet-off system. Four strains did not produce females on diet without tetracycline and could potentially be used for genetic control of L. cuprina. In one strain, which showed both maternal and zygotic tTA expression, most XX transformed males died at the pupal stage. RNAseq and qRT-PCR analyses of mid-stage pupae showed increased expression of X-linked genes in XX individuals. These results suggest that Lctra promotes somatic sexual differentiation and inhibits X chromosome dosage compensation in female L. cuprina. However, XX flies homozygous for a loss-of-function Lctra knockin mutation were fully transformed and showed high pupal eclosion. Two of five X-linked genes examined showed a significant increase in mRNA levels in XX males. The stronger phenotype in the RNAi knockdown strain could indicate that maternal Lctra expression may be essential for initiation of dosage compensation suppression in female embryos.


Assuntos
Mecanismo Genético de Compensação de Dose/genética , Drosophila melanogaster/genética , Genes de Insetos/genética , Animais , Animais Geneticamente Modificados , Austrália , Calliphoridae/genética , Dípteros/genética , Proteínas de Drosophila/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Masculino , Pupa/genética , Interferência de RNA/fisiologia , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Ovinos , Fatores de Transcrição/genética , Cromossomo X/genética
6.
Am J Med Genet A ; 191(1): 144-159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300573

RESUMO

Genes that are involved in the transcription process, mitochondrial function, glycoprotein metabolism, and ubiquitination dominate the list of 21 new genes associated with X-linked intellectual disability since the last update in 2017. The new genes were identified by sequencing of candidate genes (2), the entire X-chromosome (2), the whole exome (15), or the whole genome (2). With these additions, 42 (21%) of the 199 named XLID syndromes and 27 (25%) of the 108 numbered nonsyndromic XLID families remain to be resolved at the molecular level. Although the pace of discovery of new XLID genes has slowed during the past 5 years, the density of genes on the X chromosome that cause intellectual disability still appears to be twice the density of intellectual disability genes on the autosomes.


Assuntos
Genes Ligados ao Cromossomo X , Deficiência Intelectual , Humanos , Mutação , Genes Ligados ao Cromossomo X/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Exoma , Linhagem
7.
Am J Med Genet A ; 191(2): 599-604, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36416207

RESUMO

The ZDHHC9 gene encodes the Zinc Finger DHHC-Type Containing 9 protein that functions as a palmitoyltransferase. Variants in this gene have been reported as the cause of Raymond-type X-linked intellectual disability with only 16 families described in the literature. This study reviews molecular and clinical data from previously reported patients and reports the case of a 13-year-old patient with a splicing variant in ZDHHC9 presenting intellectual disability, developmental delay, facial dysmorphisms, and skeletal defects. Although intellectual disability and developmental delay with severe speech delay have been reported in all cases with available clinical data, the remaining clinical signs differ significantly between patients. Missense, nonsense, frameshift, and splicing variants, in addition to large exonic deletions, have been described suggesting a loss of function mechanism. Though variants are distributed in almost all exons, most missense and nonsense variants affect arginine residues located in the cytoplasmic domains of this transmembrane protein, suggesting possible mutational hotspots.


Assuntos
Deficiência Intelectual , Adolescente , Humanos , Éxons/genética , Mutação da Fase de Leitura , Genes Ligados ao Cromossomo X/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Mutação , Fenótipo
8.
Nature ; 550(7675): 244-248, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29022598

RESUMO

X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of 'escape' from inactivation varying between genes and individuals. The extent to which XCI is shared between cells and tissues remains poorly characterized, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression and phenotypic traits. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.


Assuntos
Especificidade de Órgãos/genética , Análise de Célula Única , Inativação do Cromossomo X/genética , Cromossomos Humanos X/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Genoma Humano/genética , Genômica , Humanos , Masculino , Fenótipo , Análise de Sequência de RNA , Transcriptoma/genética
9.
J Med Genet ; 59(11): 1044-1057, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149592

RESUMO

BACKGROUND: Heterozygous loss of X-linked genes like CASK and MeCP2 (Rett syndrome) causes developmental delay in girls, while in boys, loss of the only allele of these genes leads to epileptic encephalopathy. The mechanism for these disorders remains unknown. CASK-linked cerebellar hypoplasia is presumed to result from defects in Tbr1-reelin-mediated neuronal migration. METHOD: Here we report clinical and histopathological analyses of a deceased 2-month-old boy with a CASK-null mutation. We next generated a mouse line where CASK is completely deleted (hemizygous and homozygous) from postmigratory neurons in the cerebellum. RESULT: The CASK-null human brain was smaller in size but exhibited normal lamination without defective neuronal differentiation, migration or axonal guidance. The hypoplastic cerebellum instead displayed astrogliosis and microgliosis, which are markers for neuronal loss. We therefore hypothesise that CASK loss-induced cerebellar hypoplasia is the result of early neurodegeneration. Data from the murine model confirmed that in CASK loss, a small cerebellum results from postdevelopmental degeneration of cerebellar granule neurons. Furthermore, at least in the cerebellum, functional loss from CASK deletion is secondary to degeneration of granule cells and not due to an acute molecular functional loss of CASK. Intriguingly, female mice with heterozygous deletion of CASK in the cerebellum do not display neurodegeneration. CONCLUSION: We suggest that X-linked neurodevelopmental disorders like CASK mutation and Rett syndrome are pathologically neurodegenerative; random X-chromosome inactivation in heterozygous mutant girls, however, results in 50% of cells expressing the functional gene, resulting in a non-progressive pathology, whereas complete loss of the only allele in boys leads to unconstrained degeneration and encephalopathy.


Assuntos
Doenças Cerebelares , Doenças Neurodegenerativas , Síndrome de Rett , Masculino , Humanos , Animais , Feminino , Camundongos , Lactente , Genes Ligados ao Cromossomo X/genética , Guanilato Quinases/genética , Síndrome de Rett/genética , Doenças Cerebelares/genética , Doenças Neurodegenerativas/genética
10.
Hum Mol Genet ; 29(15): 2523-2534, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32628254

RESUMO

A common feature of autoimmune diseases, including systemic lupus erythematosus (SLE), is an increased prevalence in women. However, the molecular basis for sex disparity in SLE remains poorly understood. To examine the role of X-linked transcription in SLE adaptive immune cells, we performed RNA-seq in T cell and B cell subsets from either healthy donors or patients with SLE. Analyses of allelic expression (AE) profiles identified a pattern of increased allelic imbalance across the entire X chromosome in SLE lymphocytes. X-linked genes exhibiting AE in SLE had an extensive overlap with genes known to escape X chromosome inactivation (XCI). XIST RNA was overexpressed in SLE patients. Differential XIST expression correlated with AE profiles more positively at X-linked genes than the genome-wide background. Analysis of three independent RNA-seq data verified the XIST-associated skewed AE on X chromosome in SLE. Integrative analyses of DNA methylation profiles showed an increased variability of DNA methylation levels at these AE-related X-linked genes. In cultured lymphoblastic cells, knockdown of XIST specifically altered allelic imbalance patterns between X chromosomes. Our study provides genetic evidence that upregulation of XIST accompanied with more skewed allelic expression on X chromosome is associated with the pathogenesis of SLE and may provide mechanistic insights into the increased incidence of SLE in females.


Assuntos
Metilação de DNA/genética , Lúpus Eritematoso Sistêmico/genética , RNA Longo não Codificante/genética , Linfócitos T/metabolismo , Inativação do Cromossomo X/genética , Adulto , Alelos , Linhagem Celular , Cromossomos Humanos X/genética , Feminino , Regulação da Expressão Gênica/genética , Genes Ligados ao Cromossomo X/genética , Humanos , Lúpus Eritematoso Sistêmico/patologia , Linfócitos/patologia , RNA-Seq , Linfócitos T/patologia
11.
Am J Hum Genet ; 105(5): 987-995, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31587868

RESUMO

NKAP is a ubiquitously expressed nucleoplasmic protein that is currently known as a transcriptional regulatory molecule via its interaction with HDAC3 and spliceosomal proteins. Here, we report a disorder of transcriptional regulation due to missense mutations in the X chromosome gene, NKAP. These mutations are clustered in the C-terminal region of NKAP where NKAP interacts with HDAC3 and post-catalytic spliceosomal complex proteins. Consistent with a role for the C-terminal region of NKAP in embryogenesis, nkap mutant zebrafish with a C-terminally truncated NKAP demonstrate severe developmental defects. The clinical features of affected individuals are highly conserved and include developmental delay, hypotonia, joint contractures, behavioral abnormalities, Marfanoid habitus, and scoliosis. In affected cases, transcriptome analysis revealed the presence of a unique transcriptome signature, which is characterized by the downregulation of long genes with higher exon numbers. These observations indicate the critical role of NKAP in transcriptional regulation and demonstrate that perturbations of the C-terminal region lead to developmental defects in both humans and zebrafish.


Assuntos
Disfunção Cognitiva/genética , Mutação de Sentido Incorreto/genética , Proteínas Repressoras/genética , Transcrição Gênica/genética , Sequência de Aminoácidos , Animais , Regulação para Baixo/genética , Éxons/genética , Regulação da Expressão Gênica/genética , Genes Ligados ao Cromossomo X/genética , Histona Desacetilases/genética , Humanos , Alinhamento de Sequência , Transcriptoma/genética , Peixe-Zebra/genética
12.
Br J Haematol ; 196(4): 969-974, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34651299

RESUMO

Azacitidine can be effective in myelodysplastic syndromes (MDS) associated with inflammatory/autoimmune diseases. Vacuoles, E1 Enzyme, X-linked, Autoinflammatory, Somatic syndrome (VEXAS) is a new monogenic autoinflammatory syndrome caused by somatic ubiquitin-like modifier-activating enzyme 1 (UBA1) mutation, often associated with MDS, whose treatment is difficult and not yet codified. Based on a French nationwide registry of 116 patients with VEXAS, we report the efficacy and safety of azacitidine treatment in 11 patients with VEXAS with MDS. Clinical response of VEXAS to azacitidine was achieved in five patients (46%), during 6, 8+, 12, 21, 27+ months respectively, suggesting that azacitidine can be effective in selected patients with VEXAS and associated MDS.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/uso terapêutico , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Dermatopatias Genéticas/tratamento farmacológico , Idoso , Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/farmacologia , Feminino , França , Humanos , Masculino , Pessoa de Meia-Idade , Sistema de Registros
13.
Genome Res ; 29(10): 1659-1672, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31515287

RESUMO

Induction and reversal of chromatin silencing is critical for successful development, tissue homeostasis, and the derivation of induced pluripotent stem cells (iPSCs). X-Chromosome inactivation (XCI) and reactivation (XCR) in female cells represent chromosome-wide transitions between active and inactive chromatin states. Although XCI has long been studied, providing important insights into gene regulation, the dynamics and mechanisms underlying the reversal of stable chromatin silencing of X-linked genes are much less understood. Here, we use allele-specific transcriptomics to study XCR during mouse iPSC reprogramming in order to elucidate the timing and mechanisms of chromosome-wide reversal of gene silencing. We show that XCR is hierarchical, with subsets of genes reactivating early, late, and very late during reprogramming. Early genes are activated before the onset of late pluripotency genes activation. Early genes are located genomically closer to genes that escape XCI, unlike genes reactivating late. Early genes also show increased pluripotency transcription factor (TF) binding. We also reveal that histone deacetylases (HDACs) restrict XCR in reprogramming intermediates and that the severe hypoacetylation state of the inactive X Chromosome (Xi) persists until late reprogramming stages. Altogether, these results reveal the timing of transcriptional activation of monoallelically repressed genes during iPSC reprogramming, and suggest that allelic activation involves the combined action of chromatin topology, pluripotency TFs, and chromatin regulators. These findings are important for our understanding of gene silencing, maintenance of cell identity, reprogramming, and disease.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética , Animais , Cromatina/genética , Feminino , Inativação Gênica , Genes Ligados ao Cromossomo X/genética , Histona Desacetilases/genética , Camundongos , Ativação Transcricional/genética , Cromossomo X/genética
14.
Biol Reprod ; 107(1): 157-167, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35554494

RESUMO

Although hundreds of knockout mice show infertility as a major phenotype, the causative genic mutations of male infertility in humans remain rather limited. Here, we report the identification of a missense mutation (D136G) in the X-linked TAF7L gene as a potential cause of oligozoospermia in men. The human aspartate (D136) is evolutionally conserved across species, and its change to glycine (G) is predicted to be detrimental. Genetic complementation experiments in budding yeast demonstrate that the conserved aspartate or its analogous asparagine (N) residue in yeast TAF7 is essential for cell viability and thus its mutation to G is lethal. Although the corresponding D144G substitution in the mouse Taf7l gene does not affect male fertility, RNA-seq analyses reveal alterations in transcriptomic profiles in the Taf7l (D144G) mutant testes. These results support TAF7L mutation as a risk factor for oligozoospermia in humans.


Assuntos
Infertilidade Masculina , Oligospermia , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Animais , Ácido Aspártico , Genes Ligados ao Cromossomo X/genética , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Mutação , Mutação de Sentido Incorreto , Oligospermia/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética
15.
Genet Res (Camb) ; 2022: 1391807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387179

RESUMO

X-chromosome inactivation (XCI) is the form of dosage compensation in mammalian female cells to balance X-linked gene expression levels of the two sexes. Many diseases are related to XCI due to inactivation escape and skewing, and the symptoms and severity of these diseases also largely depend on the status of XCI. They can be divided into 3 types: X-linked diseases, diseases that are affected by XCI escape, and X-chromosome aneuploidy. Here, we review representative diseases in terms of their definition, symptoms, and XCI's role in the pathogenesis of these diseases.


Assuntos
Genes Ligados ao Cromossomo X , Inativação do Cromossomo X , Aneuploidia , Animais , Mecanismo Genético de Compensação de Dose , Feminino , Genes Ligados ao Cromossomo X/genética , Mamíferos/genética , Cromossomo X , Inativação do Cromossomo X/genética
16.
Brain ; 144(9): 2798-2811, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34687211

RESUMO

The G4C2-repeat expansion in C9orf72 is the most common cause of frontotemporal dementia and of amyotrophic lateral sclerosis. The variability of age at onset and phenotypic presentations is a hallmark of C9orf72 disease. In this study, we aimed to identify modifying factors of disease onset in C9orf72 carriers using a family-based approach, in pairs of C9orf72 carrier relatives with concordant or discordant age at onset. Linkage and association analyses provided converging evidence for a locus on chromosome Xq27.3. The minor allele A of rs1009776 was associated with an earlier onset (P = 1 × 10-5). The association with onset of dementia was replicated in an independent cohort of unrelated C9orf72 patients (P = 0.009). The protective major allele delayed the onset of dementia from 5 to 13 years on average depending on the cohort considered. The same trend was observed in an independent cohort of C9orf72 patients with extreme deviation of the age at onset (P = 0.055). No association of rs1009776 was detected in GRN patients, suggesting that the effect of rs1009776 was restricted to the onset of dementia due to C9orf72. The minor allele A is associated with a higher SLITRK2 expression based on both expression quantitative trait loci (eQTL) databases and in-house expression studies performed on C9orf72 brain tissues. SLITRK2 encodes for a post-synaptic adhesion protein. We further show that synaptic vesicle glycoprotein 2 and synaptophysin, two synaptic vesicle proteins, were decreased in frontal cortex of C9orf72 patients carrying the minor allele. Upregulation of SLITRK2 might be associated with synaptic dysfunctions and drives adverse effects in C9orf72 patients that could be modulated in those carrying the protective allele. How the modulation of SLITRK2 expression affects synaptic functions and influences the disease onset of dementia in C9orf72 carriers will require further investigations. In summary, this study describes an original approach to detect modifier genes in rare diseases and reinforces rising links between C9orf72 and synaptic dysfunctions that might directly influence the occurrence of first symptoms.


Assuntos
Proteína C9orf72/genética , Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/genética , Genes Ligados ao Cromossomo X/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Degeneração Lobar Frontotemporal/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
17.
Cell Mol Life Sci ; 78(21-22): 7043-7060, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34633482

RESUMO

Several X-linked genes are involved in neuronal differentiation and may contribute to the generation of sex dimorphisms in the brain. Previous results showed that XX hypothalamic neurons grow faster, have longer axons, and exhibit higher expression of the neuritogenic gene neurogenin 3 (Ngn3) than XY before perinatal masculinization. Here we evaluated the participation of candidate X-linked genes in the development of these sex differences, focusing mainly on Kdm6a, a gene encoding for an H3K27 demethylase with functions controlling gene expression genome-wide. We established hypothalamic neuronal cultures from wild-type or transgenic Four Core Genotypes mice, a model that allows evaluating the effect of sex chromosomes independently of gonadal type. X-linked genes Kdm6a, Eif2s3x and Ddx3x showed higher expression in XX compared to XY neurons, regardless of gonadal sex. Moreover, Kdm6a expression pattern with higher mRNA levels in XX than XY did not change with age at E14, P0, and P60 in hypothalamus or under 17ß-estradiol treatment in culture. Kdm6a pharmacological blockade by GSK-J4 reduced axonal length only in female neurons and decreased the expression of neuritogenic genes Neurod1, Neurod2 and Cdk5r1 in both sexes equally, while a sex-specific effect was observed in Ngn3. Finally, Kdm6a downregulation using siRNA reduced axonal length and Ngn3 expression only in female neurons, abolishing the sex differences observed in control conditions. Altogether, these results point to Kdm6a as a key mediator of the higher axogenesis and Ngn3 expression observed in XX neurons before the critical period of brain masculinization.


Assuntos
Genes Ligados ao Cromossomo X/genética , Histona Desmetilases/genética , Histonas/genética , Hipotálamo/fisiologia , Neurônios/fisiologia , Diferenciação Sexual/genética , Animais , Axônios/fisiologia , Feminino , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Caracteres Sexuais
18.
Neurogenetics ; 22(3): 149-160, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089394

RESUMO

The second most common form of Charcot-Marie-Tooth neuropathy (CMT), X-linked CMT type X1 (CMTX1), is caused by coding and non-coding mutations in the gap junction beta 1 (GJB1) gene. The non-coding GJB1 c.-103C > T mutation (NM_000166.5) has been reported to cause CMTX1 in multiple families. This study assessed the internal ribosomal entry site (IRES) activity previously reported for the rat Gjb1 P2 5' untranslated region (UTR). Using a bicistronic assay and transfecting RT4 Schwann cells, IRES activity of the human GJB1 P2 5' UTR was compared to the GJB1 P2 5' UTR containing either the c.-103C > T mutation or the non-pathogenic c.-102G > A variant. No differences in GJB1 P2 5' UTR IRES activity were observed between the negative control, the wild-type P2 5' UTR, the c.-103C > T 5' UTR or the c.-102G > A 5' UTR, irrespective of the GJB1 intron being present (p = .429 with intron, and p = .865 without). A theoretical c.-131A > G variant was predicted to result in the same RNA secondary structure as the GJB1 c.-103C > T P2 5' UTR. However, no significant difference was observed between expression from the wild-type GJB1 P2 5' UTR and the GJB1 c.-131A > G variant (p = .688). Deletion of the conserved region surrounding the c.-103C > T mutation (c.-108_-103del) resulted in significantly higher expression than the c.-103C > T mutation alone (p = .019), suggesting that the conserved c.-108_-103 region was not essential for translation. The reporter assays in this study do not recapitulate the previously reported GJB1 IRES activity and suggest an alternate pathogenic mechanism for the c.-103C > T CMTX1 non-coding mutation.


Assuntos
Regiões 5' não Traduzidas/efeitos dos fármacos , Doença de Charcot-Marie-Tooth/genética , Genes Ligados ao Cromossomo X/genética , Animais , Doença de Charcot-Marie-Tooth/etiologia , Conexinas/genética , Junções Comunicantes/genética , Junções Comunicantes/patologia , Mutação/genética , Ratos
19.
Hum Mol Genet ; 28(8): 1331-1342, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576442

RESUMO

X chromosome inactivation (XCI) is a key epigenetic gene expression regulatory process, which may play a role in women's cancer. In particular tissues, some genes are known to escape XCI, yet patterns of XCI in ovarian cancer (OC) and their clinical associations are largely unknown. To examine XCI in OC, we integrated germline genotype with tumor copy number, gene expression and DNA methylation information from 99 OC patients. Approximately 10% of genes showed different XCI status (either escaping or being subject to XCI) compared with the studies of other tissues. Many of these genes are known oncogenes or tumor suppressors (e.g. DDX3X, TRAPPC2 and TCEANC). We also observed strong association between cis promoter DNA methylation and allele-specific expression imbalance (P = 2.0 × 10-10). Cluster analyses of the integrated data identified two molecular subgroups of OC patients representing those with regulated (N = 47) and dysregulated (N = 52) XCI. This XCI cluster membership was associated with expression of X inactive specific transcript (P = 0.002), a known driver of XCI, as well as age, grade, stage, tumor histology and extent of residual disease following surgical debulking. Patients with dysregulated XCI (N = 52) had shorter time to recurrence (HR = 2.34, P = 0.001) and overall survival time (HR = 1.87, P = 0.02) than those with regulated XCI, although results were attenuated after covariate adjustment. Similar findings were observed when restricted to high-grade serous tumors. We found evidence of a unique OC XCI profile, suggesting that XCI may play an important role in OC biology. Additional studies to examine somatic changes with paired tumor-normal tissue are needed.


Assuntos
Carcinoma Epitelial do Ovário/genética , Genes Ligados ao Cromossomo X/genética , Inativação do Cromossomo X/fisiologia , Idoso , Alelos , Carcinoma Epitelial do Ovário/metabolismo , Cromossomos Humanos X/genética , Análise por Conglomerados , Metilação de DNA/genética , Epigênese Genética/genética , Feminino , Regulação da Expressão Gênica/genética , Frequência do Gene/genética , Estudos de Associação Genética/métodos , Genótipo , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante , Fatores de Transcrição/genética , Inativação do Cromossomo X/genética
20.
Hum Genet ; 140(1): 203-215, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31875237

RESUMO

The X chromosome is a key player in germ cell development, as has been highlighted for males in previous studies revealing that the mammalian X chromosome is enriched in genes expressed in early spermatogenesis. In this review, we focus on the X chromosome's unique biology as associated with human male infertility. Male infertility is most commonly caused by spermatogenic defects to which X chromosome dosage is closely linked; for example, any supernumerary X chromosome as in Klinefelter syndrome will lead to male infertility. Furthermore, because males normally only have a single X chromosome and because X-linked genetic anomalies are generally only present in a single copy in males, any loss-of-function mutations in single-copy X-chromosomal genes cannot be compensated by a normal allele. These features make X-linked genes particularly attractive for studying male spermatogenic failure. However, to date, only very few genetic causes have been identified as being definitively responsible for male infertility in humans. Although genetic studies of germ cell-enriched X-chromosomal genes in mice suggest a role of certain human orthologs in infertile men, these genes in mice and humans have striking evolutionary differences. Furthermore, the complexity and highly repetitive structure of the X chromosome hinder the mutational analysis of X-linked genes in humans. Therefore, we conclude that additional methodological approaches are urgently warranted to advance our understanding of the genetics of X-linked male infertility.


Assuntos
Cromossomos Humanos X/genética , Infertilidade Masculina/genética , Animais , Genes Ligados ao Cromossomo X/genética , Humanos , Masculino , Mutação/genética , Espermatogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA