Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.453
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Int Immunol ; 36(4): 155-166, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38108401

RESUMO

Ulcerative colitis (UC) is a chronic disorder of the large intestine with inflammation and ulceration. The incidence and prevalence of UC have been rapidly increasing worldwide, but its etiology remains unknown. In patients with UC, the accumulation of eosinophils in the large intestinal mucosa is associated with increased disease activity. However, the molecular mechanism underlying the promotion of intestinal eosinophilia in patients with UC remains poorly understood. Here, we show that uridine diphosphate (UDP)-glucose mediates the eosinophil-dependent promotion of colonic inflammation via the purinergic receptor P2Y14. The expression of P2RY14 mRNA was upregulated in the large intestinal mucosa of patients with UC. The P2Y14 receptor ligand UDP-glucose was increased in the large intestinal tissue of mice administered dextran sodium sulfate (DSS). In addition, P2ry14 deficiency and P2Y14 receptor blockade mitigated DSS-induced colitis. Among the large intestinal immune cells and epithelial cells, eosinophils highly expressed P2ry14 mRNA. P2ry14-/- mice transplanted with wild-type bone marrow eosinophils developed more severe DSS-induced colitis compared with P2ry14-/- mice that received P2ry14-deficient eosinophils. UDP-glucose prolonged the lifespan of eosinophils and promoted gene transcription in the cells through P2Y14 receptor-mediated activation of ERK1/2 signaling. Thus, the UDP-glucose/P2Y14 receptor axis aggravates large intestinal inflammation by accelerating the accumulation and activation of eosinophils.


Assuntos
Colite Ulcerativa , Eosinofilia , Humanos , Camundongos , Animais , Uridina Difosfato Glucose/farmacologia , Eosinófilos , Inflamação , Mucosa Intestinal , RNA Mensageiro , Glucose/efeitos adversos , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
J Biol Chem ; 299(9): 105127, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544647

RESUMO

Diabetic keratopathy, commonly associated with a hyperactive inflammatory response, is one of the most common eye complications of diabetes. The peptide hormone fibroblast growth factor-21 (FGF-21) has been demonstrated to have anti-inflammatory and antioxidant properties. However, whether administration of recombinant human (rh) FGF-21 can potentially regulate diabetic keratopathy is still unknown. Therefore, in this work, we investigated the role of rhFGF-21 in the modulation of corneal epithelial wound healing, the inflammation response, and oxidative stress using type 1 diabetic mice and high glucose-treated human corneal epithelial cells. Our experimental results indicated that the application of rhFGF-21 contributed to the enhancement of epithelial wound healing. This treatment also led to advancements in tear production and reduction in corneal edema. Moreover, there was a notable reduction in the levels of proinflammatory cytokines such as TNF-α, IL-6, IL-1ß, MCP-1, IFN-γ, MMP-2, and MMP-9 in both diabetic mouse corneal epithelium and human corneal epithelial cells treated with high glucose. Furthermore, we found rhFGF-21 treatment inhibited reactive oxygen species production and increased levels of anti-inflammatory molecules IL-10 and SOD-1, which suggests that FGF-21 has a protective role in diabetic corneal epithelial healing by increasing the antioxidant capacity and reducing the release of inflammatory mediators and matrix metalloproteinases. Therefore, we propose that administration of FGF-21 may represent a potential treatment for diabetic keratopathy.


Assuntos
Doenças da Córnea , Complicações do Diabetes , Diabetes Mellitus Experimental , Epitélio Corneano , Fatores de Crescimento de Fibroblastos , Mediadores da Inflamação , Estresse Oxidativo , Cicatrização , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doenças da Córnea/complicações , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/metabolismo , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Epitélio Corneano/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/uso terapêutico , Glucose/efeitos adversos , Glucose/metabolismo , Mediadores da Inflamação/metabolismo , Metaloproteinases da Matriz/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
3.
Am J Nephrol ; 55(2): 202-205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37579741

RESUMO

Recently, hyperosmolar hyponatremia following excessive off-label use of two exchanges of 2 L icodextrin daily during peritoneal dialysis (PD) was reported. We encountered a cluster of 3 cases of PD patients who developed hyperosmolar hyponatremia during on-label use of icodextrin. This appeared to be due to absorption of icodextrin since after stopping icodextrin, the serum sodium level and osmol gap returned to normal, while a rechallenge again resulted in hyperosmolar hyponatremia. We excluded higher than usual concentrations of specific fractions of dextrins in fresh icodextrin dialysis fluid (lot numbers of used batches were checked by manufacturer). We speculate that in our patients, either an exaggerated degradation of polysaccharide chains by α-amylase activity in dialysate, lymph, and interstitium and/or rapid hydrolysis of the absorbed larger degradation products in the circulation may have contributed to the hyperosmolality observed, with the concentration of oligosaccharides exceeding the capacity of intracellular enzymes (in particular maltase) to metabolize these products to glucose. Both hyponatremia and hyperosmolality are risk factors for poor outcomes in PD patients. Less conventional PD prescriptions such as off-label use of two exchanges of 2 L icodextrin might raise the risk of this threatening side effect. This brief report is intended to create awareness of a rare complication of on-label icodextrin use in a subset of PD patients and/or PD prescriptions.


Assuntos
Hiponatremia , Diálise Peritoneal , Desequilíbrio Hidroeletrolítico , Humanos , Icodextrina/efeitos adversos , Hiponatremia/induzido quimicamente , Hiponatremia/tratamento farmacológico , Glucanos/efeitos adversos , Glucanos/metabolismo , Soluções para Diálise/efeitos adversos , Diálise Peritoneal/efeitos adversos , Diálise Peritoneal/métodos , Glucose/efeitos adversos , Glucose/metabolismo , Desequilíbrio Hidroeletrolítico/tratamento farmacológico
4.
Ren Fail ; 46(1): 2318413, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38369750

RESUMO

The prevalence of diabetic kidney disease (DKD) is increasing annually. Damage to and loss of podocytes occur early in DKD. tRNA-derived fragments (tRFs), originating from tRNA precursors or mature tRNAs, are associated with various illnesses. In this study, tRFs were identified, and their roles in podocyte injury induced by high-glucose (HG) treatment were explored. High-throughput sequencing of podocytes treated with HG was performed to identify differentially expressed tRFs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The expression levels of nephrin, podocin, and desmin were measured in podocytes after overexpression of tRF-1:24-Glu-CTC-1-M2 (tRF-1:24) and concomitant HG treatment. A total of 647 tRFs were identified, and 89 differentially expressed tRFs (|log2FC| ≥ 0.585; p ≤ .05) were identified in the HG group, of which 53 tRFs were downregulated and 36 tRFs were upregulated. The 10 tRFs with the highest differential expression were detected by real-time quantitative polymerase chain reaction (RT-qPCR), and these results were consistent with the sequencing results. GO analysis revealed that the biological process, cellular component, and molecular function terms in which the tRFs were the most enriched were cellular processes, cellular anatomical entities, and binding. KEGG pathway analysis revealed that tRFs may be involved in signaling pathways related to growth hormones, phospholipase D, the regulation of stem cell pluripotency, and T-/B-cell receptors. Overexpression of tRF-1:24, one of the most differentially expressed tRFs, attenuated podocyte injury induced by HG. Thus, tRFs might be potential biomarkers for podocyte injury in DKD.


Assuntos
Glucose , Podócitos , Glucose/efeitos adversos , Glucose/farmacologia , Podócitos/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Transdução de Sinais , Nefropatias Diabéticas/epidemiologia
5.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396842

RESUMO

Type 2 diabetes is characterized by hyperglycemia and a relative loss of ß-cell function. Our research investigated the antidiabetic potential of betulin, a pentacyclic triterpenoid found primarily in birch bark and, intriguingly, in a few marine organisms. Betulin has been shown to possess diverse biological activities, including antioxidant and antidiabetic activities; however, no studies have fully explored the effects of betulin on the pancreas and pancreatic islets. In this study, we investigated the effect of betulin on streptozotocin-nicotinamide (STZ)-induced diabetes in female Wistar rats. Betulin was prepared as an emulsion, and intragastric treatments were administered at doses of 20 and 50 mg/kg for 28 days. The effect of treatment was assessed by analyzing glucose parameters such as fasting blood glucose, hemoglobin A1C, and glucose tolerance; hepatic and renal biomarkers; lipid peroxidation; antioxidant enzymes; immunohistochemical analysis; and hematological indices. Administration of betulin improved the glycemic response and decreased α-amylase activity in diabetic rats, although insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) scores remained unchanged. Furthermore, betulin lowered the levels of hepatic biomarkers (aspartate aminotransferase, alanine aminotransferase, and alpha-amylase activities) and renal biomarkers (urea and creatine), in addition to improving glutathione levels and preventing the elevation of lipid peroxidation in diabetic animals. We also found that betulin promoted the regeneration of ß-cells in a dose-dependent manner but did not have toxic effects on the pancreas. In conclusion, betulin at a dose of 50 mg/kg exerts a pronounced protective effect against cytolysis, diabetic nephropathy, and damage to the acinar pancreas and may be a potential treatment option for diabetes.


Assuntos
Ácido Betulínico , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Feminino , Animais , Antioxidantes/uso terapêutico , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Ratos Wistar , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/induzido quimicamente , Glicemia , Extratos Vegetais/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Glucose/efeitos adversos , Biomarcadores , alfa-Amilases
6.
Zhongguo Zhong Yao Za Zhi ; 49(17): 4734-4743, 2024 Sep.
Artigo em Zh | MEDLINE | ID: mdl-39307808

RESUMO

This study aims to explore the inhibitory effect of daidzein on macrophage inflammation induced by high glucose via regulating the NOD-like receptor protein 3(NLRP3) inflammasome signaling pathway. The cell counting kit-8(CCK-8) assay was employed to detect the effects of daidzein at different concentrations on the viability of RAW264.7 cells. Western blot was employed to determine the protein level of tumor necrosis factor(TNF)-α in macrophages exposed to different concentrations of glucose for different time periods as well as the expression levels of proteins involved in the polarization and Toll-like receptor 4(TLR4)-myeloid differentiation factor(MyD88)-NLRP3 inflammasome pathway of the macrophages exposed to high glucose. Enzyme-linked immunosorbent assay was employed to measure the levels of TNF-α, interleukin(IL)-18, and IL-1ß secreted by macrophages. The expression level of nuclear factor-kappa B(NF-κB) p65 in macrophages exposed to high glucose was detected by immunofluorescence, and the level of intracellular reactive oxygen species(ROS) was detected by the DCFH-DA fluorescent probe. The mRNA levels of NLRP3, TNF-α, and IL-18 in macrophages were determined by qRT-PCR. The results showed that treatment with 30 mmol·L~(-1) glucose for 48 h was the best condition for the modeling of macrophage injury. Compared with the blank group, the model group showed improved polarization of macrophages, increased secretion of TNF-α, IL-18, and IL-1ß, elevated ROS level, and up-regulated expression of NF-κB p65. In addition, the modeling up-regulated the mRNA levels of NLRP3, TNF-α, and IL-18 and the protein levels of TLR4, MyD88, NLRP3, NF-κB p65, p-NF-κB p65, I-κB, p-I-κB, ASC, pro-caspase-1, pro-IL-1ß, cleaved IL-1ß, and pro-IL-18. Compared with the model group, daidzein(10, 20, and 40 µmol·L~(-1)) lowered the levels of inflammatory cytokines and down-regulated the mRNA levels of NLRP3, TNF-α, and IL-18 as well as the protein levels of TLR4, MyD88, NLRP3, NF-κB p65, p-NF-κB p65, I-κB, p-I-κB, ASC, pro-caspase-1, pro-IL-1ß, cleaved IL-1ß, and pro-IL-18. In addition, daidzein reduced intracellular ROS. According to the available reports and the experimental results, high glucose can induce the polarization of macrophages and promote the secretion of inflammatory cytokines. Daidzein can inhibit the expression of ROS in macrophages by regulating the NLRP3 inflammasome signaling pathway, thereby reducing the inflammation of macrophages exposed to high glucose.


Assuntos
Glucose , Inflamassomos , Isoflavonas , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glucose/efeitos adversos , Isoflavonas/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Células RAW 264.7 , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-18/imunologia
7.
Biol Reprod ; 109(1): 83-96, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37115805

RESUMO

The aim of this study was to determine the impact of glycyrrhizin, an inhibitor of high mobility group box 1, on glucose metabolic disorders and ovarian dysfunction in mice with polycystic ovary syndrome. We generated a polycystic ovary syndrome mouse model by using dehydroepiandrosterone plus high-fat diet. Glycyrrhizin (100 mg/kg) was intraperitoneally injected into the polycystic ovary syndrome mice and the effects on body weight, glucose tolerance, insulin sensitivity, estrous cycle, hormone profiles, ovarian pathology, glucolipid metabolism, and some molecular mechanisms were investigated. Increased number of cystic follicles, hormonal disorders, impaired glucose tolerance, and decreased insulin sensitivity in the polycystic ovary syndrome mice were reverted by glycyrrhizin. The increased high mobility group box 1 levels in the serum and ovarian tissues of the polycystic ovary syndrome mice were also reduced by glycyrrhizin. Furthermore, increased expressions of toll-like receptor 9, myeloid differentiation factor 88, and nuclear factor kappa B as well as reduced expressions of insulin receptor, phosphorylated protein kinase B, and glucose transporter type 4 were restored by glycyrrhizin in the polycystic ovary syndrome mice. Glycyrrhizin could suppress the polycystic ovary syndrome-induced upregulation of high mobility group box 1, several inflammatory marker genes, and the toll-like receptor 9/myeloid differentiation factor 88/nuclear factor kappa B pathways, while inhibiting the insulin receptor/phosphorylated protein kinase B/glucose transporter type 4 pathways. Hence, glycyrrhizin is a promising therapeutic agent against polycystic ovary syndrome.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Camundongos , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Ácido Glicirrízico/efeitos adversos , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/uso terapêutico , NF-kappa B/metabolismo , Transportador de Glucose Tipo 4 , Fator 88 de Diferenciação Mieloide/metabolismo , Insulina/metabolismo , Glucose/efeitos adversos
8.
J Cardiovasc Electrophysiol ; 34(8): 1776-1780, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37393607

RESUMO

INTRODUCTION: Dynamic ECG changes in Brugada syndrome (BrS) are influenced by several factors, may not be apparent, and can be unmasked by a drug test. METHODS AND RESULTS: Four of six patients with nondiagnostic Brugada ECG index patterns underwent a dextrose-insulin challenge test that resulted in J-ST segment elevation and triggered arrhythmias. CONCLUSION: Insulin action may be due in part to an outward shift in the K+ current at the end of action potential phase 1 and the dispersion of repolarization, leading to local re-entry with arrhythmogenicity. This effect is likely a phenomenon-specific to BrS.


Assuntos
Síndrome de Brugada , Insulinas , Humanos , Síndrome de Brugada/diagnóstico , Arritmias Cardíacas , Glucose/efeitos adversos , Eletrocardiografia , Insulinas/efeitos adversos
9.
Neuropsychobiology ; 82(1): 33-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36577389

RESUMO

INTRODUCTION: Research in humans has identified a link between hypoglycemia and anxiety. The present study examined anxiety-like behaviors in rats that were subjected to hypoglycemia that was produced by an acute injection of insulin. Healthy female Wistar rats were subjected to a battery of tests to explore anxiety (elevated plus maze) and locomotion (open field test). METHODS: The control (CT) group received 0.9% saline (3 mL/kg, p.o.). Three other groups received 50% glucose (3 mL/kg, p.o.), insulin (0.1 UI, s.c.), or insulin + glucose (normalized glycemia [NG] group). RESULTS: Normal glycemic values were found in the CT and NG groups. Therefore, a single control (CT-NG) group was formed for statistical comparisons. The highest glycemic value was found in the glucose-induced hyperglycemia group. The lowest glycemic value was found in the insulin-induced hypoglycemia group. In the open field test, the most significant change was a higher number of rearings in the hypoglycemia group. In the elevated plus maze test, the CT-NG group and hyperglycemia groups exhibited similar behavior, whereas the hypoglycemia group spent a shorter time on the open arms and a longer time on the closed arms and had the highest Anxiety Index. Hyperglycemia is a typical characteristic of diabetes. Insulin normalizes glycemia. In the present study, insulin produced anxiety only when it produced hypoglycemia. CONCLUSION: The main effect of acute hypoglycemia is anxiety, which may be considered an early sign of hypoglycemia in an allostatic process.


Assuntos
Hiperglicemia , Hipoglicemia , Humanos , Ratos , Feminino , Animais , Ratos Wistar , Ansiedade , Hipoglicemia/complicações , Hipoglicemia/induzido quimicamente , Insulina , Hiperglicemia/induzido quimicamente , Hiperglicemia/complicações , Glucose/efeitos adversos
10.
J Pediatr Hematol Oncol ; 45(6): e695-e701, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37053507

RESUMO

Approximately 4% to 35% of pediatric patients undergoing treatment for acute lymphoblastic leukemia (ALL) and lymphoblastic lymphoma (LLy) develop drug-induced hyperglycemia. Though hyperglycemia is associated with poor outcomes, no guidelines for identifying drug-induced hyperglycemia currently exist, and the time course for developing hyperglycemia remains relatively uncharacterized after induction therapy. The present study evaluated a hyperglycemia screening protocol that was implemented to identify hyperglycemia more promptly, examined predictors of hyperglycemia during ALL and LLy therapy, and described the timeline for developing hyperglycemia. A retrospective review of 154 patients diagnosed with ALL or LLy at Cook Children's Medical Center between March 2018 and April 2022 was performed. Predictors of hyperglycemia were examined with Cox regression. The hyperglycemia screening protocol was ordered for 88 (57%) patients. Fifty-four (35%) patients developed hyperglycemia. In multivariate analyses, age 10 years or older (hazard ratio = 2.50, P = 0.007) and weight loss (vs gain) during induction (hazard ratio = 3.39, P < 0.05) were associated with hyperglycemia. The present study identified a population of patients at risk of developing hyperglycemia and identifies strategies for hyperglycemia screening. In addition, the present study showed that some patients developed hyperglycemia after induction therapy, which highlights the importance of continued blood glucose monitoring in at-risk patients. Implications and suggestions for further research are discussed.


Assuntos
Hiperglicemia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Glucose/efeitos adversos , Automonitorização da Glicemia , Glicemia , Detecção Precoce de Câncer , Hiperglicemia/induzido quimicamente , Hiperglicemia/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Estudos Retrospectivos
11.
Phytother Res ; 37(7): 3025-3041, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36879478

RESUMO

Vascular endothelial cell (VEC) injury is a key factor in the development of diabetic vascular complications. Homoplantaginin (Hom), one of the main flavonoids from Salvia plebeia R. Br. has been reported to protect VEC. However, its effects and mechanisms against diabetic vascular endothelium remain unclear. Here, the effect of Hom on VEC was assessed using high glucose (HG)-treated human umbilical vein endothelial cells and db/db mice. In vitro, Hom significantly inhibited apoptosis and promoted autophagosome formation and lysosomal function such as lysosomal membrane permeability and the expression of LAMP1 and cathepsin B. The antiapoptosis effect of Hom was reversed by autophagy inhibitor chloroquine phosphate or bafilomycin A1. Furthermore, Hom promoted gene expression and nuclear translocation of transcription factor EB (TFEB). TFEB gene knockdown attenuated the effect of Hom on upregulating lysosomal function and autophagy. Moreover, Hom activated adenosine monophosphate-dependent protein kinase (AMPK) and inhibited the phosphorylation of mTOR, p70S6K, and TFEB. These effects were attenuated by AMPK inhibitor Compound C. Molecular docking showed a good interaction between Hom and AMPK protein. Animal studies indicated that Hom effectively upregulated the protein expression of p-AMPK and TFEB, enhanced autophagy, reduced apoptosis, and alleviated vascular injury. These findings revealed that Hom ameliorated HG-mediated VEC apoptosis by enhancing autophagy via the AMPK/mTORC1/TFEB pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Camundongos , Animais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glucose/efeitos adversos , Apoptose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/farmacologia
12.
Molecules ; 28(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37110767

RESUMO

Many plants of the Berberis genus have been reported pharmacologically to possess anti-diabetic potential, and Berberis calliobotrys has been found to be an inhibitor of α-glucosidase, α-amylase and tyrosinase. Thus, this study investigated the hypoglycemic effects of Berberis calliobotrys methanol extract/fractions using in vitro and In vivo methods. Bovine serum albumin (BSA), BSA-methylglyoxal and BSA-glucose methods were used to assess anti-glycation activity in vitro, while in vivo hypoglycemic effects were determined by oral glucose tolerance test (OGTT). Moreover, the hypolipidemic and nephroprotective effects were studied and phenolics were detected using high performance liquid chromatography (HPLC). In vitro anti-glycation showed a significant reduction in glycated end-products formation at 1, 0.25 and 0.5 mg/mL. In vivo hypoglycemic effects were tested at 200, 400 and 600 mg/kg by measuring blood glucose, insulin, hemoglobin (Hb) and HbA1c. The synergistic effect of extract/fractions (600 mg/kg) with insulin exhibited a pronounced glucose reduction in alloxan diabetic rats. The oral glucose tolerance test (OGTT) demonstrated a decline in glucose concentration. Moreover, extract/fractions (600 mg/kg) exhibited an improved lipid profile, increased Hb, HbA1c levels and body weight for 30 days. Furthermore, diabetic animals significantly exhibited an upsurge in total protein, albumin and globulin levels, along with a significant improvement in urea and creatinine after extract/fractions administration for 42 days. Phytochemistry revealed alkaloids, tannins, glycosides, flavonoids, phenols, terpenoids and saponins. HPLC showed the presence of phenolics in ethyl acetate fraction that could be accountable for pharmacological actions. Therefore, it can be concluded that Berberis calliobotrys possesses strong hypoglycemic, hypolipidemic and nephroprotective effects, and could be a potential therapeutic agent for diabetes treatment.


Assuntos
Berberis , Diabetes Mellitus Experimental , Ratos , Animais , Hipoglicemiantes/química , Aloxano , Berberis/metabolismo , Hemoglobinas Glicadas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Extratos Vegetais/química , Glicemia , Glucose/efeitos adversos , Insulina , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico
13.
Turk J Med Sci ; 53(1): 10-18, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36945919

RESUMO

BACKGROUND: Diabetes is a multifactorial and growing disease, one of the severe complications of which is diabetic nephropathy (DN), which is the most common cause of chronic renal failure. FERM domain containing 3 (FRMD3) is responsible for maintaining the shape and integrity of nephron cells, and bone morphogenetic protein 7 (BMP7) helps maintain function and reduce kidney damage. This study aimed to evaluate the effect of crocin and losartan on biochemical parameters and the expression of FRMD3 and BMP7 genes in streptozotocin (STZ)-induced diabetic rats. METHODS: Forty male Wistar rats were randomly divided into five experimental groups as healthy, diabetic control (D), crocin, losartan, and diabetic rats treated with losartan-crocin (n = 8). A single dose of STZ (50 mg/kg intraperitoneally injection) was used to induce diabetes. Four weeks after induction of diabetes, rats received crocin (50 mg/kg) and losartan (25 mg/kg) daily for four weeks orally. Rats were sacrificed at the end of the intervention, and blood samples were taken to determine serum levels of glucose, urea, creatinine (Cr), malondialdehyde (MDA), and thiol. Real-time polymerase chain reaction (PCR) was used to assess the expression of the FRMD3 and BMP7 genes in the kidney samples. RESULTS: Diabetes induction increased serum levels of glucose, Cr, urea, MDA, and thiol, but decreased BMP7 and FRMD3 genes expression. Treatment with crocin and losartan decreased these biochemical parameters and increased the expression of the BMP7 and FRMD3 genes. DISCUSSION: Crocin may be a promising therapeutic agent for preventing and improving diabetes-related kidney disease due to its antidiabetic and antioxidant properties.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Masculino , Animais , Losartan , Ratos Wistar , Diabetes Mellitus Experimental/metabolismo , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Estreptozocina/efeitos adversos , Glucose/efeitos adversos , Compostos de Sulfidrila , Estresse Oxidativo
14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 545-551, 2023 May.
Artigo em Zh | MEDLINE | ID: mdl-37248582

RESUMO

Objective: To investigate the protective effect of irisin in diabetic cardiomyopathy (DCM) and its mechanism. Methods: A mouse model of DCM was established by high-fat diet combined with the injection of streptozotocin. The mice were assigned to a control group, a DCM group, a DCM+low-dose irisin group, a DCM+high-dose irisin group, and a DCM+pyrrolidine dithiocarbamate (PDTC) (nuclear factor [NF]-κB inhibitor) group. Then, the mice received irisin intervention for 3 weeks after successful modeling. Myocardial morphologic changes were observed by hematoxylin and eosin (HE) staining and Masson staining. The levels of serum creatine kinase (CK) and creatine kinase isoenzyme CK-MB were examined by automatic biochemical analyzer. H9c2 cells were divided into the control group, high glucose and high lipid (HG/HL) group, HG/HL+low-dose irisin group, HG/HL+high-dose irisin group, and HG/HL+PDTC group. CCK-8 assay was conducted to determine cell viability. The expression levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6 in the myocardial tissue and the cells were determined by ELISA. In addition, nuclear translocation of NF-κB p65 protein and the protein expression level of NF-κB inhibitor protein α (IκBα) in the myocardial tissue and the cells were determined by Western blot. Results: According to the results of animal experiment, low and high doses of irisin could alleviate the pathological injury and fibrosis of myocardial tissue to varying degrees. Irisin inhibited the levels of CK, CK-MB, and inflammatory factors, up-regulated IκB protein expression, and diminished NF-κB nuclear translocation. According to the results of cell experiment, low and high doses of irisin could enhance H9c2 cell viability to varying degrees, increase the level of intracellular IκB proteins, and inhibit NF-κB p65 nuclear translocation and inflammatory factor expression. The changes in these aspects in the DCM+low-dose irisin group and the DCM+high-dose irisin group were similar to those in the DCM+PDTC group. Conclusion: Through inhibiting NF-κB p65 nuclear translocation, irisin may reduce the inflammatory response in the myocardial tissue of DCM mice and H9c2 cells of myocardial injury induced by high glucose and high fat, thereby exerting a protective effect on myocardium.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Camundongos , Animais , NF-kappa B/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/induzido quimicamente , Cardiomiopatias Diabéticas/metabolismo , Fibronectinas , Fator de Necrose Tumoral alfa/metabolismo , Creatina Quinase , Glucose/efeitos adversos
15.
Mol Syst Biol ; 17(1): e9684, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417276

RESUMO

To elucidate the contributions of specific lipid species to metabolic traits, we integrated global hepatic lipid data with other omics measures and genetic data from a cohort of about 100 diverse inbred strains of mice fed a high-fat/high-sucrose diet for 8 weeks. Association mapping, correlation, structure analyses, and network modeling revealed pathways and genes underlying these interactions. In particular, our studies lead to the identification of Ifi203 and Map2k6 as regulators of hepatic phosphatidylcholine homeostasis and triacylglycerol accumulation, respectively. Our analyses highlight mechanisms for how genetic variation in hepatic lipidome can be linked to physiological and molecular phenotypes, such as microbiota composition.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/genética , Glucose/efeitos adversos , Resistência à Insulina/genética , MAP Quinase Quinase 6/genética , Proteínas Nucleares/genética , Animais , Modelos Animais de Doenças , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Lipidômica , Masculino , Camundongos , Fosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo
16.
J Recept Signal Transduct Res ; 42(3): 302-312, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34151713

RESUMO

Emodin has been shown to exert a renoprotective effect in diabetic nephropathy (DN). In this paper, we investigated whether circular RNAs (circRNAs) might be involved in the renoprotective mechanism of emodin in DN. The levels of malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD), interleukin-1ß (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) were measured using the corresponding assay kits. The expression levels of circ_0000064, microRNA (miR)-30c-5p, large multifunctional protease 7 (Lmp7), fibronectin (FN), and collagen type I (Col.1) were gauged by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Subcellular localization assay was used to assess the cellular localization of circ_0000064. Targeted relationships among circ_0000064, miR-30c-5p and Lmp7 were confirmed by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation (RIP) assays. Our data showed the alleviative effect of emodin on HG-induced oxidative stress, inflammation and extracellular matrix (ECM) accumulation in SV-MES13 cells. Circ_0000064 was an importantly downstream effector of emodin function in HG-induced SV40-MES13 cells. Moreover, circ_0000064 directly targeted miR-30c-5p, and circ_0000064 modulated Lmp7 expression through miR-30c-5p. Circ_0000064 silencing alleviated HG-induced cell oxidative stress, inflammation and ECM accumulation via up-regulating miR-30c-5p. The enforced expression of miR-30c-5p attenuated HG-induced oxidative stress, inflammation and ECM accumulation in SV40-MES13 cells by targeting Lmp7. Our findings identified that emodin alleviated HG-induced oxidative stress, inflammation and ECM accumulation in SV40-MES13 cells at least partially by the regulation of the circ_0000064/miR-30c-5p/Lmp7 axis.


Assuntos
Nefropatias Diabéticas , Emodina , MicroRNAs , Complexo de Endopeptidases do Proteassoma , RNA Circular , Linhagem Celular , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Emodina/farmacologia , Matriz Extracelular/genética , Glucose/efeitos adversos , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Células Mesangiais/efeitos dos fármacos , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Complexo de Endopeptidases do Proteassoma/genética , RNA Circular/genética
17.
Exp Physiol ; 107(12): 1493-1506, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36056793

RESUMO

NEW FINDINGS: What is the central question of this study? Activation of the glycogen synthase kinase 3 ß (GSK-3ß)-hypoxia-inducible factor 1 α (HIF-1α) pathway results in stimulation of pyroptosis under high glucose, and exerts actions in a number renal diseases: does this pathway have a role in renal tubular epithelial cells? What is the main finding and its importance? Down-regulation of GSK-3ß can inhibit pyroptosis of renal tubular epithelial cells induced by high glucose and this may be related to down-regulation of HIF-1α. This role of the GSK-3ß-HIF-1α pathway has not previously been reported and identifies a potential new therapeutic target in diabetic nephropathy. ABSTRACT: Diabetic nephropathy (DN) is not only one of the main complications of diabetes, but also has a high incidence rate and a high mortality rate. Glycogen synthase kinase 3 ß (GSK-3ß) and hypoxia-inducible factor 1 α (HIF-1α) have been demonstrated to influence DN by regulating pyroptosis. This study aimed to investigate the effect of the GSK-3ß-HIF-1α pathway on pyroptosis of high-glucose (HG)-induced renal tubular cells. Mouse renal proximal tubular epithelial cells (TKPT cells) were induced by HG to simulate DN cell and we transfected TKPT cells with GSK-3ß knockdown lentivirus. Western blot analysis confirmed the transfection effects and detected the expression of GSK-3ß, HIF-1α, Nod-like receptor protein 3 (NLRP3), cleaved-caspase-1, pro-caspase-1, gasdermin D (GSDMD) and GSDMD-N. The expression of GSDMD-N and HIF-1α were also verified by immunofluorescence. The levels of interleukin (IL)-1ß and IL-18 were measured by enzyme linked immunosorbent assay. Flow cytometric analysis determined the apoptosis rate. Results showed that HIF-1α expression was increased in HG-induced TKPT cells, and GSK-3ß knockdown could decrease the levels of NLRP3, cleaved-caspase-1, GSDMD-N and HIF-1α, verified by immunofluorescence. Moreover, GSK-3ß knockdown suppressed the expression of IL-1ß and IL-18, and reduced the apoptosis rate. Lithium chloride (LiCl) interference could cause the same changes as GSK-3ß knockdown for HG-induced TKPT cells, and dimethyloxallyl glycine could reverse the effect of GSK-3ß-knockdown interference. Our studies definitively demonstrate that the GSK-3ß-HIF-1α signalling pathway mediates HG-stimulated pyroptosis in renal tubular epithelial cells and that down-regulation of GSK-3ß inhibited HG-induced pyroptosis by inhibiting the expression of HIF-1α. These findings suggest a new potential target for the treatment of DN.


Assuntos
Nefropatias Diabéticas , Piroptose , Animais , Camundongos , Caspases/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Células Epiteliais/metabolismo , Glucose/efeitos adversos , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipóxia , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas NLR , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
18.
J Biochem Mol Toxicol ; 36(9): e23121, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35670529

RESUMO

Oxaliplatin (OXL) is a chemotherapeutic drug used for metastatic and other types of cancer, but it causes peripheral neuropathy as a dose-limiting side effect. Herein, we used the rat model of OXL-induced peripheral neuropathy to demonstrate the protective effects of naringin (NRG) in this neuropathy. In this study, rats were injected with OXL (4 mg/kg, body weight, i.p.) in 5% glucose solution 30 min after oral administration of NRG (50 and 100 mg/kg, body weight) on the 1st, 2nd, 5th, and 6th days. OXL caused sensory and motor neuropathy (as revealed by the hot plate, tail flick, rota-rod, and cold hyperalgesia tests) in the sciatic nerve of rats. Coadministration of oral NRG alleviated OXL-induced sensory and motor neuropathy. Levels of superoxide dismutase, catalase, glutathione peroxidase, nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, nuclear factor-κ B, tumor necrosis factor-α, interleukin-1ß, Bax, Bcl-2, caspase-3, paraoxonase, mitogen-activated protein kinase 14, neuronal nitric oxide synthase (nNOS), acetylcholinesterase, and arginase 2 in the sciatic nerve tissues were assessed by real-time polymerase chain reaction. Moreover, the protein levels of caspase-3, Bax, Bcl-2, intercellular adhesion molecules-1, glial fibrillary acidic protein, and nNOS were examined by Western blot analysis. NRG treatment significantly improved all the above-mentioned parameters and reduced OXL-induced oxidative stress, inflammation, and apoptosis in the sciatic nerve tissue. In conclusion, this study demonstrated that NRG significantly attenuated OXL-induced peripheral neuropathy and might be considered as a new protective agent to prevent the OXL-induced peripheral neuropathy.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Doenças do Sistema Nervoso Periférico , Acetilcolinesterase , Animais , Arginase/efeitos adversos , Arildialquilfosfatase , Peso Corporal , Caspase 3 , Catalase/metabolismo , Moléculas de Adesão Celular , Flavanonas , Proteína Glial Fibrilar Ácida , Glucose/efeitos adversos , Glutationa Peroxidase , Heme Oxigenase-1 , Interleucina-1beta , Óxido Nítrico Sintase Tipo I/efeitos adversos , Oxaliplatina/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Substâncias Protetoras , Ratos , Superóxido Dismutase , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2
19.
Exp Cell Res ; 407(2): 112800, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487731

RESUMO

PURPOSE: Increased permeability of retinal capillary endothelial cells is a key feature in the progression of diabetic retinopathy (DR). Precisely why and how diabetes causes dysfunction in retinal capillary endothelial cells is not well understood, making it challenging to explore more advanced therapeutics. METHODS: Cell proliferation was assessed by the Cell Counting Kit-8 assay. Ferroptosis was evaluated by measuring lipid reactive oxygen species levels by flow cytometry and determining malondialdehyde, superoxide dismutase, and glutathione peroxidase levels through biochemical assays. Western blot analysis and quantitative PCR were respectively used to check the expression of proteins and RNAs. Co-immunoprecipitation assays were used to confirm the interaction between TRIM46 and GPX4. RESULTS: High glucose (HG, 25 mM glucose) significantly suppressed cell growth, which could be reversed by the ferroptosis inhibitor, ferrostatin-1. HG treatment time-dependently induced ferroptosis in human retinal capillary endothelial cells (HRCECs) and induced TRIM46 expression. Lentiviral-mediated overexpression of TRIM46 decreased cell resistance against HG-induced ferroptosis, whereas knockdown showed the opposite effect. Administration of RSL3, a ferroptosis agonist, was able to reverse the protective effects of TRIM46 silencing. TRIM46 interacted with GPX4, an important enzyme that suppresses ferroptosis, and promoted GPX4 ubiquitination. Furthermore, lentiviral-mediated overexpression ofGPX4 ameliorated the effects of TRIM46 overexpression and conferred protection to cells against HG-induced ferroptosis. CONCLUSION: TRIM46 and GPX4 form a regulatory pathway that controls HG-induced ferroptosis of HRCECs. Inhibiting this pathway or sustaining the expression of GPX4 enables cells to resist damage caused by HG. We provide new mechanistic insight into the pathology of DR and identified TRIM46 and GPX4 as two molecular targets for the development of effective drugs for DR treatment.


Assuntos
Endotélio Vascular/patologia , Ferroptose , Glucose/efeitos adversos , Inibidores do Crescimento/efeitos adversos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Retina/patologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitinação , Morte Celular , Proliferação de Células , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Espécies Reativas de Oxigênio , Retina/efeitos dos fármacos , Retina/metabolismo , Edulcorantes/efeitos adversos
20.
Anesth Analg ; 135(5): 1106-1114, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007212

RESUMO

BACKGROUND: Ketamine anesthesia increased glucose metabolism in most brain regions compared to another intravenous anesthetic propofol. However, whether the changes in cerebral metabolic networks induced by ketamine share the same mechanism with propofol remains to be explored. The purpose of the present study was to identify specific features of metabolic network in rat brains during ketamine-induced subanesthesia state and anesthesia state compared to awake state. METHODS: We acquired fluorodeoxyglucose positron emission tomography (FDG-PET) images in 20 healthy adult Sprague-Dawley rats that were intravenously administrated saline and ketamine to achieve different conscious states: awake (normal saline), subanesthesia (30 mg kg -1 h -1 ), and anesthesia (160 mg kg -1 h -1 ). Based on the FDG-PET data, the alterations in cerebral glucose metabolism and metabolic topography were investigated by graph-theory analysis. RESULTS: The baseline metabolism in rat brains was found significantly increased during ketamine-induced subanesthesia and anesthesia. The graph-theory analysis manifested a reduction in metabolism connectivity and network global/local efficiency across cortical regions and an increase across subcortical regions during ketamine-induced anesthesia (nonparametric permutation test: global efficiency between awake and anesthesia, cortex: P = .016, subcortex: P = .015; global efficiency between subanesthesia and anesthesia, subcortex: P = .012). CONCLUSIONS: Ketamine broadly increased brain metabolism alongside decreased metabolic connectivity and network efficiency of cortex network. Modulation of these cortical metabolic networks may be a candidate mechanism underlying general anesthesia-induced loss of consciousness.


Assuntos
Ketamina , Propofol , Animais , Ratos , Ketamina/toxicidade , Propofol/efeitos adversos , Fluordesoxiglucose F18/efeitos adversos , Fluordesoxiglucose F18/metabolismo , Solução Salina , Ratos Sprague-Dawley , Inconsciência/induzido quimicamente , Inconsciência/metabolismo , Anestésicos Intravenosos/efeitos adversos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glucose/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA