Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.775
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 578(7794): 321-325, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31996846

RESUMO

Elucidating the mechanism of sugar import requires a molecular understanding of how transporters couple sugar binding and gating events. Whereas mammalian glucose transporters (GLUTs) are specialists1, the hexose transporter from the malaria parasite Plasmodium falciparum PfHT12,3 has acquired the ability to transport both glucose and fructose sugars as efficiently as the dedicated glucose (GLUT3) and fructose (GLUT5) transporters. Here, to establish the molecular basis of sugar promiscuity in malaria parasites, we determined the crystal structure of PfHT1 in complex with D-glucose at a resolution of 3.6 Å. We found that the sugar-binding site in PfHT1 is very similar to those of the distantly related GLUT3 and GLUT5 structures4,5. Nevertheless, engineered PfHT1 mutations made to match GLUT sugar-binding sites did not shift sugar preferences. The extracellular substrate-gating helix TM7b in PfHT1 was positioned in a fully occluded conformation, providing a unique glimpse into how sugar binding and gating are coupled. We determined that polar contacts between TM7b and TM1 (located about 15 Å from D-glucose) are just as critical for transport as the residues that directly coordinate D-glucose, which demonstrates a strong allosteric coupling between sugar binding and gating. We conclude that PfHT1 has achieved substrate promiscuity not by modifying its sugar-binding site, but instead by evolving substrate-gating dynamics.


Assuntos
Malária/parasitologia , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Açúcares/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Glucose/química , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/química , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
2.
Nature ; 580(7804): 511-516, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322067

RESUMO

The taste of sugar is one of the most basic sensory percepts for humans and other animals. Animals can develop a strong preference for sugar even if they lack sweet taste receptors, indicating a mechanism independent of taste1-3. Here we examined the neural basis for sugar preference and demonstrate that a population of neurons in the vagal ganglia and brainstem are activated via the gut-brain axis to create preference for sugar. These neurons are stimulated in response to sugar but not artificial sweeteners, and are activated by direct delivery of sugar to the gut. Using functional imaging we monitored activity of the gut-brain axis, and identified the vagal neurons activated by intestinal delivery of glucose. Next, we engineered mice in which synaptic activity in this gut-to-brain circuit was genetically silenced, and prevented the development of behavioural preference for sugar. Moreover, we show that co-opting this circuit by chemogenetic activation can create preferences to otherwise less-preferred stimuli. Together, these findings reveal a gut-to-brain post-ingestive sugar-sensing pathway critical for the development of sugar preference. In addition, they explain the neural basis for differences in the behavioural effects of sweeteners versus sugar, and uncover an essential circuit underlying the highly appetitive effects of sugar.


Assuntos
Encéfalo/fisiologia , Comportamento de Escolha/fisiologia , Açúcares da Dieta/metabolismo , Preferências Alimentares/fisiologia , Glucose/metabolismo , Intestinos/fisiologia , Animais , Encéfalo/citologia , Açúcares da Dieta/química , Glucose/análogos & derivados , Glucose/química , Masculino , Metilglucosídeos/química , Metilglucosídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Paladar/fisiologia , Tiazinas/metabolismo , Água/metabolismo
3.
Nature ; 567(7748): 420-424, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30867596

RESUMO

Living systems can generate an enormous range of cellular functions, from mechanical infrastructure and signalling networks to enzymatic catalysis and information storage, using a notably limited set of chemical functional groups. This observation is especially notable when compared to the breadth of functional groups used as the basis for similar functions in synthetically derived small molecules and materials. The relatively small cross-section between biological and synthetic reactivity space forms the foundation for the development of bioorthogonal chemistry, in which the absence of a pair of reactive functional groups within the cell allows for a selective in situ reaction1-4. However, biologically 'rare' functional groups, such as the fluoro5, chloro6,7, bromo7,8, phosphonate9, enediyne10,11, cyano12, diazo13, alkene14 and alkyne15-17 groups, continue to be discovered in natural products made by plants, fungi and microorganisms, which offers a potential route to genetically encode the endogenous biosynthesis of bioorthogonal reagents within living organisms. In particular, the terminal alkyne has found broad utility via the Cu(I)-catalysed azide-alkyne cycloaddition 'click' reaction18. Here we report the discovery and characterization of a unique pathway to produce a terminal alkyne-containing amino acid in the bacterium Streptomyces cattleya. We found that L-lysine undergoes an unexpected reaction sequence that includes halogenation, oxidative C-C bond cleavage and triple bond formation through a putative allene intermediate. This pathway offers the potential for de novo cellular production of halo-, alkene- and alkyne-labelled proteins and natural products from glucose for a variety of downstream applications.


Assuntos
Alcinos/química , Alcinos/metabolismo , Aminoácidos/biossíntese , Aminoácidos/química , Vias Biossintéticas , Streptomyces/metabolismo , Alcadienos/química , Alcadienos/metabolismo , Alcenos/química , Alcenos/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Carbono/química , Carbono/metabolismo , Glucose/química , Glucose/metabolismo , Halogenação , Lisina/química , Lisina/metabolismo , Família Multigênica/genética , Serina/análogos & derivados , Serina/biossíntese , Serina/química , Streptomyces/genética
4.
J Am Chem Soc ; 146(12): 7963-7970, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483110

RESUMO

Cellulose serves as a sustainable biomaterial for a wide range of applications in biotechnology and materials science. While chemical and enzymatic glycan assembly methods have been developed to access modest quantities of synthetic cellulose for structure-property studies, chemical polymerization strategies for scalable and well-controlled syntheses of cellulose remain underdeveloped. Here, we report the synthesis of precision cellulose via living cationic ring-opening polymerization (CROP) of glucose 1,2,4-orthopivalates. In the presence of dibutyl phosphate as an initiator and triflic acid as a catalyst, precision cellulose with well-controlled molecular weights, defined chain-end groups, and excellent regio- and stereospecificity was readily prepared. We further demonstrated the utility of this method through the synthesis of precision native d-cellulose and rare precision l-cellulose.


Assuntos
Celulose , Glucose , Celulose/química , Polimerização , Glucose/química , Polissacarídeos , Cátions
5.
Small ; 20(22): e2309040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38334235

RESUMO

Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface-based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto-fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose-responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non-patterned substrates. Two-photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto-fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses.


Assuntos
Ácidos Borônicos , Glucose , Polímeros , Propriedades de Superfície , Glucose/química , Polímeros/química , Ácidos Borônicos/química , Microscopia de Força Atômica , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio
6.
Small ; 20(26): e2310283, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38227378

RESUMO

Conventional hydrogel microcapsules often suffer from inadequate mechanical stability, hindering their use. Here, water-cored double-network (DN) hydrogel shells are designed, formed by polyacrylamide and calcium alginate networks using triple-emulsion templates. These DN hydrogel shells offer robust mechanical stability, optical transparency, and a precisely-defined cut-off threshold. The feasibility of this platform is demonstrated through the development of a fluorometric glucose sensor. Glucose oxidase is enclosed within the water core, while a pH-responsive fluorescent dye is incorporated into the DN shells. Glucose diffuses into the core through the DN shells, where the glucose oxidase converts glucose into gluconic acid, leading to pH reduction and a subsequent decrease in fluorescence intensity of DN shells. Additionally, the pH-sensitive colorant dissolved in the medium enables visual pH assessment. Thus, glucose levels can be determined using both fluorometric and colorimetric methods. Notably, the DN shells exhibit exceptional stability, enduring intense mechanical stress and cycles of drying and rehydration without leakage. Moreover, the DN shells act as effective barriers, safeguarding glucose oxidase against proteolysis by large disruptive proteins, like pancreatin. This versatile DN shell platform extends beyond glucose oxidase encapsulation, serving as a foundation for various capsule sensors utilizing enzymes and heterogeneous catalysts.


Assuntos
Glucose Oxidase , Glucose , Hidrogéis , Glucose/análise , Glucose/química , Hidrogéis/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio , Técnicas Biossensoriais/métodos , Alginatos/química , Resinas Acrílicas/química
7.
Chemphyschem ; 25(10): e202400033, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38411033

RESUMO

The reaction of D-glucose oxidase (GOx) with D- and L-glucose was investigated using confocal fluorescence microscopy and Hall voltage measurements, after the enzyme was adsorbed as a monolayer. By adsorbing the enzyme on a ferromagnetic substrate, we verified that the reaction is spin dependent. This conclusion was supported by monitoring the reaction when the enzyme is adsorbed on a Hall device that does not contain any magnetic elements. The spin dependence is consistent with the chiral-induced spin selectivity (CISS) effect; it can be explained by the improved fidelity of the electron transfer process through the chiral enzyme due to the coupling of the linear momentum of the electrons and their spin. Since the reaction studied often serve as a model system for enzymatic activity, the results may suggest the general importance of the spin-dependent electron transfer in bio-chemical processes.


Assuntos
Glucose Oxidase , Glucose , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Glucose/química , Glucose/metabolismo , Transporte de Elétrons , Biocatálise , Adsorção
8.
Analyst ; 149(3): 712-728, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37755066

RESUMO

Diabetes, which is the seventh leading cause of death globally, necessitates real-time blood glucose monitoring, a process that is often invasive. A promising alternative is sweat glucose monitoring, which typically uses transition metals and their oxide nanomaterials as sensors. Despite their excellent surface-to-volume ratio, these materials have some drawbacks, including poor conductivity, structural collapse, and aggregation. As a result, selecting highly electroconductive materials and optimizing their nanostructures is critical. In this work, we developed a high-performance, low-cost, nonenzymatic sensor for sweat glucose detection, using the thermally grown native oxide of copper (CuNOx). By heating Cu foil at 160, 250, and 280 °C, we grew a native oxide layer of approximately 140 nm cupric oxide (CuO), which is excellent for glucose electrocatalysis. Using cyclic voltammetry, we found that our CuNOx sensors prepared at 280 °C exhibited a sensitivity of 1795 µA mM-1 cm-2, a linear range up to the desired limit of 1.00 mM for sweat glucose with excellent linearity (R2 = 0.9844), and a lower limit of detection of 135.39 µM. For glucose sensing, the redox couple Cu(II)/Cu(III) oxidizes glucose to gluconolactone and subsequently to gluconic acid, producing an oxidation current in an alkaline environment. Our sensors showed excellent repeatability and stability (remaining stable for over a year) with a relative standard deviation (RSD) of 2.48% and 4.17%, respectively, for 1 mM glucose. The selectivity, when tested with common interferants found in human sweat and blood, showed an RSD of 4.32%. We hope that the electrocatalytic efficacy of the thermally grown CuNOx sensors for glucose sensing can introduce new avenues in the fabrication of sweat glucose sensors.


Assuntos
Técnicas Biossensoriais , Glicemia , Humanos , Óxidos , Suor , Cobre/química , Automonitorização da Glicemia , Glucose/química , Técnicas Eletroquímicas , Eletrodos
9.
J Chem Inf Model ; 64(9): 3841-3854, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38635679

RESUMO

A series of atomistic molecular dynamics (MD) simulations were carried out with a hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer with the variation of glucose concentrations from 0 to 30 wt % in the presence of 0.3 M NaCl. The study suggested that although the thickness of the lipid bilayer dropped significantly with the increase in glucose concentration, it expanded laterally at high glucose levels due to the intercalation of glucose between the headgroups of adjacent lipids. We adopted the surface assessment via the grid evaluation method to compute the deviation of the bilayer's key structural features for the different amounts of glucose present. This suggested that the accumulation of glucose molecules near the headgroups influences the local lipid bilayer undulation and crimping of the lipid tails. We find that the area compressibility modulus increases with the glucose level, causing enhanced bilayer rigidity arising from the slow lateral diffusion of lipids. The restricted lipid motion at high glucose concentrations controls the sustainability of the curved bilayer surface. Calculations revealed that certain orientations of CO→ of interfacial glucose with the PN→ of lipid headgroups are preferred, which helps the glucose to form direct hydrogen bonds (HBs) with the lipid headgroups. Such lipid-glucose (LG) HBs relax slowly at low glucose concentrations and exhibit a higher lifetime, whereas fast structural relaxation of LG HBs with a shorter lifetime was noticed at a higher glucose level. In contrast, lipid-water (LW) HBs exhibited a higher lifetime at a higher glucose level, which gradually decreased with the glucose level lowering. The study interprets that the glucose concentration-driven LW and LG interactions are mutually inclusive. Our detailed analysis will exemplify small saccharide concentration-driven membrane stabilizing efficiency, which is, in general, helpful for drug delivery study.


Assuntos
Dimiristoilfosfatidilcolina , Glucose , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Água , Bicamadas Lipídicas/química , Glucose/química , Dimiristoilfosfatidilcolina/química , Água/química
10.
Nanotechnology ; 35(27)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38537263

RESUMO

An efficient and robust electrocatalyst is significant for glucose biosensing. The emergence of metal-organic framework (MOF) derived materials opens up new avenues for the development of high-performance glucose sensing catalysts. Herein, MOF derived nickel-cobalt hydroxide supported on conductive copper sheet (NiCo-OH/Cu sheet) is prepared at room temperature. The as-obtained NiCo-OH is endowed with three-dimensional network structure which enables the effective exposure of active materials, sufficient contact between glucose molecule and catalyst. The NiCo-OH/Cu sheet is revealed as good glucose electrochemical sensing material with a wide linear range of 0.05∼6.0 mM and a high sensitivity of 1340µA mM-1cm-2. Additionally, the as-fabricated NiCo-OH/Cu sheet displays good anti-interference ability and long-term stability.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Glucose/química , Estruturas Metalorgânicas/química , Cobre/química , Técnicas Biossensoriais/métodos , Hidróxidos/química , Níquel/química
11.
Biotechnol Appl Biochem ; 71(1): 147-161, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846169

RESUMO

In this study, the effect of amperometric glucose biosensor construction and using conditions on the current response was investigated in detail applying experimental design. Polyaniline (PANI) was synthesized on the carbon paste electrode (CPE) surface using the cyclic voltammetry technique in sodium oxalate (NaOx ) electrolyte medium, and an amperometric biosensor was constructed by immobilizing glucose oxidase (GOD). Biosensor preparation (aniline, GOD and NaOx concentrations, and scan rate) and operating conditions (pH and applied potential) were optimized by Box-Behnken and optimal designs, respectively, via State Ease Design Expert 7.0.1.1 software. ANOVA analyses showed that among the biosensor preparation parameters, the NaOx concentration has the highest effect on the current measured in the presence of glucose, whereas in the optimization of pH and potential parameters applied in current measurement studies, it has been revealed that pH has a very high effect on the measured current. Several compounds, such as MWCNT, two different ionic liquids and two different organic molecules were added to carbon paste, and, among them, 2-cyanoethylpyrrole (CPy) enhanced the efficacy highly, most probably due to its polymerization in the paste and increasing the electron transfer rate of the CPE. Sucrose- and lactose-sensitive biosensors were also constructed by co-immobilizing GOD with invertase (INV) or ß-galactosidase, respectively, onto modified CPE, and sensitivities to their substrates were shown by cyclic voltammetry and impedance analysis. CPy modification caused an increase in the current values, and also Imax /KM values increased approximately 11.8, 7.83, and 2.56 times for glucose-, sucrose-, and lactose-sensitive CPEs, respectively.


Assuntos
Técnicas Biossensoriais , Carbono , Carbono/química , Lactose , Eletrodos , Técnicas Biossensoriais/métodos , Compostos de Anilina/química , Glucose/química , Glucose Oxidase/química , Sacarose
12.
J Nanobiotechnology ; 22(1): 377, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937768

RESUMO

BACKGROUND: Efficient monitoring of glucose concentration in the human body necessitates the utilization of electrochemically active sensing materials in nonenzymatic glucose sensors. However, prevailing limitations such as intricate fabrication processes, lower sensitivity, and instability impede their practical application. Herein, ternary Cu-Co-Ni-S sulfides nanoporous network structure was synthesized on carbon fiber paper (CP) by an ultrafast, facile, and controllable technique through on-step cyclic voltammetry, serving as a superior self-supporting catalytic electrode for the high-performance glucose sensor. RESULTS: The direct growth of free-standing Cu-Co-Ni-S on the interconnected three-dimensional (3D) network of CP boosted the active site of the composites, improved ion diffusion kinetics, and significantly promoted the electron transfer rate. The multiple oxidation states and synergistic effects among Co, Ni, Cu, and S further promoted glucose electrooxidation. The well-architected Cu-Co-Ni-S/CP presented exceptional electrocatalytic properties for glucose with satisfied linearity of a broad range from 0.3 to 16,000 µM and high sensitivity of 6829 µA mM- 1 cm- 2. Furthermore, the novel sensor demonstrated excellent selectivity and storage stability, which could successfully evaluate the glucose levels in human serum. Notably, the novel Cu-Co-Ni-S/CP showed favorable biocompatibility, proving its potential for in vivo glucose monitoring. CONCLUSION: The proposed 3D hierarchical morphology self-supported electrode sensor, which demonstrates appealing analysis behavior for glucose electrooxidation, holds great promise for the next generation of high-performance glucose sensors.


Assuntos
Técnicas Biossensoriais , Fibra de Carbono , Cobalto , Cobre , Técnicas Eletroquímicas , Eletrodos , Níquel , Sulfetos , Cobre/química , Níquel/química , Catálise , Humanos , Cobalto/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Sulfetos/química , Fibra de Carbono/química , Glucose/análise , Glucose/química , Nanoporos , Oxirredução , Glicemia/análise
13.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431680

RESUMO

The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healing when exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.


Assuntos
Celulose/biossíntese , Engenharia Química/métodos , Cloroplastos/efeitos da radiação , Glucose/biossíntese , Impressão Tridimensional/instrumentação , Celulose/química , Cloroplastos/química , Cloroplastos/fisiologia , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Glucose/química , Humanos , Isocianatos/química , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/efeitos da radiação , Robótica/métodos , Spinacia oleracea/química , Spinacia oleracea/efeitos da radiação
14.
Mikrochim Acta ; 191(2): 107, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240908

RESUMO

A novel strategy based on gradient porous hollow fiber membrane (GPF) is proposed for the modular assembly of enzyme-nanozyme cascade systems. The porous structure of GPF provided sufficient specific surface area, while the gradient structure effectively minimized the leaching of enzymes and nanozymes. To enhance stability, we prepared and immobilized metal-organic framework (MOF) nanozymes, resulting in the fabrication of GPF-MOF with excellent stability and reusability for colorimetric H2O2 detection. To improve specificity and expand the detection range, micro-crosslinked natural enzymes were modularly assembled, using glucose oxidase as the model enzyme. The assembled system, GPF-mGOx@MOF, achieved a low detection limit of 0.009 mM and a linear range of 0.2 to 11 mM. The sensor retained 87.2% and 80.7% of initial activity after being stored for 49 days and 9 recycles, respectively. Additionally, the reliability of the biosensor was validated through glucose determination of human blood and urine samples, yielding comparable results to a commercial glucose meter.


Assuntos
Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/química , Glucose/química , Peróxido de Hidrogênio/química , Reprodutibilidade dos Testes , Glucose Oxidase/química
15.
Arch Pharm (Weinheim) ; 357(3): e2300537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38096806

RESUMO

The study aimed to analyze the effects of Dendrobium polysaccharides on the cough and airway reactivity and compare them with the effects of clinically used antitussives (codeine phosphate and butamirate citrate) and bronchodilators (salbutamol), using the guinea pig test system. Dendrobium officinale polysaccharides contained proteins (4.0 wt%) and phenolic compounds (1.7 wt%) with a molecular weight of 25,000 g/mol. The sugar analysis revealed a dominance of glucose (93.7 wt%) and a lesser amount of mannose (5.1 wt%) while other sugar quantities were negligible. Methylation analysis indicated the presence of highly branched polysaccharides. Glucose was found mainly as terminal, 1,4- and 1,6-linked. Furthermore, some 1,4- and 1,6-linked glucose units were found branched at O2, O3, and O6/O4. Mannose was terminal and 1,4-linked. NMR spectra signals indicate the presence of the (1→4)-linked α-d-glucan, (1→4)-linked ß-d-glucan branched at position O6, (1→6)-linked ß-d-glucan branched at position O3 and (1→4)-linked glucomannan. Pharmacological studies showed statistically significant antitussive activity of Dendrobium polysaccharides, exceeding the effect of clinically used antitussives, which may be partially associated with confirmed bronchodilation and the ability of polysaccharides to increase the threshold of cough receptor activation. Dendrobium polysaccharides may increase the possibility of symptomatic treatment of cough, especially in asthmatics.


Assuntos
Antitussígenos , Dendrobium , Animais , Cobaias , Manose/química , Dendrobium/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antitussígenos/farmacologia , Relação Estrutura-Atividade , Polissacarídeos/farmacologia , Polissacarídeos/química , Glucose/química , Tosse , Glucanos
16.
Bioprocess Biosyst Eng ; 47(6): 919-929, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644439

RESUMO

The growing need in the current market for innovative solutions to obtain lactose-free (L-F) milk is caused by the annual increase in the prevalence of lactose intolerance inside as well as the newborn, children, and adults. Various configurations of enzymes can yield two distinct L-F products: sweet (ß-galactosidase) and unsweet (ß-galactosidase and glucose oxidase) L-F milk. In addition, the reduction of sweetness through glucose decomposition should be performed in a one-pot mode with catalase to eliminate product inhibition caused by H2O2. Both L-F products enjoy popularity among a rapidly expanding group of consumers. Although enzyme immobilization techniques are well known in industrial processes, new carriers and economic strategies are still being searched. Polymeric carriers, due to the variety of functional groups and non-toxicity, are attractive propositions for individual and co-immobilization of food enzymes. In the presented work, two strategies (with free and immobilized enzymes; ß-galactosidase NOLA, glucose oxidase from Aspergillus niger, and catalase from Serratia sp.) for obtaining sweet and unsweet L-F milk under low-temperature conditions were proposed. For free enzymes, achieving the critical assumption, lactose hydrolysis and glucose decomposition occurred after 1 and 4.3 h, respectively. The tested catalytic membranes were created on regenerated cellulose and polyamide. In both cases, the time required for lactose and glucose bioconversion was extended compared to free enzymes. However, these preparations could be reused for up to five (ß-galactosidase) and ten cycles (glucose oxidase with catalase).


Assuntos
Enzimas Imobilizadas , Glucose Oxidase , Lactose , Leite , beta-Galactosidase , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Leite/química , Lactose/metabolismo , Lactose/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Animais , Aspergillus niger/enzimologia , Glucose/metabolismo , Glucose/química , Catalase/metabolismo , Catalase/química , Membranas Artificiais
17.
Sensors (Basel) ; 24(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276375

RESUMO

Diabetes patients need to monitor blood glucose all year round. In this article, a novel scheme is proposed for blood glucose detection. The proposed sensor is based on a U-shaped microfiber prepared using hydrogen-oxygen flame-heating technology, and then 3-aminopropyltriethoxysilane (APTES) and glucose oxidase (GOD) are successively coated on the surface of the U-shaped microfiber via a coating technique. The glucose reacts with the GOD of the sensor surface to produce gluconic acid, which changes the effective refractive index and then shifts the interference wavelength. The structure and morphology of the sensor were characterized via scanning electron microscope (SEM) and confocal laser microscopy (CLM). The experimental results show that the sensitivity of the sensor is as high as 5.73 nm/(mg/mL). Compared with the glucose sensor composed of the same material, the sensitivity of the sensor increased by 329%. The proposed sensor has a broad application prospect in blood glucose detection of diabetic patients due to the advantages of miniaturization, high sensitivity, and good stability.


Assuntos
Técnicas Biossensoriais , Glicemia , Humanos , Glucose Oxidase/química , Técnicas Biossensoriais/métodos , Glucose/química , Fibras Ópticas
18.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339622

RESUMO

A novel conductive composite based on PEDOT:PSS, BSA, and Nafion for effective immobilization of acetic acid bacteria on graphite electrodes as part of biosensors and microbial fuel cells has been proposed. It is shown that individual components in the composite do not have a significant negative effect on the catalytic activity of microorganisms during prolonged contact. The values of heterogeneous electron transport constants in the presence of two types of water-soluble mediators were calculated. The use of the composite as part of a microbial biosensor resulted in an electrode operating for more than 140 days. Additional modification of carbon electrodes with nanomaterial allowed to increase the sensitivity to glucose from 1.48 to 2.81 µA × mM-1 × cm-2 without affecting the affinity of bacterial enzyme complexes to the substrate. Cells in the presented composite, as part of a microbial fuel cell based on electrodes from thermally expanded graphite, retained the ability to generate electricity for more than 120 days using glucose solution as well as vegetable extract solutions as carbon sources. The obtained data expand the understanding of the composition of possible matrices for the immobilization of Gluconobacter bacteria and may be useful in the development of biosensors and biofuel cells.


Assuntos
Grafite , Polímeros , Polímeros/química , Soroalbumina Bovina , Carbono/química , Bactérias , Glucose/química
19.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400442

RESUMO

Nanofiber technology is leading the revolution of wearable technology and provides a unique capability to fabricate smart textiles. With the novel fabrication technique of electrospinning, nanofibers can be fabricated and then manufactured into a durable conductive string for the application of smart textiles. This paper presents an electrospun nanofiber mesh-based (NF-Felt) string electrode with a conducting polymer coating for an electrochemical enzymatic glucose sensor. The surface area of a nanofiber matrix is a key physical property for enhanced glucose oxidase (GOx) enzyme binding for the development of an electrochemical biosensor. A morphological characterization of the NF-Felt string electrode was performed using scanning electron microscopy (SEM) and compared with a commercially available cotton-polyester (Cot-Pol) string coated with the same conducting polymer. The results from stress-strain testing demonstrated high stretchability of the NF-Felt string. Also, the electrochemical characterization results showed that the NF-Felt string electrode was able to detect a glucose concentration in the range between 0.0 mM and 30.0 mM with a sensitivity of 37.4 µA/mM·g and a detection limit of 3.31 mM. Overall, with better electrochemical performance and incredible flexibility, the NF-Felt-based string electrode is potentially more suitable for designing wearable biosensors for the detection of glucose in sweat.


Assuntos
Técnicas Biossensoriais , Nanofibras , Dispositivos Eletrônicos Vestíveis , Glucose/química , Nanofibras/química , Técnicas Biossensoriais/métodos , Polímeros , Eletrodos , Técnicas Eletroquímicas/métodos , Glucose Oxidase/metabolismo
20.
Sensors (Basel) ; 24(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38894238

RESUMO

In this paper, a novel fluorescent detection method for glucose and lactic acid was developed based on fluorescent iron nanoclusters (Fe NCs). The Fe NCs prepared using hemin as the main raw material exhibited excellent water solubility, bright red fluorescence, and super sensitive response to hydrogen peroxide (H2O2). This paper demonstrates that Fe NCs exhibit excellent peroxide-like activity, catalyzing H2O2 to produce hydroxyl radicals (•OH) that can quench the red fluorescence of Fe NCs. In this paper, a new type of glucose sensor was established by combining Fe NCs with glucose oxidase (GluOx). With the increase in glucose content, the fluorescence of Fe NCs decreases correspondingly, and the glucose content can be detected in the scope of 0-200 µmol·L-1 (µM). Similarly, the lactic acid sensor can also be established by combining Fe NCs with lactate oxidase (LacOx). With the increase in lactic acid concentration, the fluorescence of Fe NCs decreases correspondingly, and the lactic acid content can be detected in the range of 0-100 µM. Furthermore, Fe NCs were used in the preparation of gel test strip, which can be used to detect H2O2, glucose and lactic acid successfully by the changes of fluorescent intensity.


Assuntos
Glucose Oxidase , Glucose , Peróxido de Hidrogênio , Ferro , Ácido Láctico , Ácido Láctico/análise , Ácido Láctico/química , Glucose/análise , Glucose/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Ferro/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Técnicas Biossensoriais/métodos , Fluorescência , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA