Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 191: 105368, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963937

RESUMO

The study investigated potential microRNA-like small RNAs (milRNAs) from multi-stress-tolerant Tricho-fusants and parental strains (P1- Trichoderma virens NBAIITvs12 and P2- Trichoderma koningii MTCC796) for antagonistic activity during interaction with phytopathogen Sclerotium rolfsii. The Trichoderma was cultured in-vitro, with and without antagonism, against the pathogen and total RNA was extracted followed by small RNA library construction and sequencing. The milRNAs were identified by mapping high-quality unique reads against a reference genome. The milRNAs were recognized higher in antagonist Trichoderma during interaction with test pathogen compared to normal growth. The novel milRNAs candidates were found to vary during interaction with the pathogen and normal growth. The gene ontology and functional analysis illustrated that a total of 5828 potential targeted genes were recognized for 93 milRNAs of potent Fu21_IB and 3053 genes for 62 milRNAs of least fusant Fu28_IL. Functional annotation of milRNA-predicted genes integrating KEGG pathways indicates new insights into regulatory mechanisms, by interfering with milRNAs, associated with signal transduction, amino sugar metabolism, benzoate degradation, amino acid metabolism, and steroid and alkaloid metabolism for potential biocontrol of stress-tolerant Tricho-fusant FU21 during interaction with S. rolfsii. The present investigation is the first report of conserved and novel milRNAs from Tricho-fusants and parental strains interacting with S. rolfsii.


Assuntos
Basidiomycota , Hypocrea , MicroRNAs , Trichoderma , Trichoderma/genética , MicroRNAs/genética , Basidiomycota/genética , Hypocrea/genética
2.
Can J Microbiol ; 67(5): 406-414, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33226848

RESUMO

Fungal protoplast fusion is an approach to introduce novel characteristics into industrially important strains. Cellulases, essential enzymes with a wide range of biotechnological applications, are produced by many species of the filamentous fungi Trichoderma. In this study, a collection of 60 natural isolates were screened for Avicel and carboxymethyl cellulose degradation, and two cellulase producers of Trichoderma virens and Trichoderma harzianum were used for protoplast fusion. One of the resulting hybrids with improved cellulase activity, C1-3, was fused with the hyperproducer Trichoderma reesei Rut-C30. A new selected hybrid, F7, was increased in cellulase activity 1.8 and 5 times in comparison with Rut-C30 and C1-3, respectively. The increases in enzyme activity correlated with an upregulation of the cellulolytic genes cbh1, cbh2, egl3, and bgl1 in the parents. The amount of mRNA of cbh1 and cbh2 in F7 resembled that of Rut-C30 while the bgl1 mRNA level was similar to that of C1-3. AFLP (amplified fragment length polymorphism) fingerprinting and GC-MS (gas chromatography - mass spectrometry) analysis represented variations in parental strains and fusants. In conclusion, the results demonstrate that a 3-interspecific hybrid strain was isolated, with improved characteristics for cellulase degradation and showing genetic polymorphisms and differences in the volatile profile, suggesting reorganizations at the genetic level.


Assuntos
Celulase/biossíntese , Hypocreales/enzimologia , Protoplastos/metabolismo , Trichoderma/enzimologia , Trichoderma/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Celulose/metabolismo , Regulação Fúngica da Expressão Gênica , Hypocrea/enzimologia , Hypocrea/genética , Hypocreales/genética , Microbiologia Industrial , Polimorfismo Genético , RNA Fúngico/genética , RNA Mensageiro/genética
3.
Fungal Genet Biol ; 136: 103292, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31730908

RESUMO

Ras-GTPases are nucleotide hydrolases involved in key cellular processes. In fungi, Ras-GTPases regulate conidiation, development, virulence, and interactions with other fungi or plants. Trichoderma spp. are filamentous saprophytic fungi, widely distributed along all latitudes, characterized by their rapid growth and metabolic diversity. Many species of this genus interact with other fungi, animals or plants. Furthermore, these fungi are used as biocontrol agents due to their ability to antagonize phytopathogenic fungi and oomycetes, through competence, antibiosis, and parasitism. However, the genetic and molecular regulation of these processes is scarcely described in these fungi. In this work, we investigated the role of the gene tbrg-1 product (GenBank accession number XP_013956100; JGI ID: Tv_70852) of T. virens during its interaction with other fungi and plants. Sequence analyses predicted that TBRG-1 bears the characteristic domains of Ras-GTPases; however, its size (1011 aa) is 3- to 4-times bigger compared with classical GTPases. Interestingly, phylogenetic analyses grouped the TBRG-1 protein with hypothetical proteins of similar sizes, sharing conserved regions; whereas other known Ras-GTPases were perfectly grouped with their respective families. These facts led us to classify TBRG-1 into a new family of Ras-GTPases, the Big Ras-GTPases (BRG). Therefore, the gene was named tbrg-1 (TrichodermaBigRas-GTPase-1). Quantification of conidia and scanning electron microscopy showed that the mutants-lacking tbrg-1 produced less conidia, as well as a delayed conidiophore development compared to the wild-type (wt). Moreover, a deregulation of conidiation-related genes (con-10, con-13, and stuA) was observed in tbrg-1-lacking strains, which indicates that TBRG-1 is necessary for proper conidiophore and conidia development. Furthermore, the lack of tbrg-1 affected positively the antagonistic capability of T. virens against the phytopathogens Rhizoctonia solani, Sclerotium rolfsii, and Fusarium oxysporum, which was consistent with the expression patterns of mycoparasitism-related genes, sp1 and cht1, that code for a protease and for a chitinase, respectively. Furthermore, the antibiosis effect of mycelium-free culture filtrates of Δtbrg-1 against R. solani was considerably enhanced. The expression of secondary metabolism-related genes, particularly gliP, showed an upregulation in Δtbrg-1, which paralleled an increase in gliotoxin production as compared to the wt. These results indicate that TBRG-1 plays a negative role in secondary metabolism and antagonism. Unexpectedly, the biocontrol activity of Δtbrg-1 was ineffective to protect the tomato seeds and seedlings against R. solani. On the contrary, Δtbrg-1 behaved like a plant pathogen, indicating that TBRG-1 is probably implicated in the recognition process for establishing a beneficial relationship with plants.


Assuntos
Hypocrea/enzimologia , Hypocrea/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Antibiose/genética , Basidiomycota/crescimento & desenvolvimento , Agentes de Controle Biológico , DNA Fúngico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Hypocrea/crescimento & desenvolvimento , Interações Microbianas/genética , Mutação , Filogenia , Doenças das Plantas/microbiologia , Rhizoctonia/crescimento & desenvolvimento , Metabolismo Secundário/genética , Esporos Fúngicos/genética
4.
Protein Expr Purif ; 175: 105697, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32681951

RESUMO

Trichoderma virens genome harbors two isoforms of GAPDH, one (gGPD) involved in glycolysis and the other one (vGPD) in secondary metabolism. vGPD is expressed as part of the "vir" cluster responsible for the biosynthesis of volatile sesquiterpenes. The secondary metabolism-associated GAPDH is tolerant to the anti-cancer metabolite heptelidic acid (HA), produced by T. virens. Characterizing the HA-tolerant form of GAPDH, thus has implications in cancer therapy. In order to get insight into the mechanism of HA-tolerance of vGPD, we have purified recombinant form of this protein. The protein displays biochemical and biophysical characteristics analogous to the gGPD isoform. It exists as a tetramer with Tm of about 56.5 °C, and displays phosphorylation enzyme activity with Km and Kcat of 0.38 mM and 2.55 sec-1, respectively. The protein weakly binds to the sequence upstream of the vir4 gene that codes for the core enzyme (a terpene cyclase) of the "vir" cluster. The EMSA analysis indicates that vGPD may not act as a transcription factor driving the "vir" cluster, at least not by directly binding to the promoter region. We also succeeded in obtaining small crystals of this protein. We have constructed structural models of vGPD and gGPD of T. virens. In silico constrained docking analysis reveals weaker binding of heptelidic acid in vGPD, compared to gGPD protein.


Assuntos
Proteínas Fúngicas , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Hypocrea/genética , Simulação de Acoplamento Molecular , Estabilidade Enzimática , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/biossíntese , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/isolamento & purificação , Hypocrea/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Sesquiterpenos/química
5.
J Biol Chem ; 292(42): 17418-17430, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28860192

RESUMO

Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in Tm and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites.


Assuntos
Celulose 1,4-beta-Celobiosidase , Proteínas Fúngicas , Temperatura Alta , Hypocrea , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/genética , Cristalografia por Raios X , Evolução Molecular Direcionada , Estabilidade Enzimática/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hypocrea/enzimologia , Hypocrea/genética , Simulação de Dinâmica Molecular , Domínios Proteicos
6.
Pestic Biochem Physiol ; 149: 73-80, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30033019

RESUMO

The endoglucanase belonging to glycoside hydrolase family 61 are little studied. In present study, a ß-endoglucanase of ~37 kDa induced on autoclaved mycelium of Fusarium oxysporum was cloned and characterized. The molecular characterization of ß-endoglucanase encoding gene revealed presence of a single intron and an open reading frame of 1044-bp which encoded a protein of 347 amino acid residues. The phylogenetic analysis of Eglu revealed its similarity to endo-ß-glucanases of other Trichoderma spp. The catalytic site of ß-endoglucanase contained Asp, Asn, His and Tyr residues. The cDNA encoding ß-glucanase was cloned into E. coli and Pichia pastoris using pQUA-30 and pPIC9K vector system, respectively. The comparison of structure revealed that most similar structure to Eglu is Hypocrea jecorina template 5o2w.1.A of glycoside hydrolase family 61.The biochemical characterization of ß-endoglucanase purified from T. saturnisporum isolate and the recombinant protein expressed in E. coli and P. pastoris was active under acidic conditions with a pH optima of 5 and temperature optima of 60 °C. The purified and expressed enzyme preparation was able to inhibit growth of F.oxysporum at 1 × 105 spores/mL which clearly revealed its significance in plant pathogen suppression.


Assuntos
Celulase/genética , Proteínas Fúngicas/genética , Fusarium/patogenicidade , Trichoderma/enzimologia , Domínio Catalítico , Parede Celular/metabolismo , Celulase/classificação , Celulase/metabolismo , DNA Complementar/genética , Escherichia coli/genética , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Temperatura Alta , Concentração de Íons de Hidrogênio , Hypocrea/genética , Modelos Moleculares , Fases de Leitura Aberta , Filogenia , Pichia/genética , Esporos Fúngicos/crescimento & desenvolvimento
7.
J Biol Chem ; 290(36): 22203-11, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26183776

RESUMO

Kinetic and thermodynamic data have been analyzed according to transition state theory and a simplified reaction scheme for the enzymatic hydrolysis of insoluble cellulose. For the cellobiohydrolase Cel7A from Hypocrea jecorina (Trichoderma reesei), we were able to measure or collect relevant values for all stable and activated complexes defined by the reaction scheme and hence propose a free energy diagram for the full heterogeneous process. For other Cel7A enzymes, including variants with and without carbohydrate binding module (CBM), we obtained activation parameters for the association and dissociation of the enzyme-substrate complex. The results showed that the kinetics of enzyme-substrate association (i.e. formation of the Michaelis complex) was almost entirely entropy-controlled and that the activation entropy corresponded approximately to the loss of translational and rotational degrees of freedom of the dissolved enzyme. This implied that the transition state occurred early in the path where the enzyme has lost these degrees of freedom but not yet established extensive contact interactions in the binding tunnel. For dissociation, a similar analysis suggested that the transition state was late in the path where most enzyme-substrate contacts were broken. Activation enthalpies revealed that the rate of dissociation was far more temperature-sensitive than the rates of both association and the inner catalytic cycle. Comparisons of one- and two-domain variants showed that the CBM had no influence on the transition state for association but increased the free energy barrier for dissociation. Hence, the CBM appeared to promote the stability of the complex by delaying dissociation rather than accelerating association.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Termodinâmica , Algoritmos , Biocatálise , Celulose 1,4-beta-Celobiosidase/genética , Entropia , Proteínas Fúngicas/genética , Variação Genética , Hidrólise , Hypocrea/enzimologia , Hypocrea/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ligação Proteica , Especificidade por Substrato , Trichoderma/enzimologia , Trichoderma/genética
8.
J Biol Chem ; 290(36): 22193-202, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26183777

RESUMO

We measured hydrolytic rates of four purified cellulases in small increments of temperature (10-50 °C) and substrate loads (0-100 g/liter) and analyzed the data by a steady state kinetic model that accounts for the processive mechanism. We used wild type cellobiohydrolases (Cel7A) from mesophilic Hypocrea jecorina and thermophilic Rasamsonia emersonii and two variants of these enzymes designed to elucidate the role of the carbohydrate binding module (CBM). We consistently found that the maximal rate increased strongly with temperature, whereas the affinity for the insoluble substrate decreased, and as a result, the effect of temperature depended strongly on the substrate load. Thus, temperature had little or no effect on the hydrolytic rate in dilute substrate suspensions, whereas strong temperature activation (Q10 values up to 2.6) was observed at saturating substrate loads. The CBM had a dual effect on the activity. On one hand, it diminished the tendency of heat-induced desorption, but on the other hand, it had a pronounced negative effect on the maximal rate, which was 2-fold larger in variants without CBM throughout the investigated temperature range. We conclude that although the CBM is beneficial for affinity it slows down the catalytic process. Cel7A from the thermophilic organism was moderately more activated by temperature than the mesophilic analog. This is in accord with general theories on enzyme temperature adaptation and possibly relevant information for the selection of technical cellulases.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Temperatura , Algoritmos , Ascomicetos/enzimologia , Ascomicetos/genética , Ligação Competitiva , Celobiose/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/genética , Variação Genética , Hidrólise , Hypocrea/enzimologia , Hypocrea/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ligação Proteica , Especificidade por Substrato , Trichoderma/enzimologia , Trichoderma/genética
9.
Biotechnol Bioeng ; 111(12): 2390-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24916885

RESUMO

A major obstacle to using widely available and low-cost lignocellulosic feedstocks to produce renewable fuels and chemicals is the high cost and low efficiency of the enzyme mixtures used to hydrolyze cellulose to fermentable sugars. One possible solution entails engineering current cellulases to function efficiently at elevated temperatures in order to boost reaction rates and exploit several other advantages of a higher temperature process. Here, we describe the creation of the most stable reported fungal endoglucanase, a derivative of Hypocrea jecorina (anamorph Trichoderma reesei) Cel5A, by combining stabilizing mutations identified using consensus design, chimera studies, and structure-based computational methods. The engineered endoglucanase has an optimal temperature that is 17°C higher than wild type H. jecorina Cel5A, and hydrolyzes 1.5 times as much cellulose over 60 h at its optimum temperature compared to the wild type enzyme at its optimal temperature. This enzyme complements previously engineered highly active, thermostable variants of the fungal cellobiohydrolases Cel6A and Cel7A in a thermostable cellulase mixture that hydrolyzes cellulose synergistically at an optimum temperature of 70°C over 60 h.The thermostable mixture produces three times as much total sugar as the best mixture of the wild type enzymes operating at its optimum temperature of 60°C, clearly demonstrating the advantage of higher temperature cellulose hydrolysis.


Assuntos
Celulase/química , Proteínas Fúngicas/química , Proteínas Recombinantes/química , Celulase/genética , Celulase/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Temperatura Alta , Hypocrea/enzimologia , Hypocrea/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
J Basic Microbiol ; 54(1): 56-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23775722

RESUMO

The production of cellulase using solid-state fermentation of rice straw by the mutant strain Hypocrea koningii RSC1 was studied. Optimization of culture conditions, such as the nitrogen source, pH, and temperature, resulted in a maximum filter paper cellulase activity of 44.15 U g(-1) substrate, a carboxymethylcellulase activity of 324.6 U g(-1) substrate, and a ß-glucosidase activity of 7.45 U g(-1) substrate. Saccharification of untreated, 1% H(2)SO(4)-treated, and 2.5% NaOH-treated rice straw using the RSC1 cellulase resulted in 19, 17, and 34 g L(-1) of reducing sugar, respectively. Further studies on the morphological and compositional changes of rice straw upon treatment with the cellulase by scanning electron microscopy analysis and Fourier transform infrared spectroscopy revealed the disruption of the arrangement of fibers and changes in the functional groups that occur in cellulose. X-ray diffraction analysis revealed a reduction in crystallinity of the rice straw upon treatment with the cellulase. Our study shows that H. koningii RSC1 could be a good choice for the production of cellulase and reducing sugars from rice straw.


Assuntos
Celulase/biossíntese , Hypocrea/metabolismo , Oryza/metabolismo , Metabolismo dos Carboidratos , Fermentação , Hypocrea/genética , Mutação , Nitrogênio/metabolismo
11.
Transgenic Res ; 22(3): 477-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23080294

RESUMO

The technology of converting lignocellulose to biofuels has advanced swiftly over the past few years, and enzymes are a significant constituent of this technology. In this regard, cost effective production of cellulases has been the focus of research for many years. One approach to reach cost targets of these enzymes involves the use of plants as bio-factories. The application of this technology to plant biomass conversion for biofuels and biobased products has the potential for significantly lowering the cost of these products due to lower enzyme production costs. Cel6A, one of the two cellobiohydrolases (CBH II) produced by Hypocrea jecorina, is an exoglucanase that cleaves primarily cellobiose units from the non-reducing end of cellulose microfibrils. In this work we describe the expression of Cel6A in maize endosperm as part of the process to lower the cost of this dominant enzyme for the bioconversion process. The enzyme is active on microcrystalline cellulose as exponential microbial growth was observed in the mixture of cellulose, cellulases, yeast and Cel6A, Cel7A (endoglucanase), and Cel5A (cellobiohydrolase I) expressed in maize seeds. We quantify the amount accumulated and the activity of the enzyme. Cel6A expressed in maize endosperm was purified to homogeneity and verified using peptide mass finger printing.


Assuntos
Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Endosperma/genética , Hypocrea/enzimologia , Zea mays/genética , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/isolamento & purificação , Endosperma/enzimologia , Hypocrea/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
12.
Biotechnol Bioeng ; 110(7): 1874-83, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23404363

RESUMO

Thermostability is an important feature in industrial enzymes: it increases biocatalyst lifetime and enables reactions at higher temperatures, where faster rates and other advantages ultimately reduce the cost of biocatalysis. Here we report the thermostabilization of a chimeric fungal family 6 cellobiohydrolase (HJPlus) by directed evolution using random mutagenesis and recombination of beneficial mutations. Thermostable variant 3C6P has a half-life of 280 min at 75°C and a T(50) of 80.1°C, a ~15°C increase over the thermostable Cel6A from Humicola insolens (HiCel6A) and a ~20°C increase over that from Hypocrea jecorina (HjCel6A). Most of the mutations also stabilize the less-stable HjCel6A, the wild-type Cel6A closest in sequence to 3C6P. During a 60-h Avicel hydrolysis, 3C6P released 2.4 times more cellobiose equivalents at its optimum temperature (T(opt)) of 75°C than HiCel6A at its T(opt) of 60°C. The total cellobiose equivalents released by HiCel6A at 60°C after 60 h is equivalent to the total released by 3C6P at 75°C after ~6 h, a 10-fold reduction in hydrolysis time. A binary mixture of thermostable Cel6A and Cel7A hydrolyzes Avicel synergistically and released 1.8 times more cellobiose equivalents than the wild-type mixture, both mixtures assessed at their respective T(opt). Crystal structures of HJPlus and 3C6P, determined at 1.5 and 1.2 Å resolution, indicate that the stabilization comes from improved hydrophobic interactions and restricted loop conformations by introduced proline residues.


Assuntos
Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/química , Cristalografia por Raios X , Evolução Molecular Direcionada/métodos , Estabilidade Enzimática , Hidrólise , Hypocrea/enzimologia , Hypocrea/genética , Cinética , Modelos Moleculares , Mutagênese , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Sordariales/enzimologia , Sordariales/genética , Temperatura
13.
J Appl Microbiol ; 115(1): 102-13, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23495919

RESUMO

AIMS: The aim was to isolate, identify and characterize endophytes from pigeon pea (Cajanus cajan [L.] Millsp.), as novel producer of cajanol and its in vitro cytotoxicity assay. METHODS AND RESULTS: Isolation, identification and characterization of novel endophytes producing cajanol from the roots of pigeon pea were investigated. The endophytes were identified as Hypocrea lixii by morphological and molecular methods. Cajanol produced by endophytes were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). R-18 produced the highest levels of cajanol (322·4 ± 10·6 µg l(-1) or 102·8 ± 6·9 µg g(-1) dry weight of mycelium) after incubation for 7 days. The cytotoxicity towards human lung carcinoma cells (A549) of fungal cajanol was investigated in vitro. CONCLUSIONS: First, a novel endophyte Hypocrea lixii, producing anticancer agent cajanol, was isolated from the host pigeon pea (Cajanus cajan [L.] Millsp.). Fungal cajanol possessed stronger cytotoxicity activity towards A549 cells in time- and dose-dependent manners. SIGNIFICANCE AND IMPACT OF THE STUDY: This endophyte is a potential handle for scientific and commercial exploitation, and it could provide a promising alterative approach for large-scale production of cajanol to satisfy new anticancer drug development.


Assuntos
Antineoplásicos/metabolismo , Cajanus/microbiologia , Hypocrea/metabolismo , Isoflavonas/biossíntese , Antineoplásicos/química , Linhagem Celular Tumoral , Endófitos/metabolismo , Humanos , Hypocrea/classificação , Hypocrea/genética , Isoflavonas/química , Raízes de Plantas/microbiologia , Espectrometria de Massas em Tandem
14.
Eukaryot Cell ; 11(11): 1371-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23002106

RESUMO

Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular ß-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple ß-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular ß-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular ß-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three ß-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three ß-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals.


Assuntos
Celobiose/metabolismo , Celulase/metabolismo , Celulases/metabolismo , Celulose/metabolismo , Hypocrea/enzimologia , Celulase/genética , Celulases/genética , Indução Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Glicosilação , Hypocrea/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Transcrição Gênica , Transformação Genética
15.
Int J Mol Sci ; 14(4): 8479-90, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23594998

RESUMO

A high concentration of glucose in the medium could greatly inhibit the expression of cellulase in filamentous fungi. The aspartic protease from fungus Hypocrea orientalis EU7-22 could efficiently express under both induction condition and glucose repression condition. Based on the sequence of structure gene of aspartic protease, the upstream sequence harboring the putative promoter proA for driving the expression of aspartic protease was obtained by genome walking. The upstream sequence contained the typical promoter motifs "TATA" and "CAAT". The ß-glucosidase gene (Bgl1) from H. orientalis was cloned and recombined with promoter proA and terminator trpC. The expression cassette was ligated to the binary vector to form pUR5750-Bgl1, and then transferred into the host strain EU7-22 via Agrobacterium tumefaciens mediated transformation (ATMT), using hygromycin B resistance gene as the screening marker. Four transformants Bgl-1, Bgl-2, Bgl-3 and Bgl-4 were screened. Compared with the host strain EU7-22, the enzyme activities of filter paper (FPA) and ß-glucosidase (BG) of transformant Bgl-2 increased by 10.6% and 19.1% under induction condition, respectively. The FPA and BG activities were enhanced by 22.2% and 700% under 2% glucose repression condition, respectively, compared with the host strain. The results showed that the putative promoter proA has successfully driven the over-expression of Bgl1 gene in H. orientalis under glucose repression condition.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Hypocrea/enzimologia , Hypocrea/genética , beta-Glucosidase/genética , Sequência de Bases , DNA Fúngico/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Glucose/metabolismo , Glucose/farmacologia , Hypocrea/efeitos dos fármacos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Transformação Genética
16.
Microbiology (Reading) ; 158(Pt 1): 69-83, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22075025

RESUMO

In this paper, we report on the in situ diversity of the mycotrophic fungus Trichoderma (teleomorph Hypocrea, Ascomycota, Dikarya) revealed by a taxon-specific metagenomic approach. We designed a set of genus-specific internal transcribed spacer (ITS)1 and ITS2 rRNA primers and constructed a clone library containing 411 molecular operational taxonomic units (MOTUs). The overall species composition in the soil of the two distinct ecosystems in the Danube floodplain consisted of 15 known species and two potentially novel taxa. The latter taxa accounted for only 1.5 % of all MOTUs, suggesting that almost no hidden or uncultivable Hypocrea/Trichoderma species are present at least in these temperate forest soils. The species were unevenly distributed in vertical soil profiles although no universal factors controlling the distribution of all of them (chemical soil properties, vegetation type and affinity to rhizosphere) were revealed. In vitro experiments simulating infrageneric interactions between the pairs of species that were detected in the same soil horizon showed a broad spectrum of reactions from very strong competition over neutral coexistence to the pronounced synergism. Our data suggest that only a relatively small portion of Hypocrea/Trichoderma species is adapted to soil as a habitat and that the interaction between these species should be considered in a screening for Hypocrea/Trichoderma as an agent(s) of biological control of pests.


Assuntos
Metagenômica , Microbiologia do Solo , Trichoderma/classificação , Trichoderma/crescimento & desenvolvimento , Biodiversidade , Ecossistema , Hypocrea/classificação , Hypocrea/genética , Hypocrea/crescimento & desenvolvimento , Hypocrea/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Solo/análise , Trichoderma/genética , Trichoderma/isolamento & purificação
17.
Fungal Genet Biol ; 49(10): 814-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22884620

RESUMO

Discovery of sexual development in the ascomycete Trichoderma reesei (Hypocrea jecorina) as well as detection of a novel class of peptide pheromone precursors in this fungus indicates promising insights into its physiology and lifestyle. Here we investigated the role of the two pheromone receptors HPR1 and HPR2 in the H. jecorina pheromone-system. We found that these pheromone receptors show an unexpectedly high genetic variability among H. jecorina strains. HPR1 and HPR2 confer female fertility in their cognate mating types (MAT1-1 or MAT1-2, respectively) and mediate induction of fruiting body development. One compatible pheromone precursor-pheromone receptor pair (hpr1-hpp1 or hpr2-ppg1) in mating partners was sufficient for sexual development. Additionally, pheromone receptors were essential for ascospore development, hence indicating their involvement in post-fertilisation events. Neither pheromone precursor genes nor pheromone receptor genes of H. jecorina were transcribed in a strictly mating type dependent manner, but showed enhanced expression levels in the cognate mating type. In the presence of a mating partner under conditions favoring sexual development, transcript levels of pheromone precursors were significantly increased, while those of pheromone receptor genes do not show this trend. In the female sterile T. reesei strain QM6a, transcriptional responses of pheromone precursor and pheromone receptor genes to a mating partner were clearly altered compared to the female fertile wild-type strain CBS999.97. Consequently, a delayed and inappropriate response to the mating partner may be one aspect causing female sterility in QM6a.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Hypocrea/fisiologia , Receptores de Feromônios/genética , Sequência de Aminoácidos , DNA Fúngico/genética , Carpóforos/citologia , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Carpóforos/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Fúngicos Tipo Acasalamento , Variação Genética , Hypocrea/citologia , Hypocrea/genética , Hypocrea/crescimento & desenvolvimento , Dados de Sequência Molecular , Feromônios/metabolismo , Receptores de Feromônios/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Esporos Fúngicos/citologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia
18.
Mycologia ; 104(5): 1213-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505436

RESUMO

Two new species of Hypocrea are added here to the European funga. Hypocrea britdaniae, a fungus with unknown anamorph and large, conspicuous stromata resembling basidiomata of a corticiaceous fungus, is a sister species to the Longibrachiatum clade, while H. foliicola, a leaf-dwelling species that forms pulvinate stromata, is recognized as an additional member of the pachybasium core group. Hypocrea foliicola sporulates in culture in a reduced verticillium-like manner, while it produces a white, typical pachybasium-like anamorph in nature. Ecologically H. foliicola is remarkable in inhabiting leaves, a substrate rarely recorded for Hypocrea. All relevant morphological teleomorphic and anamorphic traits are given. The phylogenetic placement of the new species within Hypocrea/Trichoderma was determined with combined analyses of rpb2 and tef1 exon sequences.


Assuntos
Hypocrea/classificação , DNA Fúngico/genética , DNA Ribossômico/genética , Europa (Continente) , Hypocrea/genética , Hypocrea/ultraestrutura , Filogenia , Análise de Sequência de DNA/métodos , Trichoderma/classificação , Trichoderma/genética , Trichoderma/ultraestrutura
19.
Chem Biodivers ; 9(3): 499-535, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22422521

RESUMO

The most common sequences of peptaibiotics are 11-residue peptaibols found widely distributed in the genus Trichoderma/Hypocrea. Frequently associated are 14-residue peptaibols sharing partial sequence identity. Genome sequencing projects of three Trichoderma strains of the major clades reveal the presence of up to three types of nonribosomal peptide synthetases with 7, 14, or 18-20 amino acid-adding modules. Here, we provide evidence that the 14-module NRPS type found in T. virens, T. reesei (teleomorph Hypocrea jecorina), and T. atroviride produces both 11- and 14-residue peptaibols based on the disruption of the respective NRPS gene of T. reesei, and bioinformatic analysis of their amino acid-activating domains and modules. The sequences of these peptides may be predicted from the gene sequences and have been confirmed by analysis of families of 11- and 14-residue peptaibols from the strain 618, termed hypojecorins A (23 sequences determined, 4 new) and B (3 sequences determined, 2 new), and the recently established trichovirins A from T. virens. The distribution of 11- and 14-residue products is strain-specific and depends on growth conditions as well. Possible mechanisms of module skipping are discussed.


Assuntos
Hypocrea/enzimologia , Peptaibols/biossíntese , Peptídeo Sintases/metabolismo , Trichoderma/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Biologia Computacional , Hypocrea/genética , Espectrometria de Massas , Mutação , Peptaibols/química , Peptídeo Sintases/química , Peptídeo Sintases/classificação , Filogenia , Estrutura Terciária de Proteína , Trichoderma/genética
20.
Environ Technol ; 33(10-12): 1383-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22856313

RESUMO

The effects of metal-resistant microorganisms and metal chelators on the ability of Solanum nigrum L. to accumulate heavy metals were investigated. In the presence of multiple metal contaminants (Cd and Pb), citric acid (CA) significantly enhanced the biomass and Cd accumulation of S. nigrum, but these conditions decreased the accumulation of Pb. Application of Cd- or Pb-resistant microorganisms improved the ability of S. nigrum to accumulate heavy metals and increased plant yield, but the effects of microorganisms on phytoextraction were smaller than the effects of CA. When plants were grown in the presence of Cd contamination, the co-application of CA and metal-resistant strains enhanced biomass by 30-50% and increased Cd accumulation by 25-35%. However, these conditions decreased Pb accumulation in the presence of Pb pollution. S. nigrum could tolerate a combination of Cd and Pb pollution. In the presence of CA and the metal-resistant microorganisms, the plants were able to acquire 15-25% more Cd and 10-15% more Pb than control plants. We propose that the synergistic combination of plants, microorganisms and chelators can enhance phytoremediation efficiency in the presence of multiple metal contaminants.


Assuntos
Cádmio/metabolismo , Chumbo/metabolismo , Microbiologia do Solo , Solanum nigrum/metabolismo , Sequência de Bases , Biodegradação Ambiental , Hypocrea/genética , Hypocrea/metabolismo , Dados de Sequência Molecular , Paecilomyces/genética , Paecilomyces/metabolismo , Solanum nigrum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA