RESUMO
Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.
Assuntos
Terapia Neoadjuvante , Neoplasias Ovarianas , Piperidinas , Inibidores de Poli(ADP-Ribose) Polimerases , Linfócitos T Reguladores , Microambiente Tumoral , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/imunologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Camundongos , Terapia Neoadjuvante/métodos , Microambiente Tumoral/efeitos dos fármacos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Indazóis/uso terapêutico , Indazóis/farmacologia , Recombinação Homóloga , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular TumoralRESUMO
Cannabis elicits its mood-enhancing and analgesic effects through the cannabinoid receptor 1 (CB1), a G protein-coupled receptor (GPCR) that signals primarily through the adenylyl cyclase-inhibiting heterotrimeric G protein Gi. Activation of CB1-Gi signaling pathways holds potential for treating a number of neurological disorders and is thus crucial to understand the mechanism of Gi activation by CB1. Here, we present the structure of the CB1-Gi signaling complex bound to the highly potent agonist MDMB-Fubinaca (FUB), a recently emerged illicit synthetic cannabinoid infused in street drugs that have been associated with numerous overdoses and fatalities. The structure illustrates how FUB stabilizes the receptor in an active state to facilitate nucleotide exchange in Gi. The results compose the structural framework to explain CB1 activation by different classes of ligands and provide insights into the G protein coupling and selectivity mechanisms adopted by the receptor.
Assuntos
Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/ultraestrutura , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Microscopia Crioeletrônica/métodos , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Indazóis/farmacologia , Ligantes , Ligação Proteica , Receptor CB1 de Canabinoide/química , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Células Sf9 , Transdução de Sinais/efeitos dos fármacosRESUMO
Estrogen receptor-positive (ER+) breast cancers frequently remain dependent on ER signaling even after acquiring resistance to endocrine agents, prompting the development of optimized ER antagonists. Fulvestrant is unique among approved ER therapeutics due to its capacity for full ER antagonism, thought to be achieved through ER degradation. The clinical potential of fulvestrant is limited by poor physicochemical features, spurring attempts to generate ER degraders with improved drug-like properties. We show that optimization of ER degradation does not guarantee full ER antagonism in breast cancer cells; ER "degraders" exhibit a spectrum of transcriptional activities and anti-proliferative potential. Mechanistically, we find that fulvestrant-like antagonists suppress ER transcriptional activity not by ER elimination, but by markedly slowing the intra-nuclear mobility of ER. Increased ER turnover occurs as a consequence of ER immobilization. These findings provide proof-of-concept that small molecule perturbation of transcription factor mobility may enable therapeutic targeting of this challenging target class.
Assuntos
Neoplasias da Mama/metabolismo , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Cinamatos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Antagonistas do Receptor de Estrogênio/uso terapêutico , Feminino , Fulvestranto/uso terapêutico , Células HEK293 , Xenoenxertos , Humanos , Indazóis/farmacologia , Ligantes , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Polimorfismo de Nucleotídeo Único , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacosRESUMO
CRISPR is revolutionizing the ability to do somatic gene editing in mice for the purpose of creating new cancer models. Inactivation of the VHL tumor suppressor gene is the signature initiating event in the most common form of kidney cancer, clear cell renal cell carcinoma (ccRCC). Such tumors are usually driven by the excessive HIF2 activity that arises when the VHL gene product, pVHL, is defective. Given the pressing need for a robust immunocompetent mouse model of human ccRCC, we directly injected adenovirus-associated viruses (AAVs) encoding sgRNAs against VHL and other known/suspected ccRCC tumor suppressor genes into the kidneys of C57BL/6 mice under conditions where Cas9 was under the control of one of two different kidney-specific promoters (Cdh16 or Pax8) to induce kidney tumors. An AAV targeting Vhl, Pbrm1, Keap1, and Tsc1 reproducibly caused macroscopic ccRCCs that partially resembled human ccRCC tumors with respect to transcriptome and cell of origin and responded to a ccRCC standard-of-care agent, axitinib. Unfortunately, these tumors, like those produced by earlier genetically engineered mouse ccRCCs, are HIF2 independent.
Assuntos
Carcinoma de Células Renais , Modelos Animais de Doenças , Neoplasias Renais , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Humanos , Camundongos , Axitinibe , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Sistemas CRISPR-Cas , Edição de Genes/métodos , Indazóis/farmacologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismoRESUMO
Because host kinases are key regulators of multiple signaling pathways in response to viral infections, we previously screened a kinase inhibitor library using rhabdomyosarcoma cells and human intestinal organoids in parallel to identify potent inhibitors against EV-A71 infection. We found that Rho-associated coiled-coil-containing protein kinase (Rock) inhibitor efficiently suppressed the EV-A71 replication and further revealed Rock1 as a novel EV-A71 host factor. In this study, subsequent analysis found that a variety of vascular endothelial growth factor receptor (VEGFR) inhibitors also had potent antiviral effects. Among the hits, Pazopanib, with a selectivity index as high as 254, which was even higher than that of Pirodavir, a potent broad-spectrum picornavirus inhibitor targeting viral capsid protein VP1, was selected for further analysis. We demonstrated that Pazopanib not only efficiently suppressed the replication of EV-A71 in a dose-dependent manner, but also exhibited broad-spectrum anti-enterovirus activity. Mechanistically, Pazopanib probably induces alterations in host cells, thereby impeding viral genome replication and transcription. Notably, VEGFR2 knockdown and overexpression suppressed and facilitated EV-A71 replication, respectively, indicating that VEGFR2 is a novel host dependency factor for EV-A71 replication. Transcriptome analysis further proved that VEGFR2 potentially plays a crucial role in combating EV-A71 infection through the TSAd-Src-PI3K-Akt pathway. These findings expand the range of potential antiviral candidates of anti-enterovirus therapeutics and suggest that VEGFR2 may be a key host factor involved in EV-A71 replication, making it a potential target for the development of anti-enterovirus therapeutics. IMPORTANCE: As the first clinical case was identified in the United States, EV-A71, a significant neurotropic enterovirus, has been a common cause of hand, foot, and mouth disease (HFMD) in infants and young children. Developing an effective antiviral agent for EV-A71 and other human enteroviruses is crucial, as these viral pathogens consistently cause outbreaks in humans. In this study, we demonstrated that multiple inhibitors against VEGFRs effectively reduced EV-A71 replication, with Pazopanib emerging as the top candidate. Furthermore, Pazopanib also attenuated the replication of other enteroviruses, including CVA10, CVB1, EV-D70, and HRV-A, displaying broad-spectrum anti-enterovirus activity. Given that Pazopanib targets various VEGFRs, we narrowed the focus to VEGFR2 using knockdown and overexpression experiments. Transcriptomic analysis suggests that Pazopanib's potential downstream targets involve the TSAd-Src-PI3K-Akt pathway. Our work may contribute to identifying targets for antiviral inhibitors and advancing treatments for human enterovirus infections.
Assuntos
Antivirais , Enterovirus Humano A , Pirimidinas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Replicação Viral , Humanos , Replicação Viral/efeitos dos fármacos , Pirimidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/fisiologia , Antivirais/farmacologia , Infecções por Enterovirus/virologia , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/metabolismo , Sulfonamidas/farmacologia , Indazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Piperidinas , PiridazinasRESUMO
In a recent issue of The Journal of Pathology, Chen and colleagues established novel patient-derived ex vivo models of NTRK fusion-positive soft tissue sarcoma to characterize resistance mechanisms against targeted therapy with tyrosine kinase inhibitors. Prolonged exposure to escalating concentrations of the tyrosine kinase inhibitor, entrectinib, ultimately led to the occurrence of resistant clones that harbored an inactivating mutation in the NF2 gene, not previously described in this context, accompanied by increased PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling. Finally, an inhibitor screen identified, among others, MEK and mTOR inhibitors as potential combination agents. © 2024 The Pathological Society of Great Britain and Ireland.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Neurofibromina 2/genética , Proteínas de Fusão Oncogênica/genética , Benzamidas/uso terapêutico , Benzamidas/farmacologia , Receptor trkA/genética , Receptor trkA/metabolismo , Transdução de Sinais/genética , Indazóis/uso terapêutico , Indazóis/farmacologia , Mutação , Sarcoma/genética , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Activating mutations in the mitogen-activated protein kinase (MAPK) cascade, also known as the RAS-MEK-extracellular signal-related kinase (ERK1/2) pathway, are an underlying cause of >70% of human cancers. While great strides have been made toward elucidating the cytoplasmic components of MAPK signaling, the key downstream coactivators that coordinate the transcriptional response have not been fully illustrated. Here, we demonstrate that the MAPK transcriptional response in human cells is funneled through Integrator, an RNA polymerase II-associated complex. Integrator depletion diminishes ERK1/2 transcriptional responsiveness and cellular growth in human cancers harboring activating mutations in MAPK signaling. Pharmacological inhibition of the MAPK pathway abrogates the stimulus-dependent recruitment of Integrator at immediate early genes and their enhancers. Following epidermal growth factor (EGF) stimulation, activated ERK1/2 is recruited to immediate early genes and phosphorylates INTS11, the catalytic subunit of Integrator. Importantly, in contrast to the broad effects of Integrator knockdown on MAPK responsiveness, depletion of a number of critical subunits of the coactivator complex Mediator alters only a few MAPK-responsive genes. Finally, human cancers with activating mutations in the MAPK cascade, rendered resistant to targeted therapies, display diminished growth following depletion of Integrator. We propose Integrator as a crucial transcriptional coactivator in MAPK signaling, which could serve as a downstream therapeutic target for cancer treatment.
Assuntos
MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transdução de Sinais , Células A549 , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/metabolismo , Endorribonucleases , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , Indazóis/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Neoplasias/enzimologia , Neoplasias/fisiopatologia , Fosforilação , Piperazinas/farmacologia , Regiões Promotoras Genéticas/genética , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/genética , Proteínas ras/metabolismoRESUMO
In rodents and humans, the major cellular events at spermatogenesis include self-renewal of spermatogonial stem cells and undifferentiated spermatogonia via mitosis, commitment of spermatogonia to differentiation and transformation to spermatocytes, meiosis, spermiogenesis, and the release of spermatozoa at spermiation. While details of the morphological changes during these cellular events have been delineated, knowledge gap exists between the morphological changes in the seminiferous epithelium and the underlying molecular mechanism(s) that regulate these cellular events. Even though many of the regulatory proteins and biomolecules that modulate spermatogenesis are known based on studies using genetic models, the underlying regulatory mechanism(s), in particular signaling pathways/proteins, remain unexplored since much of the information regarding the signaling regulation is unknown. Studies in the past decade, however, have unequivocally demonstrated that the testis is using several signaling proteins and/or pathways to regulate multiple cellular events to modulate spermatogenesis. These include mTORC1/rpS6/Akt1/2 and p-FAK-Y407. While selective inhibitors and/or agonists and antagonists are available to examine some of these signaling proteins, their use have limitations due to their specificities and also potential systemic cytotoxicity. On the other hand, the use of genetic models has had profound implications for our understanding of the molecular regulation of spermatogenesis, and these knockout (null) models have also revealed the factors that are critical for spermatogenesis. Nonetheless, additional studies using in vitro and in vivo models are necessary to unravel the signaling pathways involved in regulating seminiferous epithelial cycle. Emerging data from studies, such as the use of the adjudin pharmaceutical/toxicant model, have illustrated that this non-hormonal male contraceptive drug is utilizing specific signaling pathways/proteins to induce specific defects in spermatogenesis, yielding mechanistic insights on the regulation of spermatogenesis. We sought to review these recent data in this article, highlighting an interesting approach that can be considered for future studies.
Assuntos
Hidrazinas/uso terapêutico , Indazóis/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Espermatogênese/imunologia , Animais , Humanos , Hidrazinas/farmacologia , Indazóis/farmacologia , Masculino , Transdução de SinaisRESUMO
The role of nitrergic system in modulating the action of psychostimulants on reward processing is well established. However, the relevant anatomical underpinnings and scope of the involved interactions with mesolimbic dopaminergic system have not been clarified. Using immunohistochemistry, we track the changes in neuronal nitric oxide synthase (nNOS) containing cell groups in the animals conditioned to intracranial self-stimulation (ICSS) via an electrode implanted in the lateral hypothalamus-medial forebrain bundle (LH-MFB) area. An increase in the nNOS immunoreactivity was noticed in the cells and fibers in the ventral tegmental area (VTA) and nucleus accumbens shell (AcbSh), the primary loci of the reward system. In addition, nNOS was up-regulated in the nucleus accumbens core (AcbC), vertical limb of diagonal band (VDB), locus coeruleus (LC), lateral hypothalamus (LH), superficial gray layer (SuG) of the superior colliculus, and periaqueductal gray (PAG). The brain tissue fragments drawn from these areas showed a change in nNOS mRNA expression, but in opposite direction. Intracerebroventricular (icv) administration of nNOS inhibitor, 7-nitroindazole (7-NI) showed decreased lever press activity in a dose-dependent manner in ICSS task. While an increase in the dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysates collected from the AcbSh of ICSS rats, pre-administration of 7-NI (icv route) attenuated the response. The study identifies nitrergic centers that probably mediate sensory, cognitive, and motor components of the goal-directed behavior.
Assuntos
Óxido Nítrico Sintase Tipo I , Autoestimulação , Animais , Masculino , Ratos , Óxido Nítrico Sintase Tipo I/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ratos Sprague-Dawley , Indazóis/farmacologia , Inibidores Enzimáticos/farmacologiaRESUMO
People bitten by Alpine vipers are usually treated with antivenom antisera to prevent the noxious consequences caused by the injected venom. However, this treatment suffers from a number of drawbacks and additional therapies are necessary. The venoms of Vipera ammodytes and of Vipera aspis are neurotoxic and cause muscle paralysis by inducing neurodegeneration of motor axon terminals because they contain a presynaptic acting sPLA2 neurotoxin. We have recently found that any type of damage to motor axons is followed by the expression and activation of the intercellular signaling axis consisting of the CXCR4 receptor present on the membrane of the axon stump and of its ligand, the chemokine CXCL12 released by activated terminal Schwann cells. We show here that also V. ammodytes and V. aspis venoms cause the expression of the CXCL12-CXCR4 axis. We also show that a small molecule agonist of CXCR4, dubbed NUCC-390, induces a rapid regeneration of the motor axon terminal with functional recovery of the neuromuscular junction. These findings qualify NUCC-390 as a promising novel therapeutics capable of improving the recovery from the paralysis caused by the snakebite of the two neurotoxic Alpine vipers.
Assuntos
Indazóis , Receptores CXCR4 , Venenos de Víboras , Viperidae , Animais , Paralisia/induzido quimicamente , Receptores CXCR4/agonistas , Venenos de Víboras/antagonistas & inibidores , Venenos de Víboras/toxicidade , Vipera/metabolismo , Viperidae/metabolismo , Camundongos , Indazóis/farmacologia , Indazóis/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológicoRESUMO
BACKGROUND: Fibrosis cataract occurs in patients receiving cataract extraction. Still, no medication that can cure the disease exists in clinical. This study aims to investigate the effects and mechanisms of Entrectinib on fibrotic cataract in vitro and in vivo. METHODS: The human lens cells line SRA 01/04 and C57BL/6J mice were applied in the study. Entrectinib was used in animals and cells. Cataract severity was assessed by slit lamp and Hematoxylin and Eosin staining. Expression of alpha-smooth muscle actin, fibronectin, and collagen I were examined by real-time quantitative PCR, western blotting, and immunofluorescence. Cell proliferation was evaluated by Cell Counting Kit-8. Cell migration was measured by wound healing and transwell assays. Molecular docking, Drug Affinity Responsive Target Stability, and Cellular Thermal Shift Assay were applied to seek and certify the target of Entrectinib treating fibrosis cataract. RESULTS: Entrectinib can ameliorate fibrotic cataract in vitro and in vivo. At the RNA and the protein levels, the expression of alpha-smooth muscle actin, collagen I, and fibronectin can be downgraded by Entrectinib, while E-cadherin can be upregulated. The migration and proliferation of cells were inhibited by Entrectinib. Mechanistically, Entrectinib obstructs TGFß2/Smad and TGFß2/non-Smad signaling pathways to hinder the fibrosis cataract by targeting PYK2 protein. CONCLUSIONS: Targeting with PYK2, Entrectinib can block TGF-ß2/Smad and TGF-ß2/non-Smad signaling pathways, lessen the activation of EMT, and alleviate fibrosis cataract. Entrectinib may be a potential treatment for fibrosis cataract in clinic.
Assuntos
Catarata , Quinase 2 de Adesão Focal , Transdução de Sinais , Fator de Crescimento Transformador beta2 , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Catarata/etiologia , Catarata/tratamento farmacológico , Catarata/metabolismo , Catarata/patologia , Humanos , Fator de Crescimento Transformador beta2/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Movimento Celular/efeitos dos fármacos , Linhagem Celular , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Indazóis/farmacologia , Indazóis/uso terapêutico , Masculino , Quinase 1 de Adesão FocalRESUMO
Polycomb repressive complex 2 (PRC2) catalyzes methylation of histone H3 on lysine 27 and is required for normal development of complex eukaryotes. The nature of that requirement is not clear. H3K27me3 is associated with repressed genes, but the modification is not sufficient to induce repression and, in some instances, is not required. We blocked full methylation of H3K27 with both a small molecule inhibitor, GSK343, and by introducing a point mutation into EZH2, the catalytic subunit of PRC2, in the mouse CJ7 cell line. Cells with substantively decreased H3K27 methylation differentiate into embryoid bodies, which contrasts with EZH2 null cells. PRC2 targets had varied requirements for H3K27me3, with a subset that maintained normal levels of repression in the absence of methylation. The primary cellular phenotype of blocked H3K27 methylation was an inability of altered cells to maintain a differentiated state when challenged. This phenotype was determined by H3K27 methylation in embryonic stem cells through the first 4 days of differentiation. Full H3K27 methylation therefore was not necessary for formation of differentiated cell states during embryoid body formation but was required to maintain a stable differentiated state.
Assuntos
Diferenciação Celular/fisiologia , Corpos Embrioides/metabolismo , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Indazóis/farmacologia , Lisina , Metilação/efeitos dos fármacos , Camundongos , Fenótipo , Complexo Repressor Polycomb 2/genética , Piridonas/farmacologia , TranscriptomaRESUMO
BACKGROUND: Tumor-associated macrophages (TAMs) play a pivotal role in reshaping the tumor microenvironment following radiotherapy. The mechanisms underlying this reprogramming process remain to be elucidated. METHODS: Subcutaneous Lewis lung carcinoma (LLC) murine model was treated with hypofrationated radiotherapy (8 Gy × 3F). Single-cell RNA sequencing was utilized to identify subclusters and functions of TAMs. Multiplex assay and enzyme-linked immunosorbent assay (ELISA) were employed to measure serum chemokine levels. Bindarit was used to inhibit CCL8, CCL7, and CCL2. The infiltration of TAMs after combination treatment with hypofractionated radiotherapy and Bindarit was quantified with flow cytometry, while the influx of CD206 and CCL8 was assessed by immunostaining. RESULTS: Transcriptome analysis identified a distinct subset of M2-like macrophages characterized by elevated Ccl8 expression level following hypofractionated radiotherapy in LLC-bearing mice. Remarkbly, hypofractionated radiotherapy not only promoted CCL8high macrophages infiltration but also reprogrammed them by upregulating immunosuppressive genes, thereby fostering an immunosuppressive tumor microenvironment. Additioinally, hypofractionated radiotherapy enhanced the CCL signaling pathway, augmenting the pro-tumorigenic functions of CCL8high macrophages and boosting TAMs recruitment. The adjunctive treatment combining hypofractionated radiotherapy with Bindarit effectively reduced M2 macrophages infiltration and prolonged the duration of local tumor control. CONCLUSIONS: Hypofractionated radiotherapy enhances the infiltration of CCL8high macrophages and amplifies their roles in macrophage recruitment through the CCL signaling pathway, leading to an immunosuppressive tumor microenvironment. These findings highlight the potential of targeting TAMs and introduces a novel combination to improve the efficacy of hypofractionated radiotherapy.
Assuntos
Carcinoma Pulmonar de Lewis , Macrófagos , Animais , Camundongos , Carcinoma Pulmonar de Lewis/radioterapia , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Indazóis/farmacologia , Macrófagos/metabolismo , Propionatos/farmacologia , Análise de Sequência de RNA , Microambiente Tumoral/genética , Análise de Célula Única , Quimiocina CCL8RESUMO
The DNA-encoded library (DEL) is a robust tool for chemical biology and drug discovery. In this study, we developed a DNA-compatible light-promoted reaction that is highly efficient and plate-compatible for DEL construction based on the formation of the indazolone scaffold. Employing this high-efficiency approach, we constructed a DEL featuring an indazolone core, which enabled the identification of a novel series of ligands specifically targeting E1A-binding protein (p300) after DEL selection. Taken together, our findings underscore the feasibility of light-promoted reactions in DEL synthesis and unveil promising avenues for developing p300-targeting inhibitors.
Assuntos
DNA , Descoberta de Drogas , Proteína p300 Associada a E1A , Indazóis , Bibliotecas de Moléculas Pequenas , DNA/química , Indazóis/química , Indazóis/farmacologia , Proteína p300 Associada a E1A/antagonistas & inibidores , Proteína p300 Associada a E1A/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Descoberta de Drogas/métodos , Humanos , Biblioteca Gênica , LigantesRESUMO
AIM: The objective was to investigate the specific role and the regulatory mechanism of vascular endothelial growth factor (VEGF) during wound healing in diabetic foot ulcer (DFU). METHODS: Streptozotocin-induced diabetic rats were used to establish a DFU animal model. VEGF and Axitinib (a specific inhibitor of VEGFR) were used for treatment in vivo. The wounds at different time points were imaged and histological analysis of the wounds were performed by haematoxylin and eosin (H&E) staining and Masson's trichrome staining. Immunohistochemical staining was conducted to examine CD31 and eNOS expression in the wounds. Immunofluorescence assay and quantitative real-time PCR were performed to examine macrophage markers. In addition, THP-1 was differentiated to macrophages, and then treated with interleukin (IL)-4 to induce M2 macrophages, followed by VEGF treatment. The conditional medium (CM) from VEGF-mediated macrophages were collected to culture human dermal fibroblasts (HDFs). Cell viability and migration were measured by Cell Counting Kit (CCK)-8, wound-healing and Transwell assays, respectively. RESULTS: VEGF treatment remarkably accelerated wound healing of DFU rats. VEGF promoted collagen deposition and elevated CD31 and eNOS expression, confirming the pro-angiogenesis of VEGF around diabetic wound in rats. Meanwhile, VEGF restricted pro-inflammatory cytokines and increased F4/80 and CD206 expression, highlighting the activated macrophages and enhanced M2 macrophages following VEGF treatment in diabetic wounds of DFU rats. However, Axitinib exerted an opposite function to VEGF in DFU rats. Moreover, VEGF directly promoted macrophage polarization toward M2 phenotype in vitro, and the CM from VEGF-mediated M2 macrophages markedly promoted HDFs proliferation, migration and collagen deposition. CONCLUSION: VEGF might accelerate the wound healing of DFU through promoting M2 macrophage polarization and fibroblast migration.
Assuntos
Axitinibe , Diabetes Mellitus Experimental , Pé Diabético , Macrófagos , Fator A de Crescimento do Endotélio Vascular , Cicatrização , Animais , Pé Diabético/metabolismo , Pé Diabético/patologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Fator A de Crescimento do Endotélio Vascular/metabolismo , Macrófagos/metabolismo , Masculino , Axitinibe/farmacologia , Axitinibe/uso terapêutico , Humanos , Ratos Sprague-Dawley , Ativação de Macrófagos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Indazóis/farmacologia , Indazóis/uso terapêuticoRESUMO
Although the mechanism of NK cell activation is still unclear, the strict calcium dependence remains the hallmark for lytic granule secretion. A plethora of studies claiming that impaired Ca2+ signaling leads to severely defective cytotoxic granule exocytosis accompanied by weak target cell lysis has been published. However, there has been little discussion about the effect of induced calcium signal on NK cell cytotoxicity. In our study, we observed that small-molecule inhibitor UNC1999, which suppresses global H3K27 trimethylation (H3K27me3) of human NK cells, induced a PKD2-dependent calcium signal. Enhanced calcium entry led to unbalanced vesicle release, which resulted into fewer target cells acquiring lytic granules and subsequently being killed. Further analyses revealed that the ability of conjugate formation, lytic synapse formation, and granule polarization were normal in NK cells treated with UNC1999. Cumulatively, these data indicated that induced calcium signal exclusively enhances unbalanced degranulation that further inhibits their cytotoxic activity in human NK cells.
Assuntos
Sinalização do Cálcio/fisiologia , Degranulação Celular/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Canais de Cátion TRPP/metabolismo , Benzamidas/farmacologia , Cálcio/metabolismo , Linhagem Celular , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Humanos , Indazóis/farmacologia , Ativação Linfocitária/imunologia , Metilação , Piperazinas/farmacologia , Piridonas/farmacologiaRESUMO
Protein kinase dysregulation was strongly linked to cancer pathogenesis. Moreover, histone alterations were found to be among the most important post-translational modifications that could contribute to cancer growth and development. In this context, haspin, an atypical serine/threonine kinase, phosphorylates histone H3 at threonine-3 and is notably overexpressed in various common cancer types. Herein, we report novel 5-(4-pyridinyl)indazole derivatives as potent and selective haspin inhibitors. Amide coupling at N1 of the indazole ring with m-hydroxyphenyl acetic acid yielded compound 21 with an IC50 value of 78 nM against haspin. This compound showed a meaningful selectivity over 15 of the most common off-targets, including Clk 1-3 and Dyrk1A, 1B, and 2. The most potent haspin inhibitors 5 and 21 effectively inhibited the growth of the NCI-60 cancer cell lines, further emphasizing the success of our scaffold as a new selective lead for the development of anti-cancer therapeutic agents.
Assuntos
Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Indazóis/farmacologia , Proteínas Serina-Treonina Quinases , Histonas/metabolismo , Fosforilação , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Apoptosis signal regulated kinase 1 (ASK1, MAP3K5) is a member of the mitogen activated protein kinase (MAPK) signaling pathway, involved in cell survival, differentiation, stress response, and apoptosis. ASK1 kinase inhibition has become a promising strategy for the treatment of Non-alcoholic steatohepatitis (NASH) disease. A series of novel ASK1 inhibitors with indazole scaffolds were designed and synthesized, and their ASK1 kinase activities were evaluated. The System Structure Activity Relationship (SAR) study discovered a promising compound 33c, which has a strong inhibitory effect on ASK1. Noteworthy observations included a discernible reduction in lipid droplets within LO2 cells stained with Oil Red O, coupled with a decrease in LDL, CHO, and TG content within the NASH model cell group. Mechanistic inquiries revealed that compound 33c could inhibit the protein expression levels of the upregulated ASK1-p38/JNK signaling pathway in TNF-α treated HGC-27 cells and regulate apoptotic proteins. In summary, these findings suggest that compound 33c may be valuable for further research as a potential candidate compound against NASH.
Assuntos
Desenho de Fármacos , Indazóis , MAP Quinase Quinase Quinase 5 , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Humanos , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Indazóis/farmacologia , Indazóis/síntese química , Indazóis/química , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/metabolismo , Estrutura Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismoRESUMO
The inhibition of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway with small molecules is a promising approach for cancer immunotherapy. Herein, novel small molecules compounds bearing various scaffolds including thiophene, thiazole, tetrahydroquinoline, benzimidazole and indazole were designed, synthesized and evaluated for their inhibitory activity against the PD-1/PD-L1 interaction. Among them, compound Z13 exhibited the most potent activity with IC50 of 189.6 nM in the homogeneous time-resolved fluorescence (HTRF) binding assay. Surface plasmon resonance (SPR) assay demonstrated that Z13 bound to PD-L1 with high affinity (KD values of 231 nM and 311 nM for hPD-L1 and mPD-L1, respectively). In the HepG2/Jurkat T co-culture cell model, Z13 decreased the viability rate of HepG2 cells in a concentration-dependent manner. In addition, Z13 showed significant in vivo antitumor efficacy (TGI = 52.6 % at 40 mg/kg) without obvious toxicity in the B16-F10 melanoma model. Furthermore, flow cytometry analysis demonstrated that Z13 inhibited tumor growth in vivo by activating the tumor immune microenvironment. These findings indicate that Z13 is a promising PD-1/PD-L1 inhibitor deserving further investigation.
Assuntos
Antineoplásicos , Antígeno B7-H1 , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Indazóis , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Relação Estrutura-Atividade , Indazóis/química , Indazóis/farmacologia , Indazóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Estrutura Molecular , Camundongos , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Camundongos Endogâmicos C57BL , Células Hep G2 , Sobrevivência Celular/efeitos dos fármacosRESUMO
Pazopanib (PAZ), an oral multi-tyrosine kinase inhibitor, demonstrates promising cytostatic activities against various human cancers. However, its clinical utility is limited by substantial side effects and therapeutic resistance. We developed a nanoplatform capable of delivering PAZ for enhanced anti-breast cancer therapy. Nanometer-sized PAZ@Fe-MOF, compared to free PAZ, demonstrated increased anti-tumor therapeutic activities in both syngeneic murine 4T1 and xenograft human MDA-MB-231 breast cancer models. High-throughput single-cell RNA sequencing (scRNAseq) revealed that PAZ@Fe-MOF significantly reduced pro-tumorigenic M2-like macrophage populations at tumor sites and suppressed M2-type signaling pathways, such as ATF6-TGFBR1-SMAD3, as well as chemokines including CCL17, CCL22, and CCL24. PAZ@Fe-MOF reprogramed the inhibitory immune microenvironment and curbed tumorigenicity by blocking the polarization of M2 phenotype macrophages. This platform offers a promising and new strategy for improving the cytotoxicity of PAZ against breast cancers. It provides a method to evaluate the immunological response of tumor cells to PAZ-mediated treatment.