Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.816
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(21): 5901-5918.e28, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39332413

RESUMO

Phage therapy is gaining increasing interest in the fight against critically antibiotic-resistant nosocomial pathogens. However, the narrow host range of bacteriophages hampers the development of broadly effective phage therapeutics and demands precision approaches. Here, we combine large-scale phylogeographic analysis with high-throughput phage typing to guide the development of precision phage cocktails targeting carbapenem-resistant Acinetobacter baumannii, a top-priority pathogen. Our analysis reveals that a few strain types dominate infections in each world region, with their geographical distribution remaining stable within 6 years. As we demonstrate in Eastern Europe, this spatiotemporal distribution enables preemptive preparation of region-specific phage collections that target most local infections. Finally, we showcase the efficacy of phage cocktails against prevalent strain types using in vitro and animal infection models. Ultimately, genomic surveillance identifies patients benefiting from the same phages across geographical scales, thus providing a scalable framework for precision phage therapy.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Terapia por Fagos , Terapia por Fagos/métodos , Acinetobacter baumannii/virologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Animais , Humanos , Bacteriófagos/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Acinetobacter/terapia , Infecções por Acinetobacter/microbiologia , Genômica/métodos , Farmacorresistência Bacteriana/genética , Camundongos , Filogeografia , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico
2.
Nature ; 625(7995): 566-571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172634

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) has emerged as a major global pathogen with limited treatment options1. No new antibiotic chemical class with activity against A. baumannii has reached patients in over 50 years1. Here we report the identification and optimization of tethered macrocyclic peptide (MCP) antibiotics with potent antibacterial activity against CRAB. The mechanism of action of this molecule class involves blocking the transport of bacterial lipopolysaccharide from the inner membrane to its destination on the outer membrane, through inhibition of the LptB2FGC complex. A clinical candidate derived from the MCP class, zosurabalpin (RG6006), effectively treats highly drug-resistant contemporary isolates of CRAB both in vitro and in mouse models of infection, overcoming existing antibiotic resistance mechanisms. This chemical class represents a promising treatment paradigm for patients with invasive infections due to CRAB, for whom current treatment options are inadequate, and additionally identifies LptB2FGC as a tractable target for antimicrobial drug development.


Assuntos
Antibacterianos , Lipopolissacarídeos , Proteínas de Membrana Transportadoras , Animais , Humanos , Camundongos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Antibacterianos/classificação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico/efeitos dos fármacos , Modelos Animais de Doenças , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Desenvolvimento de Medicamentos
3.
Proc Natl Acad Sci U S A ; 121(27): e2402422121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923984

RESUMO

Maintenance of DNA integrity is essential to all forms of life. DNA damage generated by reaction with genotoxic chemicals results in deleterious mutations, genome instability, and cell death. Pathogenic bacteria encounter several genotoxic agents during infection. In keeping with this, the loss of DNA repair networks results in virulence attenuation in several bacterial species. Interstrand DNA crosslinks (ICLs) are a type of DNA lesion formed by covalent linkage of opposing DNA strands and are particularly toxic as they interfere with replication and transcription. Bacteria have evolved specialized DNA glycosylases that unhook ICLs, thereby initiating their repair. In this study, we describe AlkX, a DNA glycosylase encoded by the multidrug resistant pathogen Acinetobacter baumannii. AlkX exhibits ICL unhooking activity similar to that of its Escherichia coli homolog YcaQ. Interrogation of the in vivo role of AlkX revealed that its loss sensitizes cells to DNA crosslinking and impairs A. baumannii colonization of the lungs and dissemination to distal tissues during pneumonia. These results suggest that AlkX participates in A. baumannii pathogenesis and protects the bacterium from stress conditions encountered in vivo. Consistent with this, we found that acidic pH, an environment encountered during host colonization, results in A. baumannii DNA damage and that alkX is induced by, and contributes to, defense against acidic conditions. Collectively, these studies reveal functions for a recently described class of proteins encoded in a broad range of pathogenic bacterial species.


Assuntos
Acinetobacter baumannii , Dano ao DNA , DNA Glicosilases , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/metabolismo , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Reparo do DNA , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/patologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Camundongos , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Virulência , Escherichia coli/genética , Escherichia coli/metabolismo
4.
PLoS Pathog ; 20(9): e1012529, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39241032

RESUMO

Acinetobacter baumannii is an opportunistic nosocomial pathogen with high morbidity and mortality rates. Current treatment options for this pathogen are limited due to its increasing resistance to last-resort antibiotics. Despite A. baumannii's leading position in the World Health Organisations priority pathogens list, little is known about its virulence regulation. Through a high-throughput screening approach to identify novel biofilm regulators, we identified a previously uncharacterised predicted adenylate cyclase (AC), CavA, as a central regulator of this phenotype. cAMP is a crucial mediator of various aspects of bacterial physiology in other species but information about its role in A. baumannii is limited. We confirm that CavA AC is functional and synthesizes cAMP in A. baumannii. Using dRNA-seq, we verify that CavA is a negative biofilm formation regulator affecting Csu pili and exopolysaccharide production. We demonstrate for the first time that in A. baumannii, cAMP is atop of a hierarchical signalling cascade controlling inter- and intrabacterial signalling by modulating quorum sensing and cyclic di-GMP systems, ultimately governing virulence in vivo and adaptive antibiotic resistance. In contrast to the well-established paradigm in other bacteria where cAMP and cyclic di-GMP levels are inversely regulated, we uncover that the levels of these second messengers are directly proportional in A. baumannii. Overall, this study uncovers the central role of CavA and cAMP in the pathogenic success of A. baumannii and highlights this signalling cascade as a high potential target for novel therapeutic development.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Biofilmes , AMP Cíclico , Transdução de Sinais , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , AMP Cíclico/metabolismo , Virulência , Biofilmes/crescimento & desenvolvimento , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Camundongos , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum/fisiologia , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Adenilil Ciclases/metabolismo , Antibacterianos/farmacologia
5.
PLoS Pathog ; 20(9): e1012528, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39312576

RESUMO

With the emergence of multidrug-resistant bacteria, the World Health Organization published a catalog of microorganisms urgently needing new antibiotics, with the carbapenem-resistant Acinetobacter baumannii designated as "critical". Such isolates, frequently detected in healthcare settings, pose a global pandemic threat. One way to facilitate a systemic view of bacterial metabolism and allow the development of new therapeutics is to apply constraint-based modeling. Here, we developed a versatile workflow to build high-quality and simulation-ready genome-scale metabolic models. We applied our workflow to create a metabolic model for A. baumannii and validated its predictive capabilities using experimental nutrient utilization and gene essentiality data. Our analysis showed that our model iACB23LX could recapitulate cellular metabolic phenotypes observed during in vitro experiments, while positive biomass production rates were observed and experimentally validated in various growth media. We further defined a minimal set of compounds that increase A. baumannii's cellular biomass and identified putative essential genes with no human counterparts, offering new candidates for future antimicrobial development. Finally, we assembled and curated the first collection of metabolic reconstructions for distinct A. baumannii strains and analyzed their growth characteristics. The presented models are in a standardized and well-curated format, enhancing their usability for multi-strain network reconstruction.


Assuntos
Acinetobacter baumannii , Antibacterianos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Genoma Bacteriano , Humanos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Metaboloma , Farmacorresistência Bacteriana Múltipla/genética , Modelos Biológicos , Testes de Sensibilidade Microbiana
6.
PLoS Genet ; 19(7): e1010646, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498819

RESUMO

The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecção Hospitalar , Humanos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Filogenia , Infecção Hospitalar/microbiologia , Infecções por Acinetobacter/microbiologia , Hospitais , Antibacterianos
7.
J Virol ; 98(7): e0046724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38864621

RESUMO

Acinetobacter baumannii, an opportunistic pathogen, poses a significant threat in intensive care units, leading to severe nosocomial infections. The rise of multi-drug-resistant strains, particularly carbapenem-resistant A. baumannii, has created formidable challenges for effective treatment. Given the prolonged development cycle and high costs associated with antibiotics, phages have garnered clinical attention as an alternative for combating infections caused by drug-resistant bacteria. However, the utilization of phage therapy encounters notable challenges, including the narrow host spectrum, where each phage targets a limited subset of bacteria, increasing the risk of phage resistance development. Additionally, uncertainties in immune system dynamics during treatment hinder tailoring symptomatic interventions based on patient-specific states. In this study, we isolated two A. baumannii phages from wastewater and conducted a comprehensive assessment of their potential applications. This evaluation included sequencing analysis, genome classification, pH and temperature stability assessments, and in vitro bacterial inhibition assays. Further investigations involved analyzing histological and cytokine alterations in rats undergoing phage cocktail treatment for pneumonia. The therapeutic efficacy of the phages was validated, and transcriptomic studies of rat lung tissue during phage treatment revealed crucial changes in the immune system. The findings from our study underscore the potential of phages for future development as a treatment strategy and offer compelling evidence regarding immune system dynamics throughout the treatment process.IMPORTANCEDue to the growing problem of multi-drug-resistant bacteria, the use of phages is being considered as an alternative to antibiotics, and the genetic safety and application stability of phages determine the potential of phage application. The absence of drug resistance genes and virulence genes in the phage genome can ensure the safety of phage application, and the fact that phage can remain active in a wide range of temperatures and pH is also necessary for application. In addition, the effect evaluation of preclinical studies is especially important for clinical application. By simulating the immune response situation during the treatment process through mammalian models, the changes in animal immunity can be observed, and the effect of phage therapy can be further evaluated. Our study provides compelling evidence that phages hold promise for further development as therapeutic agents for Acinetobacter baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Carbapenêmicos , Modelos Animais de Doenças , Terapia por Fagos , Acinetobacter baumannii/virologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Infecções por Acinetobacter/terapia , Infecções por Acinetobacter/microbiologia , Ratos , Terapia por Fagos/métodos , Carbapenêmicos/farmacologia , Bacteriófagos/fisiologia , Bacteriófagos/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Masculino , Genoma Viral , Águas Residuárias , Pneumonia/terapia , Pneumonia/microbiologia , Pneumonia/virologia
8.
Drug Resist Updat ; 73: 101061, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301486

RESUMO

AIMS: Antimicrobial resistance is a global threat to human health, and Acinetobacter baumannii is a paradigmatic example of how rapidly bacteria become resistant to clinically relevant antimicrobials. The emergence of multidrug-resistant A. baumannii strains has forced the revival of colistin as a last-resort drug, suddenly leading to the emergence of colistin resistance. We investigated the genetic and molecular basis of colistin resistance in A. baumannii, and the mechanisms implicated in its regulation and dissemination. METHODS: Comparative genomic analysis was combined with genetic, biochemical, and phenotypic assays to characterize Φ19606, an A. baumannii temperate bacteriophage that carries a colistin resistance gene. RESULTS: Ф19606 was detected in 41% of 523 A. baumannii complete genomes and demonstrated to act as a mobile vehicle of the colistin resistance gene eptA1, encoding a functional lipid A phosphoethanolamine transferase. The eptA1 gene is coregulated with its chromosomal homolog pmrC via the PmrAB two-component system and confers colistin resistance when induced by low calcium and magnesium levels. Resistance selection assays showed that the eptA1-harbouring phage Ф19606 promotes the emergence of spontaneous colistin-resistant mutants. CONCLUSIONS: Φ19606 is an unprecedented example of a self-transmissible phage vector implicated in the dissemination of colistin resistance.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacologia , Colistina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
9.
PLoS Genet ; 18(6): e1010020, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653398

RESUMO

Nosocomial pathogens of the Acinetobacter calcoaceticus-baumannii (ACB) complex are a cautionary example for the world-wide spread of multi- and pan-drug resistant bacteria. Aiding the urgent demand for novel therapeutic targets, comparative genomics studies between pathogens and their apathogenic relatives shed light on the genetic basis of human-pathogen interaction. Yet, existing studies are limited in taxonomic scope, sensing of the phylogenetic signal, and resolution by largely analyzing genes independent of their organization in functional gene clusters. Here, we explored more than 3,000 Acinetobacter genomes in a phylogenomic framework integrating orthology-based phylogenetic profiling and microsynteny conservation analyses. We delineate gene clusters in the type strain A. baumannii ATCC 19606 whose evolutionary conservation indicates a functional integration of the subsumed genes. These evolutionarily stable gene clusters (ESGCs) reveal metabolic pathways, transcriptional regulators residing next to their targets but also tie together sub-clusters with distinct functions to form higher-order functional modules. We shortlisted 150 ESGCs that either co-emerged with the pathogenic ACB clade or are preferentially found therein. They provide a high-resolution picture of genetic and functional changes that coincide with the manifestation of the pathogenic phenotype in the ACB clade. Key innovations are the remodeling of the regulatory-effector cascade connecting LuxR/LuxI quorum sensing via an intermediate messenger to biofilm formation, the extension of micronutrient scavenging systems, and the increase of metabolic flexibility by exploiting carbon sources that are provided by the human host. We could show experimentally that only members of the ACB clade use kynurenine as a sole carbon and energy source, a substance produced by humans to fine-tune the antimicrobial innate immune response. In summary, this study provides a rich and unbiased set of novel testable hypotheses on how pathogenic Acinetobacter interact with and ultimately infect their human host. It is a comprehensive resource for future research into novel therapeutic strategies.


Assuntos
Infecções por Acinetobacter , Acinetobacter calcoaceticus , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter calcoaceticus/genética , Carbono , Humanos , Família Multigênica/genética , Filogenia , Virulência
10.
Clin Infect Dis ; 78(2): 248-258, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37738153

RESUMO

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAb) is 1 of the most problematic antimicrobial-resistant bacteria. We sought to elucidate the international epidemiology and clinical impact of CRAb. METHODS: In a prospective observational cohort study, 842 hospitalized patients with a clinical CRAb culture were enrolled at 46 hospitals in five global regions between 2017 and 2019. The primary outcome was all-cause mortality at 30 days from the index culture. The strains underwent whole-genome analysis. RESULTS: Of 842 cases, 536 (64%) represented infection. By 30 days, 128 (24%) of the infected patients died, ranging from 1 (6%) of 18 in Australia-Singapore to 54 (25%) of 216 in the United States and 24 (49%) of 49 in South-Central America, whereas 42 (14%) of non-infected patients died. Bacteremia was associated with a higher risk of death compared with other types of infection (40 [42%] of 96 vs 88 [20%] of 440). In a multivariable logistic regression analysis, bloodstream infection and higher age-adjusted Charlson comorbidity index were independently associated with 30-day mortality. Clonal group 2 (CG2) strains predominated except in South-Central America, ranging from 216 (59%) of 369 in the United States to 282 (97%) of 291 in China. Acquired carbapenemase genes were carried by 769 (91%) of the 842 isolates. CG2 strains were significantly associated with higher levels of meropenem resistance, yet non-CG2 cases were over-represented among the deaths compared with CG2 cases. CONCLUSIONS: CRAb infection types and clinical outcomes differed significantly across regions. Although CG2 strains remained predominant, non-CG2 strains were associated with higher mortality. Clinical Trials Registration. NCT03646227.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Estudos Prospectivos , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/microbiologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
11.
Clin Infect Dis ; 79(4): 819-825, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38630890

RESUMO

BACKGROUND: The treatment of carbapenem-resistant Acinetobacter baumannii/calcoaceticus complex (CRAB) presents significant treatment challenges. METHODS: We report the case of a 42-year-old woman with CRAB meningitis who experienced persistently positive cerebrospinal fluid (CSF) cultures for 13 days despite treatment with high-dose ampicillin-sulbactam and cefiderocol. On day 13, she was transitioned to sulbactam-durlobactam and meropenem; 4 subsequent CSF cultures remained negative. After 14 days of sulbactam-durlobactam, she was cured of infection. Whole genome sequencing investigations identified putative mechanisms that contributed to the reduced cefiderocol susceptibility observed during cefiderocol therapy. Blood and CSF samples were collected pre-dose and 3-hours post initiation of a sulbactam-durlobactam infusion. RESULTS: The CRAB isolate belonged to sequence type 2. An acquired blaOXA-23 and an intrinsic blaOXA-51-like (ie, blaOXA-66) carbapenemase gene were identified. The paradoxical effect (ie, no growth at lower cefiderocol dilutions but growth at higher dilutions) was observed by broth microdilution after 8 days of cefiderocol exposure but not by disk diffusion. Potential markers of resistance to cefiderocol included mutations in the start codon of piuA and piuC iron transport genes and an A515V substitution in PBP3, the primary target of cefiderocol. Sulbactam and durlobactam were detected in CSF at both timepoints, indicating CSF penetration. CONCLUSIONS: This case describes successful treatment of refractory CRAB meningitis with the administration of sulbactam-durlobactam and meropenem and highlights the need to be cognizant of the paradoxical effect that can be observed with broth microdilution testing of CRAB isolates with cefiderocol.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Carbapenêmicos , Meningites Bacterianas , Sulbactam , Humanos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Feminino , Sulbactam/uso terapêutico , Sulbactam/farmacologia , Adulto , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Carbapenêmicos/uso terapêutico , Carbapenêmicos/farmacologia , Meningites Bacterianas/tratamento farmacológico , Meningites Bacterianas/microbiologia , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , beta-Lactamases/genética , Cefalosporinas/uso terapêutico , Cefalosporinas/farmacologia , Proteínas de Bactérias/genética , Combinação de Medicamentos , Resultado do Tratamento , Farmacorresistência Bacteriana Múltipla/genética , Compostos Azabicíclicos/uso terapêutico
12.
BMC Genomics ; 25(1): 727, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060939

RESUMO

BACKGROUND: Acinetobacter baumannii (A. baumannii) is a common opportunistic pathogen in hospitals that causes nosocomial infection. In order to understand the phenotypic and genotypic characteristics of A. baumannii isolates, we sequenced and analyzed 62 A. baumannii isolates from a hospital in Gansu province. RESULTS: Non-repeated 62 A. baumannii isolates were collected from August 2015 to November 2021. Most isolates (56/62) were resistant to multiple drugs. All the 62 A. baumannii isolates were resistant to aztreonam and contained blaADC-25 gene which exists only on chromosome contigs. The 62 isolates in this study were not clustered in a single clade, but were dispersed among multiple clades in the common genome. Seven sequence types were identified by Multilocus sequence type (MLST) analysis and most isolates (52/62) belonged to ST2. The plasmids were grouped into 11 clusters by MOB-suite. CONCLUSIONS: This study furthers the understanding of A. baumannii antimicrobial-resistant genotypes, and may aid in prevention and control nosocomial infection caused by drug-resistant A. baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Genótipo , Tipagem de Sequências Multilocus , Fenótipo , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/efeitos dos fármacos , Humanos , China , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Antibacterianos/farmacologia , Hospitais , Farmacorresistência Bacteriana Múltipla/genética , Infecção Hospitalar/microbiologia , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Masculino , Feminino , Pessoa de Meia-Idade , Adulto
13.
BMC Genomics ; 25(1): 791, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160492

RESUMO

Acinetobacter baumannii is a gram-negative bacillus prevalent in nature, capable of thriving under various environmental conditions. As an opportunistic pathogen, it frequently causes nosocomial infections such as urinary tract infections, bacteremia, and pneumonia, contributing to increased morbidity and mortality in clinical settings. Consequently, developing novel vaccines against Acinetobacter baumannii is of utmost importance. In our study, we identified 10 highly conserved antigenic proteins from the NCBI and UniProt databases for epitope mapping. We subsequently screened and selected 8 CTL, HTL, and LBL epitopes, integrating them into three distinct vaccines constructed with adjuvants. Following comprehensive evaluations of immunological and physicochemical parameters, we conducted molecular docking and molecular dynamics simulations to assess the efficacy and stability of these vaccines. Our findings indicate that all three multi-epitope mRNA vaccines designed against Acinetobacter baumannii are promising; however, further animal studies are required to confirm their reliability and effectiveness.


Assuntos
Acinetobacter baumannii , Vacinas Bacterianas , Biologia Computacional , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Biologia Computacional/métodos , Epitopos/imunologia , Epitopos/química , Simulação de Acoplamento Molecular , Infecções por Acinetobacter/prevenção & controle , Infecções por Acinetobacter/imunologia , Mapeamento de Epitopos , Vacinas de mRNA , Simulação de Dinâmica Molecular , Humanos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
14.
Antimicrob Agents Chemother ; 68(3): e0125823, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289078

RESUMO

The activity of a novel ß-lactamase inhibitor combination, sulbactam-durlobactam (SUL-DUR), was tested against 87 colistin-resistant and/or cefiderocol-non-susceptible carbapenem-resistant Acinetobacter baumannii clinical isolates collected from U.S. hospitals between 2017 and 2019. Among them, 89% and 97% were susceptible to SUL-DUR and imipenem plus SUL-DUR, with MIC50/MIC90 values of 2 µg/mL/8 µg/mL and 1 µg/mL/4 µg/mL, respectively. The presence of amino acid substitutions in penicillin-binding protein 3, including previously reported A515V or T526S, was associated with SUL-DUR non-susceptibility.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Compostos Azabicíclicos , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Cefiderocol , Infecções por Acinetobacter/tratamento farmacológico , Sulbactam/farmacologia , Imipenem/farmacologia , Hospitais , Testes de Sensibilidade Microbiana , Combinação de Medicamentos
15.
Antimicrob Agents Chemother ; 68(10): e0072524, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39240097

RESUMO

The emergence of plasmid-mediated resistance threatens the efficacy of polymyxins as the last line of defense against pan-drug-resistant infections. However, we have found that using Mueller-Hinton II (MHII), the standard minimum inhibitory concentration (MIC) medium, results in MIC data that are disconnected from in vivo treatment outcomes. We found that culturing putative colistin-resistant Acinetobacter baumannii clinical isolates, as defined by MICs of >2 mg/L in standard MHII testing conditions, in bicarbonate-containing media reduced MICs to the susceptible range by preventing colistin resistance-conferring lipopolysaccharide modifications from occurring. Furthermore, the lower MICs in bicarbonate-containing media accurately predicted in vivo efficacy of a human-simulated dosing strategy of colistin and polymyxin B in a lethal murine infection model for some polymyxin-resistant A. baumannii strains. Thus, current polymyxin susceptibility testing methods overestimate the contribution of polymyxin resistance-conferring mutations and incorrectly predict antibiotic activity in vivo. Polymyxins may remain a viable therapeutic option against Acinetobacter baumannii strains heretofore determined to be "pan-resistant."


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Colistina , Testes de Sensibilidade Microbiana , Polimixina B , Polimixinas , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Camundongos , Animais , Polimixinas/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Colistina/farmacologia , Polimixina B/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Farmacorresistência Bacteriana/genética
16.
Antimicrob Agents Chemother ; 68(10): e0022224, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39189767

RESUMO

Antimicrobial resistance (AMR) in Acinetobacter baumannii is an unmet medical need. Multiple drug-resistant/extremely drug-resistant strains of A. baumannii do not display growth well in in vivo models, and consequently, their response to antibacterial therapy is inconsistent. We addressed this issue by engineering carbapenem resistance motifs into the highly virulent genetic background of A. baumannii AB5075. This strain has a chromosomally encoded oxa-23 that was deleted (Δoxa-23), then plasmids expressing oxa-23, oxa-24/40, oxa-58, imp-1, vim-2, and ndm-1 were introduced to create the mutant strains. Each transformant was used as a challenge strain in a neutropenic murine thigh infection model and assessed for the extent of growth and response to meropenem 200 mg/kg subcutaneously every 6 h (q6h). Pharmacodynamic analyses were performed by transforming drug exposure from dose (mg/kg) to the fraction of the dosing interval; free meropenem concentrations were >minimum inhibitory concentration (MIC) (fT > MIC). AB5075 and the AB5075Δoxa-23 mutant had a MICs of 32 and 4 mg/L, respectively. The transformants harboring oxacillinases oxa-24/40 and oxa-58 had an MIC of 64 mg/L. The metallo-ß-lactamases imp-1, vim-2, and ndm-1 had MICs of 128, 64, and 64 mg/L, respectively. All vehicle-treated transformants displayed in vivo growth in the range of 0.75-1.4 log. The response to meropenem was consistent with the varying fT > MIC of the transformants and was readily described by an inhibitory sigmoid Emax relationship. Stasis was achieved with a fT > MIC of 0.36. These A. baumannii transformants are invaluable new tools for the assessment of anti-Acinetobacter compounds and provide a new pathway for AMR preparedness.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Meropeném , Testes de Sensibilidade Microbiana , beta-Lactamases , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , beta-Lactamases/genética , Meropeném/farmacologia , Animais , Camundongos , Antibacterianos/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Proteínas de Bactérias/genética , Plasmídeos/genética , Farmacorresistência Bacteriana Múltipla/genética , Feminino
17.
Antimicrob Agents Chemother ; 68(7): e0029024, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38809000

RESUMO

We report the emergence of cefiderocol resistance in a blaOXA-72 carbapenem-resistant Acinetobacter baumannii isolate from a sacral decubitus ulcer. Cefiderocol was initially used; however, a newly approved sulbactam-durlobactam therapy with source control and flap coverage was successful in treating the infection. Laboratory investigation revealed cefiderocol resistance mediated by ISAba36 insertion into the siderophore receptor pirA.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Carbapenêmicos , Cefiderocol , Cefalosporinas , Testes de Sensibilidade Microbiana , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Humanos , Cefalosporinas/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Carbapenêmicos/farmacologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sulbactam/farmacologia , Masculino , Farmacorresistência Bacteriana Múltipla/genética , Compostos Azabicíclicos/farmacologia , Elementos de DNA Transponíveis/genética , Proteínas da Membrana Bacteriana Externa
18.
Antimicrob Agents Chemother ; 68(5): e0169823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38567976

RESUMO

Acinetobacter baumannii-calcoaceticus complex (ABC) causes severe, difficult-to-treat infections that are frequently antibiotic resistant. Sulbactam-durlobactam (SUL-DUR) is a targeted ß-lactam/ß-lactamase inhibitor combination antibiotic designed to treat ABC infections, including those caused by multidrug-resistant strains. In a global, pathogen-specific, randomized, controlled phase 3 trial (ATTACK), the efficacy and safety of SUL-DUR were compared to colistin, both dosed with imipenem-cilastatin as background therapy, in patients with serious infections caused by carbapenem-resistant ABC. Results from ATTACK showed that SUL-DUR met the criteria for non-inferiority to colistin for the primary efficacy endpoint of 28-day all-cause mortality with improved clinical and microbiological outcomes compared to colistin. This report describes the characterization of the baseline ABC isolates from patients enrolled in ATTACK, including an analysis of the correlation of microbiological outcomes with SUL-DUR MIC values and the molecular drivers of SUL-DUR resistance.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Colistina , Testes de Sensibilidade Microbiana , Sulbactam , Humanos , Masculino , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter calcoaceticus/efeitos dos fármacos , Acinetobacter calcoaceticus/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Combinação Imipenem e Cilastatina/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Sulbactam/uso terapêutico , Sulbactam/farmacologia
19.
Antimicrob Agents Chemother ; 68(10): e0071224, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39194207

RESUMO

Acinetobacter baumannii is a notorious opportunistic pathogen responsible for healthcare-associated infections worldwide. Efflux pumps play crucial roles in mediating antimicrobial resistance, motility, and virulence. In this study, we present the identification and characterization of the new A. baumannii efflux pump SxtP belonging to the MFS superfamily (major facilitator superfamily), along with its associated activator LysR-type transcriptional regulator (LTTR) SxtR, demonstrating their roles in sulfamethoxazole/trimethoprim (also known as co-trimoxazole or SXT) resistance, surface-associated motility and virulence.


Assuntos
Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Testes de Sensibilidade Microbiana , Combinação Trimetoprima e Sulfametoxazol , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidade , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Animais , Regulação Bacteriana da Expressão Gênica , Virulência/genética , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Curr Opin Infect Dis ; 37(2): 137-143, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179988

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to briefly summarize the challenges associated with the treatment of pneumonia caused by carbapenem-resistant Acinetobacter baumannii (CRAB), discuss its carbapenem-resistance, and review the literature supporting the current treatment paradigm and therapeutic options. RECENT FINDINGS: In a multicenter, randomized, and controlled trial the novel ß-lactam-ß-lactamase inhibitor sulbactam-durlobactam was compared to colistin, both in addition to imipenem-cilastatin. The drug met the prespecified criteria for noninferiority for 28-day all-cause mortality while demonstrating higher clinical cure rates in the treatment of CRAB pneumonia. In an international, randomized, double-blind, placebo controlled trial colistin monotherapy was compared to colistin combined with meropenem. In this trial, combination therapy was not superior to monotherapy in the treatment of drug-resistant gram-negative organisms including CRAB pneumonia. SUMMARY: CRAB pneumonia is a preeminent public health threat without an agreed upon first line treatment strategy. Historically, there have been drawbacks to available treatment modalities without a clear consensus on the first-line treatment regimen. CRAB pneumonia is a top priority for the continued development of antimicrobials, adjuvant therapies and refinement of current treatment strategies.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Pneumonia , Humanos , Antibacterianos , Colistina/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Inibidores de beta-Lactamases/uso terapêutico , Pneumonia/tratamento farmacológico , Testes de Sensibilidade Microbiana , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA