Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 967
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 190: 106614, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492825

RESUMO

Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.


Assuntos
Aeromonas hydrophila , Antioxidantes , Carpas , Eleutherococcus , Fermentação , Doenças dos Peixes , Lacticaseibacillus rhamnosus , Probióticos , Animais , Lacticaseibacillus rhamnosus/metabolismo , Carpas/microbiologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Antioxidantes/metabolismo , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/imunologia , Ração Animal , Inflamação/prevenção & controle , Citocinas/metabolismo , Aquicultura
2.
Arch Microbiol ; 206(5): 219, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627275

RESUMO

Aeromonas hydrophila is one of the major freshwater fish pathogens. In the current study, a cocktail of D6 and CF7 phages was given orally to Labeo rohita to assess phage survival in fish organs as well as to determine the therapeutic efficacy of phage treatment against fish mortality caused by A. hydrophila. In the phage-coated feed, prepared by simple spraying method, phage counts were quite stable for up to 2 months with a decline of ≤ 0.23 log10 and ≤ 1.66 log10 PFU/g feed during 4 oC and room temperature storage. Throughout the experimental period of 7 days, both phages could be detected in the gut of fish fed with phage-coated feed. Besides, both CF7 and D6 phages were also detected in fish kidneys indicating the ability of both the phage to cross the intestinal barrier. During challenge studies with LD50 dose of A. hydrophila, phage cocktail doses of 1 × 106 - 1 × 108 PFU/g feed prevented the mortality in L. rohita with relative percentage survival (RPS) of 8.7-65.2. When challenged with LD90 dose of A. hydrophila, an RPS value of 28.6 was obtained at a phage cocktail dose of 1 × 108 PFU/g feed. The RPS data showed that orally-fed phage cocktail protected the fish against the mortality caused by A. hydrophila in a dose-dependent manner. Simple practical approaches for phage cocktail development, medicated feed preparation and oral administration along with phage survival and protection data make the current study useful for farmer-level application.


Assuntos
Bacteriófagos , Cyprinidae , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária
3.
Fish Shellfish Immunol ; 146: 109380, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244821

RESUMO

Aeromonas hydrophila (A. hydrophila) is a typical zoonotic pathogenic bacterium that infects humans, animals, and fish. It has been reported that the Fur, a Fe2+ regulatory protein, and the Crp, a cAMP receptor protein, play important roles in bacterial virulence in many bacteria, but no research has been investigated on A. hydrophila. In this study, the Δfur and Δcrp mutant strains were constructed by the suicide plasmid method. These two mutant strains exhibited a slightly diminished bacterial growth and also were observed some alterations in the number of outer membrane proteins, and the disappearance of hemolysis in the Δcrp strain. Animal experiments of crucian carp showed that the Δfur and Δcrp mutant strains significantly decreased virulence compared to the wild-type strain, and both mutant strains were able to induce good immune responses by two kinds of administration routes of intraperitoneal immunization (i.p) and immersion immunization, and the protection rates through intraperitoneal injection of Δfur and Δcrp to crucian carp were as high as 83.3 % and 73.3 %, respectively, and immersion immunization route of Δfur and Δcrp to crucian carp provided protection as high as 40 % and 20 %, respectively. These two mutant strains showed abilities to induce changes in enzymatic activities of the non-specific enzymes SOD, LZM, AKP, and ACP in crucian carp. Together, these results indicated the Δfur and Δcrp mutants were safe and effective candidate vaccine strains, showing good protection against the wild-type A. hydrophila challenge.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Humanos , Animais , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Vacinas Atenuadas , Aeromonas hydrophila
4.
Transpl Infect Dis ; 26(2): e14238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265107

RESUMO

BACKGROUND: Performance of active screening for multidrug-resistant Gram-negative bacteria (MDR-GNB) and administration of targeted antibiotic prophylaxis (TAP) in colonized patients undergoing liver (LT) and/or kidney transplantation (KT) are controversial issues. METHODS: Self-administered electronic cross-sectional survey disseminated from January to February 2022. Questionnaire consisted of four parts: hospital/transplant program characteristics, standard screening and antibiotic prophylaxis, clinical vignettes asking for TAP in patients undergoing LT and KT with prior infection/colonization with four different MDR-GNB (extended-spectrum cephalosporin-resistant Enterobacterales [ESCR-E], carbapenem-resistant Enterobacterales [CRE], multidrug-resistant Pseudomonas aeruginosa [MDR-Pa], and carbapenem-resistant Acinetobacter baumannii [CRAb]). RESULTS: Fifty-five respondents participated from 14 countries, mostly infectious disease specialists (69%) with active transplant programs (>100 procedures/year for 34.5% KT and 23.6% LT), and heterogeneous local MDR-GNB prevalence from <15% (30.9%), 15%-30% (43.6%) to >30% (16.4%). The frequency of screening for ESCR-E, CRE, MDR-Pa, and CRAb was 22%, 54%, 17%, and 24% for LT, respectively, and 18%, 36%, 16%, and 11% for KT. Screening time-points were mainly at transplantation 100%, only one-third following transplantation. Screening was always based on rectal swab cultures (100%); multi-site sampling was reported in 40% of KT and 35% of LT. In LT clinical cases, 84%, 58%, 84%, and 40% of respondents reported TAP for prior infection/colonization with ESCR-E, CRE, MDR-Pa, and CRAb, respectively. In KT clinical cases, 55%, 39%, 87%, and 42% of respondents reported TAP use for prior infection/colonization with ESCR-E, CRE, MDR-Pa, and CRAb, respectively. CONCLUSION: There is a large heterogeneity in screening and management of MDR-GNB carriage in LT and KT.


Assuntos
Infecções por Bactérias Gram-Negativas , Transplante de Rim , Humanos , Antibioticoprofilaxia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/prevenção & controle , Transplante de Rim/efeitos adversos , Estudos Transversais , Bactérias Gram-Negativas , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Fígado , Carbapenêmicos , Inquéritos e Questionários
5.
BMC Vet Res ; 20(1): 231, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802892

RESUMO

BACKGROUND: Moringa oleifera, a well-known medicinal plant, has been used in aquafeed as a dietary supplement. Based on previous studies, insufficient research is available on the dietary supplementation of Nile tilapia with M. oleifera leaf and seed mixtures, specifically the fermented form. Therefore, this study aimed to investigate the efficacy of fermented (FMO) versus non-fermented M. oleifera (MO) leaf and seed mixtures on immunological parameters, antioxidant activity, growth performance, and resistance to A. hydrophila infection after a 30-day feeding trial on Nile tilapia. METHODS: A total of 180 fingerlings were randomly divided into four groups in addition to the control group (36 fish each, in triplicate). Fish in the tested groups were fed on basal diet supplemented with MO5%, MO10%, FMO5%, and FMO10%, while those in control were fed on basal diet only. After the feeding trial, fish were challenged with A. hydrophila. The immunomodulatory activity of M. oleifera was evaluated in terms of phagocytic and lysozyme activities, immune-related cytokines and IgM gene expression. Antioxidants, and growth-promoting activities were also assessed. RESULTS: The results revealed that fish supplemented FMO markedly in FMO10% group followed by FMO5%, exhibited significant (P < 0.05) improvement in the tested immunological, hepatic antioxidants, and growth performance parameters. Furthermore, the highest survival rate post-challenge with mild clinical symptoms, and the lowest A. hydrophila bacterial count were reported in these groups. Meanwhile, MO10%-supplementation exhibited the opposite trend. CONCLUSIONS: The study' conclusion suggests that fermented M. oleifera leaf and seed mixture is a promising growth-promoting and immunostimulatory feed-additive candidate for Nile tilapia and could reduce the losses caused by A. hydrophila infection.


Assuntos
Aeromonas hydrophila , Ração Animal , Antioxidantes , Ciclídeos , Dieta , Suplementos Nutricionais , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Moringa oleifera , Animais , Moringa oleifera/química , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Antioxidantes/metabolismo , Ração Animal/análise , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Dieta/veterinária , Folhas de Planta/química , Fermentação , Sementes/química
6.
J Invertebr Pathol ; 204: 108120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679366

RESUMO

Shewanella putrefaciens is a vital bacterial pathogen implicated in serious diseases in Chinese mitten crab Eriocheir sinensis. Yet the use of probiotics to improve the defense ability of E. sinensis against S. putrefaciens infection remains poorly understood. In the present study, the protective effect of dietary R. sphaeroides against S. putrefaciens infection in E. sinensis was evaluated through antioxidant capability, immune response, and survival under bacterial challenge assays, and its protective mechanism was further explored using a combination of intestinal flora and metabolome assays. Our results indicated that dietary R. sphaeroides could significantly improve immunity and antioxidant ability of Chinese mitten crabs, thereby strengthening their disease resistance with the relative percentage survival of 81.09% against S. putrefaciens. In addition, dietary R. sphaeroides could significantly alter the intestinal microbial composition and intestinal metabolism of crabs, causing not only the reduction of potential threatening pathogen load but also the increase of differential metabolites in tryptophan metabolism, pyrimidine metabolism, and glycerophospholipid metabolism. Furthermore, the regulation of differential metabolites such as N-Acetylserotonin positively correlated with beneficial Rhodobacter could be a potential protection strategy for Shewanella infection. To the best of our knowledge, this is the first study to illustrate the protective effect and mechanism of R. sphaeroides supplementation to protect E. sinensis against S. putrefaciens infection.


Assuntos
Braquiúros , Microbioma Gastrointestinal , Rhodobacter sphaeroides , Shewanella putrefaciens , Animais , Braquiúros/microbiologia , Braquiúros/imunologia , Microbioma Gastrointestinal/fisiologia , Rhodobacter sphaeroides/metabolismo , Probióticos/farmacologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Suplementos Nutricionais
7.
J Fish Dis ; 47(7): e13944, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523320

RESUMO

Aeromonas salmonicida, a widely distributed aquatic pathogen causing furunculosis in fish, exhibits varied virulence, posing challenges in infectious disease and immunity studies, notably in vaccine efficacy assessment. Lumpfish (Cyclopterus lumpus) has become a valuable model for marine pathogenesis studies. This study evaluated several antigen preparations against A. salmonicida J223, a hypervirulent strain of teleost fish, including lumpfish. The potential immune protective effect of A. salmonicida bacterins in the presence and absence of the A-layer and extracellular products was tested in lumpfish. Also, we evaluated the impact of A. salmonicida outer membrane proteins (OMPs) and iron-regulated outer membrane proteins (IROMPs) on lumpfish immunity. The immunized lumpfish were intraperitoneally (i.p.) challenged with 104 A. salmonicida cells/dose at 8 weeks-post immunization (wpi). Immunized and non-immunized fish died within 2 weeks post-challenge. Our analyses showed that immunization with A. salmonicida J223 bacterins and antigen preparations did not increase IgM titres. In addition, adaptive immunity biomarker genes (e.g., igm, mhc-ii and cd4) were down-regulated. These findings suggest that A. salmonicida J223 antigen preparations hinder lumpfish immunity. Notably, many fish vaccines are bacterin-based, often lacking efficacy evaluation. This study offers crucial insights for finfish vaccine approval and regulations.


Assuntos
Imunidade Adaptativa , Aeromonas salmonicida , Vacinas Bacterianas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas salmonicida/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Vacinas Bacterianas/imunologia , Furunculose/imunologia , Furunculose/prevenção & controle , Furunculose/microbiologia , Perciformes/imunologia , Antígenos de Bactérias/imunologia
8.
J Fish Dis ; 47(7): e13943, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38481095

RESUMO

Streptococcosis and aeromoniasis are the main obstacles to sustainable tilapia production. Vaccination offered an effective method to control microbial infections. Previously, a feed-based bivalent vaccine (FBBV) containing killed whole organisms of Streptococcus agalactiae and Aeromonas hydrophila mixed with 10% palm oil was successfully developed, which provided good protection against streptococcosis and aeromoniasis in Oreochromis sp. However, the mechanisms of immunities in vaccinated fish still need clarification. Here, the hindgut transcriptome of vaccinated and control fish was determined, as the gut displays higher affinity towards antigen uptake and nutrient absorption. The efficacy of FBBV to improve fish immunity was evaluated according to the expression of immune-related genes in the vaccinated fish hindgut throughout the 8-week experimental period using RT-qPCR. The vaccinated fish hindgut at week 6 was further subjected to transcriptomic analysis due to the high expression of immune-related genes and contained killed whole organisms. Results demonstrated the expression of immune-related genes was in correlation with the presence of killed whole organisms in the vaccinated fish hindgut. Transcriptomic analysis has allowed the prediction of robust immune-related pathways, including innate and adaptive immunological responses in vaccinated fish hindgut than control fish. Pathways related to the regulation of lipid metabolism and modulation of the immune system were also significantly enriched (p ≤ .05). Overall, results offer a fundamental study on understanding the immunological response in Oreochromis sp. following vaccination with the FBBV pellet and support further application to prevent bacterial diseases in aquaculture.


Assuntos
Aeromonas hydrophila , Vacinas Bacterianas , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Streptococcus agalactiae , Transcriptoma , Vacinação , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/imunologia , Vacinação/veterinária , Aeromonas hydrophila/imunologia , Ciclídeos/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Streptococcus agalactiae/imunologia , Ração Animal/análise , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/imunologia , Perfilação da Expressão Gênica/veterinária
9.
J Environ Manage ; 351: 119677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042084

RESUMO

Sweet orange Citrus sinensis peel is a phytobiotic agricultural waste with bioactive compounds that have potential functional properties as a growth promoter and immune stimulator. This study aims to evaluate the dietary effects of sweet orange peel (SOP) as a feed additive on growth enhancement of juvenile bagrid catfish Mystus nemurus and their disease resistance ability against Aeromonas hydrophila infection. Four experimental diets were formulated to contain 0 (SOP0, control), 4 (SOP4), 8 (SOP8) and 12 g/kg (SOP12) SOP. After 90 d of the feeding experiment, improvement in weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio were observed in the fish fed with SOP4. While fish survival was not significantly affected, hepatosomatic and viscerosomatic indices were significantly higher in fish fed with SOP12. Muscle protein was higher in fish fed with SOP4, SOP8, and SOP12 than in control but muscle lipids showed an opposite trend. A 14-d post-challenge test against A. hydrophila revealed no significant effect on the fish survival. Nevertheless, fish fed SOP4 encountered delayed bacterial infection compared to other treatments and fish fed with SOP0 and SOP4 performed numerically better survival. Infected fish showed skin depigmentation, haemorrhagic signs at the abdomen and anus, internal bleeding, and stomach and intestine enlargement. In conclusion, SOP4 could be recommended as a growth promoter while slightly delaying A. hydrophila infection in M. nemurus.


Assuntos
Peixes-Gato , Citrus sinensis , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Suplementos Nutricionais , Aeromonas hydrophila/fisiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Ração Animal/análise , Dieta
10.
World J Microbiol Biotechnol ; 40(8): 250, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910219

RESUMO

Aeromonas hydrophila, an opportunistic warm water pathogen, has always been a threat to aquaculture, leading to substantial economic losses. Vaccination of the cultured fish would effectively prevent Aeromoniasis, and recent advancements in nanotechnology show promise for efficacious vaccines. Oral delivery would be the most practical and convenient method of vaccine delivery in a grow-out pond. This study studied the immunogenicity and protective efficacy of a nanoparticle-loaded outer membrane protein A from A. hydrophila in the zebrafish model. The protein was over-expressed, purified, and encapsulated using poly lactic-co-glycolic acid (PLGA) nanoparticles via the double emulsion method. The PLGA nanoparticles loaded with recombinant OmpA (rOmpA) exhibited a size of 295 ± 15.1 nm, an encapsulation efficiency of 72.52%, and a polydispersity index of 0.292 ± 0.07. Scanning electron microscopy confirmed the spherical and isolated nature of the PLGA-rOmpA nanoparticles. The protective efficacy in A. hydrophila-infected zebrafish after oral administration of the nanovaccine resulted in relative percentage survival of 77.7. Gene expression studies showed significant upregulation of immune genes in the vaccinated fish. The results demonstrate the usefulness of oral administration of nanovaccine-loaded rOmpA as a potential vaccine since it induced a robust immune response and conferred adequate protection against A. hydrophila in zebrafish, Danio rerio.


Assuntos
Aeromonas hydrophila , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Nanopartículas , Proteínas Recombinantes , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Aeromonas hydrophila/imunologia , Aeromonas hydrophila/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Administração Oral , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Vacinação , Nanovacinas
11.
Microb Pathog ; 180: 106148, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169311

RESUMO

Cetobacterium somerae is a commensal bacterium for many fish species. However, research on C. somerae has been limited so far, and its function and beneficial potential require to be further investigated. The objective of this study was to evaluate the probiotic properties of C. somerae CPU-CS01 isolated from the intestinal contents of crucian carp (Carassius auratus). Hemolytic activity, antibiotic susceptibility, acid tolerance, bile salt tolerance, free radical scavenging, and enzyme production properties were tested for in vitro. Caenorhabditis elegans and zebrafish (Danio rerio) model were used to evaluate the antioxidant and anti-infective effects of C. somerae CPU-CS01 in vivo. Our results showed that C. somerae CPU-CS01 had no hemolytic activity, it produced cellulase, amylase, and survived at low pH (2.0-3.0) and in the presence of bile salts. The cell-free culture supernatant (CFCS) of C. somerae CPU-CS01 possessed DPPH radical, hydroxyl radical, and superoxide anion scavenging activity. C. elegans fed with C. somerae CPU-CS01 were more resistant to hydrogen peroxide-induced oxidative stress and Aeromonas hydrophila infection. In addition, zebrafish-fed diets containing C. somerae CPU-CS01 showed improved survival after A. hydrophila infection. Based on these results, the positive probiotic properties of C. somerae CPU-CS01 isolated from the intestinal contents of crucian carp make it a potential candidate for probiotic.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Probióticos , Animais , Carpa Dourada , Aeromonas hydrophila , Peixe-Zebra , Caenorhabditis elegans , Probióticos/farmacologia , Intestinos , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia
12.
Fish Shellfish Immunol ; 138: 108813, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182796

RESUMO

The occurrence of francisellosis caused by Francisella orientalis sp. nov. (Fo) and columnaris disease caused by Flavobacterium oreochromis (For) is negatively impacting Nile tilapia (Oreochromis niloticus) production, especially when high stocking densities are used. A new and innovative bivalent mucoadhesive nanovaccine was developed in this study for immersion vaccination of tilapia against francisellosis and columnaris disease. It was shown to have the potential to improve both innate and adaptive immunity in vaccinated Nile tilapia. It increased innate immune parameters, such as lysozyme activity, bactericidal activity, phagocytosis, phagocytic index, and total serum IgM antibody levels. Additionally, the vaccine was effective in elevating specific adaptive immune responses, including IgM antibody levels against Fo and For vaccine antigens and upregulating immune-related genes IgM, IgT, CD4+, MHCIIα, and TCRß in the head kidney, spleen, peripheral blood leukocytes, and gills of vaccinated fish. Furthermore, fish vaccinated with the mucoadhesive nanovaccine showed higher survival rates and relative percent survival after being challenged with either single or combined infections of Fo and For. This vaccine is anticipated to be beneficial for large-scale immersion vaccination of tilapia and may be a strategy for shortening vaccination times and increasing immune protection against francisellosis and columnaris diseases in tilapia aquaculture.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Tilápia , Animais , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Vacinas Bacterianas
13.
Fish Shellfish Immunol ; 136: 108737, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37030560

RESUMO

Aeromonas hydrophila (A. hydrophila), a gram-negative bacterium, causes serious diseases with various clinical symptoms in farm raised fish. Thus, different ways to prevent and control A. hydrophila infection need to be explored, including a vaccine. In this study, we evaluated the protective efficacy of an oral vaccine prepared from the A. hydrophila TPS maltoporin (Malt) with Lactobacillus plantarum (L. plantarum) against A. hydrophila infection in crucian carp (Carassius auratus). For the in vivo experiment, the oral vaccine was administered to crucian carp by feeding them fish diets containing Lp-pPG-Malt, Lp-pPG and PBS for 28 days. The enzyme-linked immunosorbent assay (ELISA), leukocyte phagocytosis assay and real-time quantitative polymerase chain reaction (RT-qPCR) were performed to measure the protective efficacy of the Lp-pPG-Malt. ELISA and leukocyte phagocytosis assay confirmed that Lp-pPG-Malt significantly enhanced the IgM level and nonspecific immune response of crucian carp compared with the control groups (Lp-pPG and PBS). The RT-qPCR results showed that the Lp-pPG-Malt increased the relative expression of immune-related genes (IL-10, IL-1ß, TNF-α, IFN-γ) of crucian carp in various tissues (liver, spleen, head kidney and hind intestine). Moreover, Lp-pPG-Malt significantly increased the relative percent survival of fish after intraperitoneal injection with A. hydrophila (55%) compared with the Lp-pPG and PBS groups (0%). These findings suggest that Lp-pPG-Malt can serve as an oral vaccine candidate for A. hydrophila infection and that Malt can be used as an effective antigen in crucian carp farming.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Lactobacillus plantarum , Animais , Aeromonas hydrophila , Vacinas Bacterianas , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária
14.
Fish Shellfish Immunol ; 142: 109157, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832750

RESUMO

There is a long-standing debate on the attributes of temperature for fish health. We recently showed that thermoregulatory programs exerted through natural behavioural fever drive molecular and cellular responses that contribute to pathogen clearance, inflammation control, and tissue repair. These offered a mechanistic basis for the survival advantage conferred through fever. Herein, we show the attributes of mechanical replication of this fever response. Central to our approach was consideration of both, the maximal temperatures naturally selected by fish after infection, as well as the dynamics of thermal changes induced through this response. Coarse replication of the febrile thermal program as well as shorter truncated thermal schedules offered immune-regulatory capacity. Most notably, these promoted induction of acute inflammation and significant enhancements to pathogen clearance. However, the coarse protocols tested only partially recapitulated enhancements to induction and control of tissue repair. Our findings highlight a promising new alternative to combat infections in fish using a natural, drug-free, sustainable approach.


Assuntos
Aeromonas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas veronii/fisiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Peixes , Inflamação , Doenças dos Peixes/prevenção & controle , Aeromonas/fisiologia
15.
Fish Shellfish Immunol ; 136: 108694, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36944414

RESUMO

Aeromonas veronii is a human and animal co-pathogenic bacterium that could have a significant negative impact on both human health and aquaculture. In this study, a mutant strain of A. veronii with deletion of the hemolysin co-regulated protein (hcp) gene was constructed (Δhcp-AV). Compared with the wild strain, Δhcp-AV showed significantly reduced growth capacity and biofilm formation ability. Motility tests showed that the hcp gene had no significant effect on the swimming and swarming ability. In addition, the pathogenicity was also reduced. To evaluate the efficacy of Δhcp-AV as a live attenuated vaccine for prevention of Aeromonas veronii infection, we compared the immune response of largemouth bass (Micropterus salmoides) after immunization with 500 µL of 1.47 × 105 CFU/mL of Δhcp-AV and 4 × 108 CFU/mL of inactivated A. veronii. Obvious increases of serum immune related enzyme activity were observed in immunization groups. Expression levels of immune-related genes in Δhcp-AV group were up-regulated, and higher than those in inactivated A. veronii group. After challenging with live A. veronii, the relative percent survival (RPS) was 100% in Δhcp- AV group, whereas the RPS was 76.67% in inactivated A. veronii group. Our data suggest that the live attenuated vaccine Δhcp- AV could elicit a stronger immune response and provide a higher RPS than inactivated A. veronii. These data suggest that hcp gene is an important virulence factor of A. veronii, and the live attenuated vaccine Δhcp-AV is safe and effective for prevention A. veronii infection in M. salmoides farming.


Assuntos
Vacinas Bacterianas , Bass , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas veronii/genética , Aeromonas veronii/imunologia , Vacinas Bacterianas/imunologia , Bass/imunologia , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Imunização/veterinária , Mutação , Vacinas Atenuadas/imunologia
16.
Fish Shellfish Immunol ; 139: 108872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271324

RESUMO

Hepcidin is a small peptide of defensins with antibacterial activity, and plays an important role in innate immunity against pathogenic microorganisms, which can also participate in the regulation of iron metabolism. The hepcidin gene in Yellow River carp (Cyprinus carpio haematopterus) (CcHep) was cloned and identified. The total length of CcHep cDNA was 480 bp, containing an open reading frame (ORF) that encoded 91 amino acids (aa), which contained a 24-aa signal peptide, a 42-aa propeptide, and a 25-aa mature peptide. The mature peptide had a typical RX (K/R) R motif and eight conserved cysteine residues forming four pairs of disulfide bonds. Homology and phylogenetic tree analysis showed that CcHep had the closest relationship with that of crucian carp. The expression levels of hepcidin mRNA in healthy and Aeromonas hydrophila stimulated fish were measured by real-time fluorescence quantitative PCR. The results showed that CcHep mRNA was expressed in different tissues of healthy fish with the highest relative expression level in liver, followed by kidney and intestine, and the lowest expression level was observed in heart. The hepcidin gene was extremely significantly up-regulated in head kidney, intestine, liver, skin, spleen, and gill at 6 h and 12 h after A. hydrophila infection. Furthermore, the immunoregulation effect of dietary recombinant protein was evaluated. The recombinant hepcidin protein (rCcHep) was successfully expressed by Pichia pastoris X-33 and showed strong antibacterial activity against A. hydrophila, Escherichia coli, Vibrio anguillarum and Bacillus subtilis in vitro. In order to evaluate the preventive effect of rCcHep, fish were fed with basal diet or diet supplemented with different doses of rCcHep, and then challenged with A. hydrophila. The results showed that immune genes were up-regulated to varying degrees, and feed additive groups exhibited a significantly improved up-regulation expressions of Lysozyme, Toll-like receptor 5 (TLR 5), Major histocompatibility complex classⅡ (MHCⅡ), while inhibited up-regulation expressions of Interleukin 1ß (IL-1ß), Interleukin 8 (IL-8), and Tumor necrosis factor α (TNF-α) in liver and spleen compared to the control. Meanwhile, the relative immune protection rate in 120 mg/kg feed additive group was 28%, and the bacterial clearance rate in tissues of this group was higher than that of the control. Collectively, these results indicated that rCcHep had antibacterial activity and showed an immune protection effect against A. hydrophila, and could be considered as a dietary supplement to apply in aquaculture.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Carpas/metabolismo , Aeromonas hydrophila/fisiologia , Hepcidinas/metabolismo , Filogenia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/genética , Suplementos Nutricionais/análise , Imunidade Inata/genética , RNA Mensageiro/metabolismo , Proteínas de Peixes/química
17.
J Fish Dis ; 46(12): 1413-1423, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37705318

RESUMO

Aeromonas hydrophila and A. veronii are widespread and important critical pathogenic bacteria in the aquaculture industry and cause severe economic damage. At present, magnolol has been proved to be a broad-spectrum antibacterial activity, such as A. hydrophila, Staphylococcus aureus and Streptococcus mutans. In order to explore the cause of in vivo disease resistance of magnolol and promote its safe application in aquaculture, the pathological detection and changes in immune indicators of fish after feeding with magnolol were conducted in this paper. Results showed that the diets supplemented with magnolol (3 g magnolol/kg commercial feed) significantly increase the expression level of anti-inflammatory cytokines (IL-10, TGF-ß and IL-4) in the liver of goldfish (p < .05). Additionally, the expression levels of proinflammatory cytokines (IL-1ß, IL-8 and IFN-γ) did not increase significantly. Subsequently, this study investigated the resistance of goldfish to A. hydrophila and A. veronii infection after feeding with magnolol. The results showed that the survival rates of treatment groups fed 3 g magnolol/kg commercial feed daily increased by 23.1% and 38.5% after 10 days post A. hydrophila and A. veronii (p = .0351) infection, respectively. Meanwhile, growth performance (body weight and length), major internal organs (liver, spleen, kidney and intestine) and the serum biochemistry indicators (ATL and AST) all exhibited no significant adverse effects after the goldfish fed with magnolol for 30 days. TP showed an increasing concentration in the treatment group (p < .05). Results of the mRNA expression of stress response indicated that the expression level of cyp1a and hsp70 was significantly down-regulated after a 30-day treatment (p < .05), and the two genes recovered to the similar level as the control group after a commercial feed diet. In brief, the diets supplemented with magnolol protected the host from the excessive immune response caused by A. hydrophila and A. veronii via enhancing its anti-inflammatory capacity and had no adverse effects with feeding.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Carpa Dourada/genética , Aeromonas hydrophila/fisiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle , Dieta/veterinária , Resistência à Doença , Citocinas , Ração Animal/análise , Aeromonas veronii
18.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982212

RESUMO

Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative fish pathogen with worldwide distribution and broad host specificity that causes heavy economic losses in aquaculture. Although Phdp was first identified more than 50 years ago, its pathogenicity mechanisms are not completely understood. In this work, we report that Phdp secretes large amounts of outer membrane vesicles (OMVs) when cultured in vitro and during in vivo infection. These OMVs were morphologically characterized and the most abundant vesicle-associated proteins were identified. We also demonstrate that Phdp OMVs protect Phdp cells from the bactericidal activity of fish antimicrobial peptides, suggesting that secretion of OMVs is part of the strategy used by Phdp to evade host defense mechanisms. Importantly, the vaccination of sea bass (Dicentrarchus labrax) with adjuvant-free crude OMVs induced the production of anti-Phdp antibodies and resulted in partial protection against Phdp infection. These findings reveal new aspects of Phdp biology and may provide a basis for developing new vaccines against this pathogen.


Assuntos
Bass , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Vacinas , Animais , Photobacterium , Virulência , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária
19.
J Anim Physiol Anim Nutr (Berl) ; 107(4): 1125-1136, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36876872

RESUMO

Effects of dietary Euphorbia heterophylla extract (EH) on growth performance, feed utilization and haemato-biochemical parameters in African catfish, Clarias gariepinus, juveniles were evaluated in this study. Diets fortified with EH at 0 (control), 0.5, 1.0, 1.5 or 2.0 g/kg were fed to the fish to apparent satiation for 84 days before challenging it with Aeromonas hydrophila. The weight gain, specific growth rate and protein efficiency ratio of fish fed EH-supplemented diets were significantly higher but lower feed conversion ratio (p < 0.05) than the control group. The villi height and width at the proximal, mid and the distal of the guts rose significantly with the increasing levels of EH from 0.5 to 1.5 g than the fish fed basal diet. Dietary EH enhanced (p < 0.05) the packed cell volume and haemoglobin, whereas 1.5 g EH boosted white blood cell, in relation to their counterpart in the control group. There were significant increase in the activities of glutathione-S-transferase, glutathione peroxidase and superoxide dismutase (p < 0.05) in the fish that were fed diets supplemented with EH than the control. Dietary EH also enhanced phagocytic activities, lysozyme activities and relative survival (RS) of C. gariepinus than the control group, with the highest RS obtained in fish that were fed diet containing EH at 1.5 g/kg level. These results revealed that the fish fed 1.5 g/kg dietary EH promoted growth performance, antioxidant and immune profiles, as well as protection against A. hydrophila infection.


Assuntos
Peixes-Gato , Euphorbia , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Antioxidantes/metabolismo , Euphorbia/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Extratos Vegetais/farmacologia , Ração Animal/análise , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária
20.
Fish Physiol Biochem ; 49(4): 687-709, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438674

RESUMO

In this study, the effects of Coriandrum sativum to control Aeromonas veronii infection in Oreochromis niloticus were determined. Coriandrum sativum extract (CE) was tested in vitro against A. veronii by the disc diffusion assay. In in vivo, 150 O. niloticus (from El-Abbassa, Sharkia, Egypt, weighing 34.95 ± 1.98 g) was distributed in five groups (with three replications) in glass aquariums (80 × 40 × 30 cm). The first group (control) was intraperitoneally injected with 0.2 ml of sterilized tryptic soya broth. Groups 2-5 were intraperitoneally challenged with 0.2 ml of A. veronii (4.3 × 106). The five groups were administered a basal diet until clinical signs appeared, and then therapeutic feeding (15 days) was followed: the first (CONT) and second (AV) groups were administered a normal basal diet. The third (AV+CP) and fourth (AV+CE) groups were administered diets supplemented with C. sativum powder and extract, respectively, each at 30 mg/kg. The fifth group (AV+OT) was administered a diet supplemented with oxytetracycline at 500 mg/kg diet. The results of the in vitro experiment revealed that CE has a zone of inhibition of 43 mm against A. veronii. The in vivo results showed that fish administered a therapeutic diet supplemented with CE showed a significant improvement in hematological, biochemical, and immunological parameters, as well as antioxidant capacity (P < 0.05) and the pathological findings of the liver and kidney tissues. The current findings supported that the administration of a CE-enriched diet (30 mg/kg) is an eco-friendly strategy for controlling A. veronii in O. niloticus.


Assuntos
Ciclídeos , Coriandrum , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Antioxidantes/farmacologia , Aeromonas veronii/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Rim/fisiologia , Doenças dos Peixes/prevenção & controle , Ração Animal/análise , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA